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ABSTRACT 
 
This paper is part of the ongoing effort to improve automated neuronal membrane detection, where the core 
challenge consists of distinguishing membranes from organelles. Earlier we did some work on single sequence 
(or chain) Image Processing Optimization (IPCO). In this paper, we optimized multiple sequences (or chains) of 
image processing (MIPCO) using a global stochastic optimization approach by combining elements of Genetic 
Algorithms (GA), Differential Evolution (DE) and rank-based uniform crossover (RBUC). MIPCO 
performedwith an average F1 score of91.8%,which is slightly higher than the average performance of our 
previous method, IPCO. Our approach is both efficient and interpretable, and facilitates the generation of new 
insights. In this paper too, we highlight an observation pertaining to morphological operators and their 
appearance in an unorthodox position in image processing chains, and suggest a new set of pipelines for image 
processing. 
KEYWORDS: Image processing, Optimization, Segmentation, Morphological Operators, Membrane detection, 

Neuronal structures, Transmission Electron Microscopy data 
 

1.0 INTRODUCTION 
 
1.1 Main Research Goal 

The main goal of our research is to optimize Image Processing chains, and analyze the best approaches with 
the highest accuracy levels. We compare the differences and similaritiesbetween different single (Single Image 
Processing Chain (IPCO) [1]) and multiple (Multiple Image Processing Chain (MIPCO)) chains, and extract several 
useful insights for image processing users. This paper highlightsthe main insights we have gathered so far. 
 
2.0 Background Study 
 

2.1 Genetic Algorithm (GA) and Global Stochastic Optimization 
GA is a method to solve both constrained optimization problems, which optimize an objective function 

with respect to some variables in the presence of constraints on those variablesand unconstrained optimization 
problems, which consider the problem of minimizing an objective function that depends on real variables with 
no restrictions on their values. This method solves the problem based on a natural selection process, and 
repeatedly modifies a population of individual solutions. Global optimization algorithms are typically good at 
avoidinglocal minima and can be further sub-divided into deterministic and stochastic variants [2]. According to 
Uryasav[3], simulated annealing, GA, evolutionary strategies and programming are examples of stochastic 
search algorithms. Theoretically, this stochastic global approach is good at exploring the potential solution space 
widely, but isgenerally slow at finding the local optimum, once the algorithm has found a good area of the 
solution space. So, to get the best result by using this approach, it is common to combine local search with global 
search by using the weights obtained from the global search as starting values for the local search [4,5]. 
 
2.2 Differential Evolution (DE) 

DE is favored because of its’ 3 main (arguable) advantages, i.e.:(1) ability to find the true global 
minimum(regardless of initial parameter values), (2) limited use of control parameters, and (3) fast convergence. 
DE uses operators which are related to those of Genetic Algorithms (GA), i.e.: crossover, selection and mutation. 
According to Nurhan and Bahadir [6], when considering global optimization methods for filter design, GA is a 
good choice. Filters designed by GA have the potential of obtaining near global optimality[7].However, in terms 

                                                 
Abbreviations:  ISBI, international symposium on biomedical imaging; IPCO, image processing chain optimization, MIPCO, multiple image 
processing chain optimizations. 
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of convergence speed, it hasdisadvantages which can be partly addressed by differential evolution, which is a 
simple and yet powerful evolutionary algorithm first introduced by Storn and Price [8]. Early in the literature, 
according to Nurhan Karaboga and Bahadir Cetinkaya, the DE algorithm was not as common as GA[6], but it 
has picked up tremendously over the years partly due to its effectiveness and partly due to its relative simplicity. 
DE has been convincingly successful in solving single-objective optimization problems [9], and several 
researchers are trying to match this success in the domain of multi –objective optimization problems. 

 
2.3 Rank Based Uniform Crossover 

Uniform crossover was first proposed by Ackley [10]. The operator has been successfully used in several 
different applications (e.g. (Duarte-Mermoud et al., in his 2013 publication, [11])) and has been studied 
theoretically at some length (e.g. (Chicano et al.,  in his recent publication, 2014, [12])). The operator involves 
creating a new solution, by scanning parental parameters (or alleles) one-by-one, and copying each parameter (or 
allele) from the best parent with probability P. Although in many studies, P = 0:5, meaning that both parents are 
equally likely to contribute a parameter (this is referred to as equiprobable uniform crossover in (Semenkin and 
Semenkina, [13])), in our study, we bias P towards the stronger solution, and therefore set P = 0:75. This bias 
towards the stronger parent, is reflected in the “rank based” half of the term rank-based uniform crossover (RBUC). 
 

3.0 METHODOLOGY 
 

3. 1  Image Processing Platform - MatLab and the Image Processing Toolbox 
Our approach is based on a sequence of basic image processing steps, most of which we adopted from MatLab’s 
image processing toolbox by MathWorks. This toolbox is useful for the processing, visualization and analysis of 
images, whilst MatLab is convenient for rapid prototyping. 

 
3.2 Data 

The experiments were performed on data provided by the ISBI 2012 (IEEE International Symposium 
on Biomedical Imaging) challenge: “Segmentation of neuronal structures in Electron Microscopy (EM) 
stacks”[14]. Albert Cardona and team provide public access to 30 slices of Transmission Electron Microscopy 
(TEM) images with corresponding ground-truth images for training, and a second set of 30 TEM images for 
testing [15]. 

 
3.3 Performance Measures 
The performance of the algorithm was measured in terms of Precision, Recall and F1 score.  
 

Precision = 
୘୰୳ୣ	୔୭ୱ୧୲୧୴ୣ	ሺ୘୔ሻ	

୘୰୳ୣ	୔୭ୱ୧୲୧୴ୣ	ሺ୘୔ሻା୊ୟ୪ୱୣ	୔୭ୱ୧୲୧୴ୣ	ሺ୊୔ሻ
.........................................................(2) 

Where: 
 
TP : The number of pixels correctly labeled as belonging to the positive class 
FP :The number of pixels incorrectly labeled as belonging to the positive class 

 

Recall = 
୘୰୳ୣ	୔୭ୱ୧୲୧୴ୣ	ሺ୘୔ሻ

୘୰୳ୣ	୔୭ୱ୧୲୧୴ୣ	ሺ୘୔ሻା୊ୟ୪ୱୣ	୒ୣ୥ୟ୲୧୴ୣ	ሺ୊୒ሻ
  ............................................................ (3) 

 
Where: 
FN :The number of pixels incorrectly labeled as belonging to the negative class 

 

F1 =2 (
୔୰ୣୡ୧ୱ୧୭୬∗ୖୣୡୟ୪୪

ሺ୔୰ୣୡ୧ୱ୧୭୬ାୖୣୡୟ୪୪ሻ
ሻ..............................................................................................(4) 

 
Where F1 is a measure of a test's accuracy. The F1 score can be interpreted as a weighted average of the 
precision and recall where an F1 score reaches its best value at 1 and worst score at 0. 
 
For each slice, a confusion matrix was computed followed by corresponding precision(2), recall(3) and F1 
scores(4). The final performance values were averaged from the results corresponding to each one of the 30 slices. 
 
3.4 Multiple Image Processing Chain Optimization (MIPCO) 
3.4.1 Motivation 

The core aim underlying IPCO (our earlier successful approach) consists of the design and implementation 
of a simple, computationally efficient and easily adopted method for cellular membrane detection. To further 
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enhance our approach for accuracy, we here introduce MIPCO. In our previous research, we divided our effort 
into 4 main stages: 
 

i) Semi-automated stage to obtain a decent sequence of functions and parameterizations for 
membrane detection –algorithm known as Local Contrast Hole Filling (LCHF) Algorithm [16]. 

ii) Automated stage - We optimized sequences (or chains) of image processing functions using a 
global stochastic optimization approach, the overall process of which we refer to as Image 
Processing Chain Optimization (IPCO) [17] 

iii) Analysis stage – Through the analysis of relatively large sets of optimal chains, we 
discoveredseveral interesting and useful facts pertaining to pre and post processing [18] 

iv) In order to further boost performance, we created ensembles from several high-scoring IPCO 
chains. 

 
MIPCO is the result of the effort to further boost the performance of IPCO. 
 
3.4.2 Conceptual Summary of MIPCO 

MIPCO, is essentially the direct application of global stochastic optimization to multiple image processing 
chains.These chains run in parallel and can exchange intermediate information. MIPCO is fully automated and 
its optimization process incorporates elements of Genetic Algorithms (GA), Differential Evolution (DE) and 
rank-based uniform crossover (RBUC) to obtain a more robust approach. The optimization algorithm has several 
basic image processing functions available to it [16] which it configures in different sequences and with different 
parameter settings, in response to the behaviour of the cost function, defined as the F1 score relative to a subset 
of the ISBI training images.  

Below are fluxogramspertaining to the general framework underlying IPCO and MIPCO chains. 

 
Figure1: Flowchart showing the overall computational flow in a specific IPCO chain consisting of three 

functions. I: input image. O: output image. FunA: single-input function such as denoising. FunB: multiple-input 
function such as image blending. 

 
Figure 1 shows the flowchart of an IPCO chain consisting of three functions. In our experiments IPCO 

chains were typically allowed to use a maximum of 8 functions [1][16]. 
 
 
 
 
 
 
 
 
 
 

Figure 2: Flowchart showing the overall computational flow in a specific MIPCO chain consisting of three 
functions, and 3 layers of chains (for illustration purposes). I: input image. O: output image. FunA: single-input 

function such as denoising. FunB: multiple-input function such as image blending. 
 
Figure 2 shows the flowchart of a MIPCO chain consisting of three functions and multiple layers of chains 

(3 layers). In our experiments MIPCO chains were allowed to use a maximum of 8 functions per chain, and 5 
parallel chains. 

 
In the 3rd stage of our earlier experimental designwith IPCO, we confirmed that ensembles of IPCO chains 

(where each chain is optimized separately) perform better than single chains. This finding partly motivated the 
simultaneous optimization of multiple and interacting chains (i.e. MIPCO). 

 
 
 

O FunA FunA FunB I 

I O 

FunA FunA FunB 

FunA 

FunA FunA 

FunB 

FunA 

FunA 
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Algorithm Score 

(Individual) 
Original / Ground Truth Output 

 
IPCO 

 
91.67  
with max 8 
function 

  
 
MIPCO 

 
91.80 
with max 8 
function and 5 
chains 
 

 
 

Figure 3: Shows the visual comparison and score of IPCO and MIPCO 
 
Figure 3 shows the visual comparison and score of IPCO vs MIPCO. MIPCO performs generallybetter  than 
IPCO with a higher F1 score (0.13%), as of the time of writing. 

 
3.4.2 Functions 

MIPCO consists of chains or simple networks of image processing functions optimized via a global 
stochastic optimization algorithm, which combines elements of genetic algorithms, differential evolution and 
rank based uniform crossover.The optimization algorithm has several basic image processing functions available 
to it, which are typically found in standard image processing libraries such as the MatLab Image Processing 
Toolbox (by MathWorks). These functions are classified into different types (e.g. contrast modulation vs. 
denoising) and sub-types (e.g. median vs. Wiener). Types are further classified into 3 broad categories, i.e.: pre-
processing, classification and post-processing. The two main types of pre-processing functions currently being 
used consist of denoising and contrast enhancement. The three main types of classification functions consist of 
thresholding, hole-filling and watershed. Post-processing functions include smoothing via combining functions 
and morphological operators. Note that the categorization of function types into pre-processing, classification 
and post-processing, is based on their typical usage and interpretation, and that optimization often finds 
unexpected ways to use functions (e.g. in some chains, denoising operators have been found in the middle of said 
chains)[17][18].The functions used in MIPCO are the same as those used in IPCO. MIPCO computes layer by 
layer and there is no dependency of functions in the same layer. Functions in a layer can receive input from any 
other function in previous layers. So, a layer must complete all computation before the next layer can initiate its 
own computation. Please refer to the diagram in Figure 2 for a simple view of the computational flow in MIPCO.  
 
3.4.2.1  Training MIPCO 

In order to compute the cost function, we typically take a subset of slices 1 and 2, which accelerates the 
optimization process dramatically without excessively deteriorating accuracy(after optimization, all chains 
typically have F1 scoreslarger than 90%). MIPCO’s optimization process runs continuously until a target cost of 
0 has been reached or a maximum of 10,000 generations has been completed, whichever occurs first. MIPCO 
can lead to a diverse set of useful chains, many of which consist of unorthodox sequences and choices of 
functions. The functions are configured in different sequences and with different parameter settings, in response 
to changes in the cost function, defined as the F1 score relative to a subset of the training images. In the 
experiments conducted in our research, chains were allowed to have a maximum number of eight basic 
functions, and a maximum number of 5 chains, although the total pool of functions was much larger. In general, 
functions can appear in any order, and there is no restriction in order, and can even repeat several times in a 
chain. Each function typically comes along with a small set of parameters which also undergoes optimization 
(e.g. tile size for the contrast function). Generally speaking, it doesn’t take long to optimize a chain for different 
types of data (typically less than 1000 optimization generations). MIPCO can also be considered fast at pixel 
classification, where the task of detecting membranes in Transmission Electron Microscopy (TEM) images with 
a resolution of 343 x 343 pixels can be done in about 20 seconds per image on an average personal computer (i.e. 
1.60 GHz processor and 1.48 GB of RAM) for 3 chains with 8 functions. Moreover, there is no requirement for 
specialized hardware. 
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3.4.3 Measuring Performance 
For most experimental designs involving MIPCO, we focus on analyzing the properties of good quality 

chains. In general, we define “good quality” chains as those that obtain F1 scores larger or equal to 91%. For this 
purpose, we used publicly available training/test datasets (Droshopila TEM Images from ISBI2012)[14]. In order 
to more efficiently test our chains (since the ground truth of the ISBI2012 test images are not public), we have 
separated some of the ISBI2012 training set images and labels and used them for testing/validation purposes. In 
the above Section, we have given the calculation method for the performance measurement. 

 

4.0 EXPERIMENTAL RESULTS 
 

4.1  Best Shortest MIPCO functions 
We ran several experiments testing different chain sizes and different numbers of chains. We discovered that 
even with a small number of chains (3 chains), MIPCO could still perform very well, consistently reaching F1 
scores larger than 91%. Table 2shows the smallest MIPCO cases with F1 scores larger than 91%. 
 

4.2 Interesting Observation – Morphological Operators 
An interesting observation that can be made pertaining to morphological functions,consists of the 

appearance ofmorphological operators in all of the best chains and in unorthodox positions. As is commonly 
known, one of the main purposes of morphological operators is to provide a smoothing effect, which typically 
occurs in a post-processing phase. In our experiments, it seems that although Morphological Operators, are 
frequently encountered at a post- processing phase, they do also appear in various other positions in the MIPCO 
chain.Moreover the appearance of this operator in atypical positions doesseem to contribute to better 
performance. Also note that morphological operators are not the only type of function to be found in post-
processing smoothing. This is also the case with denoising functions [17,18]which we have also found to exist in 
unorthodox positionsas reported in our earlier publication.In general, optimization often finds unexpected ways 
to use functions (e.g. morphological operators have been found performing classification in some chains). 

 

Two basic morphological operators used in the experimentsreported here are morphological ‘open’ (erosion 
followed by a dilation process), and erosion.  

 

 Below is an example ofan image being processed with morphological operators ‘open’ and ‘erode’. 
 

 
 

Figure 4: The selection of Morphological Operators at different chain positions 
 

Our experiments show that MO can appear in unorthodox chain positions. As we can see in Figure 4, our 
MIPCO experiments show that, at least for this membrane segmentation problem, MO appear in early (in Chain 
1, as Morphological Erosion, in Chain 3, as Morphological Opening) and final stages (in Chain 3 as 
Morphological Erosion. As we can see in Figure 4, the morphological operator erosion seems to appear early in 
the chain (as a 1st function), which arguably runs contrary to common expectation, that morphological operators 
are used typically for post-processing. The insight that morphological operators can often perform useful 
computations in atypical positions of image processing pipelines,is something that needs to be taken into account 

Chain 1, Morphological 
Erosion 

Chain 1, Denoise Chain 1, Hole Fill 

Chain 2, Threshold Chain 2, Denoise Chain 2, Threshold 

Chain 3, Morphological 
Opening Chain 3, Watershed Chain 3, Morphological 

Erosion

 
Input 

 
Output 
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by image processing users. In other words, we should not always restrict morphological operatorsto the final 
stages of our pipelines. According to our experiments, the utilization of morphological operators in early 
stagescan have a positive effect on accuracy. We discovered that the chains with morphological operatorsat early 
or middle regions of pipelines do tend to show higher F1 scores. Below in Table 1, we show the scores and chain 
positionsfor the “earliest morphological operators”, dividing networks into three categories characterized by 
scores (>91%, between 90% to 91% and <90%). These resultsdepictnetworks that exhibited a maximum of 3 
chains with a maximum of 8 functions each. 
 

Table 1: Position of earliest morphological operators(grey row: average scores and positions) 
Scores >91% Position of Appearance 

of The Earliest 
Morphological Operator 

Scores >90 
but< 91% 

Position of 
Appearance of 
Morphological 
Operator 

Scores < 90% Position of 
Appearance of 
Morphological 
Operator 

91.43 1st 90.20 5th  89.64 6th 
91.38 1st 90.00 4th  89.00 7th 
91.23 3rd 90.99 3rd 88.22 7th 
91.21 2nd 90.50 4th  89.03 6th 
91.16 2nd  90.01 3rd 89.33 5th 
91.14 1st 90.91 4th 89.56 6th 
91.09 2nd 90.96 4th 88.20 8th 
91.01 2nd 90.72 3rd 89.91 5th 
91.33 1st 90.63 3rd 88.87 8th 
91.10 2nd 90.03 5th 89.23 6th 
91.20 1.7 90.50 3.8 89.10 6.4 

 
As per Table 1, we can say that, 91.20% denotes the average accuracy of those chains that have at least one 

morphological operator (MO) at an early stage, 90.5% denotes the average accuracy of those chains that have at 
least one morphological operator (MO) at a middle stage and 89.1% denotes the average accuracy of those chains 
that have at least one morphological operator (MO) at a final stage. From Table 1, we can clearly see that having 
atleast one MO at an early stage has a positive impact on performance, compared to having MOsat later stages. 
 
4.2.1 Insight of Morphological Operators 

Morphological operators(MO) rely on the relative ordering of pixel values, and are well suited to the 
processing of binary images. They probe an image with a small translated shape called ‘structuring element’[19]. 
The ‘structuring element’, is positioned at all possible locations and is then compared with its neighbor (whether 
it fits or hits or intersects the neighbor). Figure 5represents the 3 positions of the operation and Figure 6illustrates 
several examples of simple structuring elements, (e.g.5x5). 
 

 

          

          

          

          

          

          

          

          

Legend : 
 

  
  

Structuring Element   
 
Hits the Image 
(Intersect) 

  
  

Fits the Image 

  
  
  
  
  

 
Neither fits nor hits 
 

 
Figure 5:Probing an image with a structuring element. 

(Brownand White pixels have Non zero and Zero values respectively 

6 



J. Comp. Sci. Comm., 1(2)1-11, 2015 

 

 
 
 
 
 
 
 
 
Square Element 

Cross shaped                   Diamond shaped ;      Origin 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

0 0 1 0 0 

0 0 1 0 0 

1 1 1 1 1 

0 0 1 0 0 

0 0 1 0 0 

0 0 1 0 0 

0 1 1 1 0 

1 1 1 1 1 

0 1 1 1 0 

0 0 1 0 0 

Figure 6: Examples of simple structuring elements (5x5) 
 

Morphological operations such as erosion, dilation, opening, and closing are usedto perform 
morphologicalimage analysis [20, 21]. Morphological operations apply structuring elements to an input image, 
creating an output image of the same size. Morphological operators, thus, can directly deal with shape 
information with the help of a structuring element, which may be viewed as a probe. Morphological algorithms 
closely resemble the human strategy of image understanding, as both of them are neither fully subjective nor 
fully objective, but a judicious combination of the two. In mathematical morphology, the operations are precisely 
defined, but the selection of the structuring element is an ad-hoc process and depends on the application and the 
data [22]. 

 
Table 2: Best shortest function  (with 3 chains and  maximum of 8 functions ) for MIPCO that score >91% 

No F1 Scores Chain 1 Chain 2 Chain 3 
1 91.01 

 
Double Thresh 
Denoise Median 
MorphErode 

MorphOpen 
DoubleThresh 
Denoise Median 

MorphOpen 
Watershed 
MorphErode 

2 91.38 MorphErode 
Denoise Median 
HoleFill 

Double Thresh 
Thresh Simple 
Denoise Median 

MorphOpen 
Watershed 
MorphErode 

3 91.43 MorphOpen 
Denoise Median 
HoleFill 

DoubleThresh 
Denoise Median 
Double Thresh 

MorphOpen 
Watershed 
MorphErode 

4 91.23 Combine MinMax 
Denoise Median 
Double Thresh 

Combine MinMax 
Denoise Median 
Morph Open 

MorphOpen 
Watershed 
MorphErode 

5 91.21 Double Thresh 
Denoise Median 
Thresh Simple 

MorphOpen 
Watershed 
MorphErode 

Double Thresh 
Morph Erode 
Combine Multilpy 

6 91.14 MorphOpen 
Watershed 
MorphErode 

Double Thresh 
Denoise Median 
Hole Fill 

Denoise Median 
Double Thresh 
Denoise Median 

7 91.09 Denoise Median 
Morph Erode 
Hole Fill 

MorphOpen 
Watershed 
MorphErode 

Combine MinMax 
Double Thresh 
Morph Erode 

8 91.16 Double Thresh 
Denoise Median 
Thresh Simple 

MorphOpen 
Denoise Wiener 
Combine Subtract 

MorphOpen 
Watershed 
MorphErode 

9 91.09 Denoise Median 
Morph Erode 
Hole fill 

MorphOpen 
Watershed 
MorphErode 

CombineMinMax 
Double Thresh 
MorphErode 

10 91.38 Morph Erode 
Denoise Median 
Hole Fill 

Double Thresh 
Thresh Simple 
Denoise Median 

MorphOpen 
Watershed 
MorphErode 

 
Table 2shows the 10 best shortest functions for MIPCO that score >91%. In these 10 chains, we can observe that 
morphological operators appear in all chains, and in unorthodox positions. In some cases, they are foundat the 
beginning of chains, and in other cases they are found in the middle or ends of chains. 
 
4.2  Function Selection 

As for function selection analysis, Tables 3 and 4show the frequency of function appearance in 1 chain for 
50 trials for our earlier single chain approach, Image Processing Chain Optimization (IPCO), and our new 
approach, multiple chain approach, Multiple Image Processing Chain Optimization (MIPCO), respectively. 
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4.2.1 Function Selection  - IPCO 
We used the data from our single image processing chain optimization. Below in Table 3, we summarizethe 

frequency of function appearance and repetition using the single image processing chain optimization results. 
We analyzed optimal chains in several conditions characterized by maximal chain length (from 1 to 8 functions), 
running 50 trials for each condition. We found that the most popular function to be selected was unsurprisingly 
Thresholding, appearing on average in 90% of chains (across chains of different lengths). Table3 shows the 
frequency of function appearance in chains with lengths from 1 to 8 functions. Our main observations from these 
results include: 
 

i. Thresholding is consistently preferred for all chain lengths. For are lengths except 3 and 4, 
thresholding is selected in more than 90% of chains. For all lengths, thresholding is always the 
function with the highest selection preference. 

ii. There is a consistently moderate selection pressure for denoising functions, whose percentage of 
chain appearance, hovers around 50%. 

iii. As chains get longer, the probability of combination functions being selected, increases 
dramatically, reaching 100% for the 8 function case. 

iv. The top 3 functions for chains of length 2, consist of thresholding, denoising and hole filling, in 
order of decreasing selection preference. In contrast to this, the top 3 functions for chains of length 
3,consist of thresholding, contrast enhancement and morphological operators, in decreasing order 
of selection preference. In general, the order of preferred functions changes dramatically, from one 
length to the other, with the exception of thresholding which is consistently the number one 
preferred function for all lengths. 

 
Table 3: Frequency of Function appearance in 1 chainfor 50 trials for single chain  

image processing optimization. 
Functions 1 Func 2 Func 3 Func 4 Func 5 Func 6 Func 7 Func 8Func 
Contrast 
Enhancement 

 4% 44% 24% 32% 48% 52% 60% 

Denoising  52% 16% 48% 48% 52% 52% 52% 
Thresholding (Simple 
/Double) 

100% 96% 72% 76% 92% 92% 92% 96% 

Hole Filling  36% 32% 44% 64% 80% 80% 76% 
Watershed  0% 36% 28% 36% 44% 60% 60% 
Combination  0% 4% 32% 32% 60% 92% 100% 
Morphology  4% 44% 52% 48% 48% 60% 76% 
Edge  0% 0% 0% 8% 24% 24% 32% 

 
4.2.2 Function Selection - MIPCO 

The Multiple Image Processing Optimization (MIPCO),  implementation reported here, consisted of a 
maximum of 5 chains, each one with a maximum of 8 functions. From our analysis, we found that some 
functions repeat themselves in the same and neighbouringchains. Table4 summarizesthese functionrepetitions. 
For example, for the length 2 case, thresholding exhibits a repetition of 4%, which means that 4% of chains (out 
of 50 trials (or optimal chains)) exhibit repetitions of the thresholding function. On closer inspection of the 
processing outputs of each repeated function, we confirmed that the outputs of repeated functions are indeed 
distinct from each other and therefore that the repetitions are performing useful computations and not just 
copying or relaying information. 
 

Table 4: Function repetitions for 50 trials using multiple chain image processing optimization. 
Functions 1 Func 2 Func 3 Func 4  

Func 
5  
Func 

6 Func 7  
Func 

8  
Func 

Contrast 
Enhancement 

- - - - - 4% 20% 32% 

Denoising - - - - 4% 12% 20% 32% 
Thresholding (Simple 
/Double) 

100% 4% 8% 8% 12% 20% 60% 92% 

Hole Filling - - - 4% 8% 12% 24% 32% 
Watershed - - - - 4% 8% 20% 28% 
Combination - - - - 4% 4% 12% 12% 
Morphology - - - 4% 12% 40% 48% 76% 
Edge - - - - - - 8% 20% 
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4.3 Mandatory functions that always appear in chains 
In our experimental analysis, we discovered that there are sets of mandatory functions that always seem to 

appear together in chains. For the purpose of our analysis, out of 5 MIPCO chains (the maximum chain allowed 
to be used), we choose 3 MIPCO chains with higher efficiency and most accurate chains (through performance 
of it’s F1 score >91%). We found that the functions listed below are very frequentlyselected (to be noted, not 
always together). We believe that the selection of these functions, contributes to overall better performance. 

i) Morphological Operator – Opening 
ii) Watershed 
iii) Morphological Operator – Eroding 
iv) Denoising 
v) Thresholding 

 
4.4 Results using MIPCO –Chains with morphological operators in unorthodox positions 
 

 
  F1 score : 91.80%        F1 score : 91.43%F1 score : 91.38%            F1 score : 91.21%   Ground-truth Image 

(Appear  in 10th position)  (1st, 7thand  9th)        (1st, 7thand  9th)             (4th , 6th and  8th ) 
 

Figure7: Final output images of chains using MIPCOthat have morphological operators in various positions 
(specified in the figure), in the front, middle and end portions of the chains which F1 scores> 91%. 

 
Figure 7 depicts several sample output images using different MIPCO chains. As mentioned earlier, we 

generously let the algorithm to choose maximum of 8 functions and 5 chains. So this will contribute to 40 
outputs (8x5) in processing stages. In above Figure 7, shows the final output and the position of morphological 
operator appearance. 

One possible conclusion from this result,is that the selection of morphological operators at early or middle 
portions of chains doesseem to have a positive impact on F1 scores. The first figure shows scores of 91.80% (this 
is an example of an output using 5 chains and 8 functions (total of 40 functions). Out of 40 repeatable functions, 
10 of them are morphological operators which appear early and in the middle of the 5 chains. 

 
The figure also provides an opportunity to subjectively compare the MIPCO outputs with the ground truth. 

In one glance, the outputs seem to be almost identical to the corresponding ground-truth. Most of the 8.2% 
average error is most probably due to missing black patches (false negatives) and some extra lines,possibly due 
to the watershed function (false positives), as well as differences in line thickness (ground truth images exhibit 
relatively large variation of line thickness, which contrasts with most of the processed output which show 
relatively constant line thickness). 

 
Our experiments revealed that 100% of the “good” chains adopted morphological operators, denoising and 

thresholding. Moreover, it seems that atleast for this membrane detection problem, all the ‘good chains’ seem to 
select watershed as one of the preferred functions, and this function seems to always appear together with its co-
partner, namely: the morphological operator ‘open’. 
 

5.0 CONCLUSION AND DISCUSSION 
 
From our experiments, and given the specific membrane detection dataset adopted, we find that the 

optimization of image processing chains, when using multiple chains (MIPCO) is generally more accurate than 
when using single chains (IPCO). In terms of speed, as expected due to its larger size, and assuming a non-
parallelized solution, MIPCO does perform worse (i.e. approximately 10 seconds longer per optimization epoch). 
Having said that, MIPCO is still easier and faster to train than many other learning machines.Apart from sharing 
additional advantages with IPCO such as interpretability and re-trainability, MIPCO has additional advantages 
such as parallelizability and the provisioning of complex interactions between chains, which opens up news 
opportunities for problem decomposition and solution composition. We believe that this integrative capability of 
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MIPCO is what allows it to perform not only better than individual IPCO chains, but also better than ensembles 
of the latter. 
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