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ABSTRACT 
 

Induction motor speed control is relatively difficult, because the generated torque and flux are related or not free. In addition 

to adjusting the speed, it requires inverter control. The inverter output is not a pure sinusoidal signal but it is the result of the 

switching. Therefore, it is necessary to be able to fix the method of switching the inverter output signal that can adjust 

induction motor speed with load changes. This study applies the indirect method of vector control for setting the speed. The 

combination of SVPWM (Space Vector Pulse Width Modulation) methods and hysteresis known as HSVPWM (Hysteresis 

Space Vector Pulse Width Modulation) methods. In this study, current signal is also reconstructed. The results show the 

ripple current at the inverter output using methods HSVPWM can be reduced 65%. The setting speed three phase induction 

motor vector control using indirect methods are successfully applied. A change of pace on HSVPWM method  successfully 

achieves the set point of 600 rpm with a rise time of 0.5267 seconds, 0.723 seconds steady state and has over shoot of 0.8%. 

The result of testing motor between load and effective ripple is not load obtain effective at 13.35 N.m, when loaded 40 N.m 

get effective ripple at 13.12 N.m and when laden 80 N.m get effective ripple of 13.71 N.m.  

KEYWORD—Vector Control, Space Vector Pulse Width Modulation, Hysteresis Band, Induction motor. 

 

I. INTRODUCTION 
 

Induction motors are one of the electric machines are most widely used in industry. Induction motor speed regulation in general 

can use the terminal voltage changes and frequency settings [1]. Induction motor a speed setting more difficult when using a DC 

motor, it is because the resulted of flux and torque  has been related or not free. The factors that led to the induction motor control 

becomes more complex [2].  

Conventional control such as proportional integral and proportional integral derivative used together with vector control method 

for motor speed better results [3]. Induction motor a speed setting using Space vector width modulation inverter controller with 

PI-Fuzzy Hybrid can maintain a constant motor speed even though given the burden of changing [4]. Space vector width 

modulation controller with iterative learning control and controller proportional integral can reduce the speed ripple than the 

controller hysteresis pulse width modulation but transient response at hysteresis pulse width modulation faster than with Space 

vector width modulation and controler hybrid iterative learning control [5]. Switching hysteresis control method in frequency is 

not fixed and will fluctuate based on changes in flows [6].  

There is research on the changing load using the indirect vector control method Space vector width modulation. [7]. This study 

uses an indirect vector control method Hysteresis pulse width modulation. The controller in this study can cope with changing 

loads. In this study the response speed and torque changes can not be overcome because the response has not been able to follow 

the reference perfectly. [8]. 

Problem that need to resolve is the speed control of three-phase induction motor with the load changing and improving efficiency 

three-phase induction motors by combining the method of space vector pulse width modulation with hysteresis pulse width 

modulation and calculation effeciency indoction motor. 

 

II. EASE OF USE 
 

A. Mathematical Model Three-Phase Induction Motors [9]  

AC dynamic performance of the engine is rather complex because the coil rotor three-phase stator windings move in three phases. 

Model of an induction motor can be described by differential equations and mutual inductance change with time, but the other 

models tend to be highly complex.  
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Where 
dt

d
p =  Equation for flux of parts coil get in  

 

 
Figure 1. Equivalen Circuit of Three Phase Induction Motor 

 

Induction motor equivalent circuit Three-phase d-q axis can be seen in Figure 1. Based on the above, the circuit may be written on 

the stator and rotor voltage [10] 
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So that (2) substitution in (1) then in the form of a matrix can be declared to be 
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Where, 

Vqs, Vds =  Voltage dq frame (Volt) 

Vqr, Vdr =  Rotor voltage dq frame (Volt) 

iqs, ids =  Current stator of dq frame (Ampere) 

iqr, idr =  Current rotor of dq frame (Ampere) 

λqs, λds =  Stator flux of dq frame (Webber) 

λqr, λdr =  Rotor flux of dq frame (Webber) 

Rs  =  Stator Resistance (Ohm) 

Rr  =  Rotor Resistance (Ohm) 

Ls  =  Stator Inductance (Henry) 

Lr  =  Rotor Inductance (Henry) 

LM  =  Mutual Inductance (Henry). 

 

The electromagnetic torque is raised can be found using (5) [5], and speed rotor (ωr) use this equation (6) [4]. 
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Where,  

 TL =  Load Torque (N.m) 

 Tem =  Electromagnetic Torque (N.m) 

 J =  Inertia Momen (kg.m2) 

 P =  Pole 

 ωr =  Speed in rotor (rad/detik) 

 ωm =  Speed in rotor mechanic (rad/detik) 

 

B. Vector Control [11] 

Vector control or so-called field-oriented control is found by Blaschke to match the characteristics of DC motors at the induction 

motor. In general, the electric motor can be initiated on controlling the source of torque. The motor torque is the result of the 

interaction between the magnetic field in the stator field and the current. 

Vector control consists in controlling stator current component, indicated by a vector, in the form of reference synchronous 

rotation d-q, which are expressed toward the electromagnetic torque on the smooth air grap the motor as well as the DC motor 

circuit. This technique is based on the transformation of the three-phase and speed depending on the coordinate system into two 

time varies. This transformation is performed in order to facilitate the analysis of induction motor control. Transformation vectors 

are two in Clarke transformation and Park transformation. 

 

1) Clarke Transformation   

Clarke transformation is the transformation of the three-phase coordinate system (abc) into two phases (αβ). In figure 2, seen that 

the coordinates α parallel to the coordinates of a three-phase while the coordinates β perpendicular to coordinate with other words 

a difference 900 with coordinates α. Therefore, the vector sum of the field α and β can be written as Equation (2.11). 

 
Figure 2. Coordinate Clarke Transformation 
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Note f declare functions that exist in induction motors, both function of current, flux and voltage while fo is the central axis with a 

constant value of 1 (one) and 2/3 is constant of matrix Clarke transformation. 

 

2) Park Transformation 

Park transformation is the transformation of the coordinate system stationer (αβ) into a rotary coordinate system (d-q) as shown in 

figurer 3.  Characteristics of induction motor that was originally located on a stationary axis (αβ) then working and going round 

the rotor, so that the voltage-current function, and the flux is also changing value. Transformation of the axis αβ becomes the axis 

d-q can be written as Equation (8). 
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From equation (8) Clarke and Park transformation matrix, then the general equation transformation from abc coordinates into d-q 

coordinates is shown in equation (2.13). 

 
Figure 3. Coordinate Park Transformation 
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C. Space Vector Pulse Width Modulation [12] 

SVPWM a method of switching on the inverter that works by space voltage vector in the field of the field α-β. Component α-β 

sought to Clarke transformation. Three Phase half-bridge inverter used where the structure inverter is shown in Figure 4. 
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Figure 4. The Basic Scheme of Three-Phase Inverter in Induction Motor 
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Figure 5. Basic Switching Vectors and Sectors 

 

D. Hysteresis Pulse Width Modulation [13] 

Hysteresis controller is a flow control techniques which enable switching on the phase voltage that is connected as a result of the 

current sensor feedback form. Phase current is determined whether the value of the hysteresis tolerance can manipulate around the 
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desired current value. The hysteresis control to simplify and robustness on the load parameters that vary as to determine the width 

of the switching frequency can not be predicted and there are also difficulties in the safety circuit for the inverter system. 

 
Figure 6. Shape Wave Flow Control Hysteresis 

 

III. SYSTEM DESIGN 
The below system there are certain functions in order to achieve the desired research. Plant of the system is a three-phase 

induction motor. These systems are rectifier (DC Link) is a controlled rectifier so that a DC voltage. Inverter comprise the a 

device whose function is to change from DC voltage to AC voltage, Inverter controlled using PWM techniques by the method of 

hysteresis space vector pulse width modulation. Induction motors use a model which separates the d-q between flux and torque. 
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Figure 7. Block Diagram 

 

IV. SIMULATION AND ANALYSIS SYSTEM 
 

At this stage the researchers expressed the inverter design simulation results in a three-phase induction motor. This stage analyzes 

and compares each method. 

 

a. Hysteresis Pulse Width Modulation 

Hysteresis is a method of setting current that can be controlled directly. 
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Figure 8. Current Response 

 

The image above is a signal flow graph on the method of hysteresis. Results showed that at the beginning of the motor is then the 

current flowing source of 462A, after the second time in 0635 to change the amplitude of the signal 26A or steady state. This 

method produces a sinusoidal ripple current of 29.7A, when the peak ripple current of 5.82A and valleys of 5.3a. 

 

b. Space Vector Pulse Width Modulation 

PWM is a combination of vector control with PWM technique. This section displays the current and voltage at the output of the 

inverter by using SVPWM 

 

 
Figure 9. Current Response 

 

This phase addresses SVPWM method where the graphic signal is displayed in the form of current and voltage at the output of the 

inverter. Figure 4.4 displays the three-phase current IABC which is currently beginning the motor by a power source then reaches 

454A peak current, but when the time 0.65 seconds at 24A current flows. This method still produces ripple of 9.68 A sinusoidal 

current, peak current ripple current of 4A and 4A of the valley 

 

c. Hysteresis Space Vector Pulse Width Modulation 

This stage will display the data graph is HSVPWM proposal study. The data will be displayed in the form of graphs current and 

voltage signals at the output of the inverter 
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Figure 10. Current Response 
 

HSVPWM is the combination of two methods, Hysteresis PWM and SVPWM. This stage combined the two methods 

shows the output current signal can be corrected that ripple on the current signal. This method produces a sinusoidal ripple current 

of 4.2a, when peak ripple current of 4.5A and 4.5A of the valley 
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Figure 11. Comparison of Respon se Flow 
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In Figure 11, a comparison of the inverter output current on each method. Comparison of ripple on the third method can be seen 

in Table 1 data is taken when the ripple sinusoidal, peaks and valleys on the inverter output. The above data also be ripple 

effective and effective signal. 

Table 1. Comprasion of Methode 
 Effektif 

Ripple  

Effektif 

Signal  

Hysteresis 33.1017 33.8467 

SVPWM 19.32 27.57 

HSVPWM 1.6071 27.6113 

The image above in figure 11 shows that the sinusoidal ripple on the method of hysteresis to ripple SVPWM method is reduced by 

32% or 20.02A, while on SVPWM method to HSVPWM reduced by 43% or 5.48A. Ripple peak by the method of hysteresis to 

SVPWM reduced by 68% or 1.82A while on SVPWM to HSVPWM increased by 112.5% or an increase of 0.5A. When the 

current ripple valley of the method of hysteresis is reduced by 75% or less of 1.3A, the current method of SVPWM to HSVPWM 

increased by 112.5% or increased 0.5A. Comparison between effective ripple with effective signals can be displayed in table 2 

 

Table 2. Comparison of percentage Ripple 

 

 

 

 

 

 

 

In Table 2 that the percentage ripple SVPWM reduced hysteresis to 27%, while the percentage ripple compared HSVPWM 

SVPWM reduced 65%. The data shows the percentage ripple HSVPWM method can reduce the ripple of the two methods. The 

ripple frequency Hysteresis SVPWM method for 3.33 KHz, HSVPWM ripple frequency of 5 KHz. This data shows the smaller 

the ripple frequency can cause the heat contained in the motor field. 

 

d. Speed response 

This section displays the response speed chart with a comparison between the three methods. 
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Figure 12. Comparison of Speed Response 

 

The result of the response speed comparison shows that to achieve steady state more rapidly SVPWM method that takes 0.628 

seconds. HSVPWM method slower than SVPWM method that requires time for 0723 seconds to reach steady state. The value of 

the time constant (τ) in the third method of difference is not seen significantly between 0.33 seconds. The response characteristics 

shown in Table 4.3 where the delay time around 0227 seconds, settling time of about 0.6 seconds later rise time is around 0.5 

seconds. 

Table 3 Speed comparisons in each method 

 

 

 

 

 

 

 

 Ripple 

Persentase  

(%) 

Ripple 

Frekuensi  

(Hz) 

Hysteresis 97 3.33 K 

SVPWM 70 3.33 K 

HSVPWM 5 5 K 

  
(Second) 

 
(Second) 

 
(Second) 

 
(Detik) 

 
(Detik) 

Hysteresis 0.227 0.328 0.623 0.519 0.656 

SVPWM 0.233 0.336 0.598 0.528 0.628 

HSVPWM 0.233 0.337 0.686 0.527 0.723 
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e. comparison of Torque 

This section displays a comparison of electromagnetic torque on the three methods.  
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Figure 13 Comparison of Electromagnetic Torque 

 

The result of the response to the electromagnetic torque comparison shows that the method is more favored because HSVPWM 

starting torque is only reached 228.8 N.m than starting torque that reaches 293 N.m SVPWM and hysteresis torque of 263.6 N.m. 

Ripple average torque in the steady state is equal to HSVPWM smaller than the torque 12:36 N.m hysteresis method which 

reaches 18 N.m and torque SVPWM reached 16.77 N.m. The comparative value of each method can be seen in Table 4 

 

Table 4 Electromagnetic Torque comparison of each method 
 Starting 

Torque 

(N.m) 

Torque in Steady State 

(N.m) 

hysteresis 263.6 18.00 

SVPWM 293.0 16.77 

HSVPWM 228.8 12.36 

 

f. calculations Efficiency 

Once you know which form the input power voltage and current on each method and then note also the output power in the form 

of torque and speed. This section menghutung how much efficiency three-phase induction motors by using each method. Table .5 

Motor Efficiency Calculation 

Table .5 Motor Efficiency Calculation 
 Pout Pin Effisiensi 

(%) 

Hysteresis 10800 11960 90 

SVPWM 10062 11040 91 

HSVPWM 7414 7820 94 

 

The table above is a calculation of parameters to calculate the efficiency of the motor. Hysteresis method produces 90% efficiency 

of the motor in which the input power with a voltage of 460 Volt, 26 Ampere current and the output power of the motor is a 

torque of 18 Nm and a speed of 600 rpm. SVPWM method produces 91% efficiency of the motor in which the input power with a 

voltage of 460 Volt, 24 Ampere current and the output power of the motor is a torque of 16.77 Nm and a speed of 600 rpm. 

HSVPWM method produces 94% efficiency of the motor in which the input power with a voltage of 460 Volt, 17 Ampere current 

and power output torque of the motor is 12.36 Nm and a speed of 600 rpm. In the above data shows that the method is more 

efficient HSVPWM which increased by 3% with a percentage of 94%.  
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V. CONCLUSION 
 

The results show the ripple current at the inverter output using methods HSVPWM can be reduced 65%. The setting speed three 

phase induction motor vector control using indirect methods are successfully applied. A change of pace on HSVPWM method  

successfully achieves the set point of 600 rpm with a rise time of 0.5267 seconds, 0.723 seconds steady state and has over shoot of 

0.8%. Testing the motor current ripple not load obtain effective at 13.35 N.m, when loaded 40 N.m get effective ripple at 13.12 

N.m and when laden 80 N.m get effective ripple of 13.71 N.m. 
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