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ABSTRACT

One of statistics models that could be used to analyze categorical response data is probit
model. This paper focuses to discuss about estimation and test statistic in bivariate probit
model (7 X ¢). Bivariate probit model (» xc) is a probit model which involves two response
variables, i.e. the first variable has 7 category and the second has ¢ category. Both response
variables are correlated. In this model, the estimation of model parameters is done by
Maximum Likelihood Estimation method with the Newton-Raphson iteration. Furthermore,
test statistic to evaluate the significance of model parameters is obtained by using Maximum

Likelihood Ratio Test, particularly the G” test for overall test and 7 test for partial test.

KEY WORDS: Bivariate probit, Maximum Likelihood Estimation, Maximum Likelihood
Ratio Test.

INTRODUCTION

Probit model is a statistics model that can explain the relationship between the discrete
response variable and continuous, discrete or mix predictor variables. There are many
researches about probit model, particularly univariate probit model such as (Aitchison and
Silvey,1957), (Boes and Winkelmann, (2005), (Jackman, 2000), (McKelvey and Zavoina,
1975), (Ronning and Kukuk, 1996), and (Snapinn and Small, 1986). In fact, the response
variables in many cases could be more than one and correlated each others.

Up to now, research on bivariate probit model mostly focused on the application, such as
(Bokosi 2007), (Mozumder, et al., 2008) and (Yamamoto and Shankar, 2004). Therefore, this
paper will discuss about theory of probit models with two response variables, especially the
estimation and test statistic. Bivariate probit model is a probit model which involves two
response variables, i.e. the first variable has » category and the second has ¢ category. In
this case, both response variables are correlated.

In general, the initial step for building bivariate probit model is to estimate the model
parameters and determine the test statistic to validate significance of the parameters. One of
estimation methods that frequently used for estimating the parameters of bivariate probit
model is Maximum Likelihood Estimation (MLE). Furthermore, the test statistic that usually
be used to evaluate significance of model parameters is Maximum Likelihood Ratio Test.
Thus, this paper will focus to discuss further about estimation and test statistic in bivariate
probit model (¥ xc).
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METHODS

The probit model 7 category is built from a latent regression in the same man-ner as the
binomial probit model. We begin with y: :BTXI. +¢,, where X; is a vector of predictor

variable for the ith observation and B’ is the unknown parameter. As usual, y* is
unobserved variable, that follow as: (Greene, 2008).

y=0 if y, <y <y,
y:] if71<y*372

y=r-1ify_ <y <y,

The probability for each observed respon has » category, i.e:

P(y=0)=P(y,<y <7) =, —B'x)-D(y,—B"x)

P(yzl):P(7/1 <y* 37/2):@(7/2 _BTX)_(D(71 _BTX)

P(y=r-1)=P(y,, <y <7,)=0(, -B'x)-0(r,, —-B'x)
Bivariate probit model (#xc) is a probit model which involves two response variables, i.e.
y; =B'x+¢, and y, = pIx+¢, . The first variable has 7 category that is

»=0 if7/0<y1* <

yo=1 ify, <y <7,

y=r=lify, <y <y,
Whereas, the second has ¢ category, that is

y,=0 if §, <y, <4,

vy, =1 if § <y, <6,

y;=c—11if o, <y§£56.

Variables (y;,y,) that satisfy normal bivariate distribution can be written as

(»,y,) ~ N(u,X). For example, there is p predictor variables X,,X,, X ,» with
. . "x 1
E(y;)=B/x and E(y,)=PB.x. So, it can be written p:{ﬁl and X = P .

Bx p 1

Bivariate normal density function (y;, ;) is:
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e Ly =B/x) (v —Bx
1>V2) = 1 S ® T Z ® T
F01.2:) Zﬂ‘Z‘A exp[ 2[)’2 -B, X] [YZ -B; X]]

The probability of bivariate normal density function ( y]* , y;) with thresholds ¥ and ¢ is as
follows:

y o
P(y, <y,y, <90)= J If(ylay2)dyl dy, .

SupposeZ:y'—(y‘),ifO'{:1SOZ: —PB/x, and z zyz—(yZ)ifo%zl
1 > W 1 =N 1 2 > I
n v

* T . . . . .
so z, =y, — P, X . Therefore, bivariate normal density function (z;,z,) is as follows:
Zj1 Zkp

P(yl* < y,yz <d)=P(z < ZjisZy < Zy) = I I (2, 2,)dz,dz,

—00 —00

exp| ——

here §(1,2, p) = —A——exp| —= ——
where 1,225 o ,_l—pz z[l_pz}

j=0,1,2,---;r=1and £=0,1,2,---,c -1,

|22 -2p2,2,+ 7} ||,

T T T T

Zgr=Yo—Br X,z =11 =By X,z =00 =B X, e Zy =Yy B X and
T T T T

Zp=01—-PBy X, 23 =6 -B, X,z =6, -B, X, ..., Z(c-1)2 =5(c—])_B2 X,

T T

Bi =|:ﬂ]0 B B "'ﬂ]p] and B; =[ﬁzo Bar P "'ﬂzp]

xTz[l X X ---xp].

Value y,,%,"**, ¥ is threshold on the first response variable with (7 —1) category, and
value 8,6, ,0,.,, is threshold on the second response variable with (¢ —1) category.

Both response variables are formed in contingency table (7 xc¢) as in Table 1. Table 1 will

have (rxc) categories, i.e. ¥y, Y, ¥y, -+, ¥, ), Which value O or 1. ¥, is an event that
happens on the first response variable of j category and the second response variable of &
r=1 c-l1
category, where Y, =1->">" Y,.
=1 k=0
]j¢k:0

Y,, is an event that happens in the area of —0 <y, <y, and —0 < y; <4,
Y,, is an event that happens in the area of —w0 <y, <y, and &, <y, <4,
Y, is an event that happens in the area of 7, < y; <7, and —o <y, <&,

%;, is an event that happens in the area of y, < y; <7, and &, < y, <4,
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¥, _1yc-1y 18 an event that happens in the area of y, ; < y <o and 5, | <y, <.

The event on Table 1 follows Multinomial distribution, i.e.

Mo Yor, Yivs s Yoonyey) ~ M (L R, Fors Bis s Foiye-ny) -

The density function of Multinomial distribution, is as follows:

r—1 c-1

ik
P(Yo = 210> Yo1 = Yor- Y1 = 2115 ""Y(r—l)(c—l) = y(r—l)(c—l)) = HHP]Jk .
=0 k=0

Table 1: Table of Frequency Contingency and Probability of Two Response Variables
(rxc)

(=1

Yo(e-1ys Foce-1y

Yie1ys Bea)

In details, probability value on Table 1 is as follows.

Z2 201
o= § T s otz

—00 —00

212 Zo1
For = J. I¢(Zl’22’p) dz, dz, =D (zy1,2,) = DP(zy, 2y,)

Zpp —®©

Zo2 211
o = I I¢(Zl’22’p)dzl az, =D(z,20,) = P(2gy 20)

—0 Zyy

212 21
By = I I¢(Zl’22’p)dzl dz; =D(z,,,2,) = D(zy,2,) = D(z,,, 2,) + P2, 2),)

Z02 Z01

Zky  Ej1

¢ (21,25, p)dz, dz,

")
B
Il

Z(k-1)2 Z(j-1)1
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= q)(zj] 2 Zpy) — q)(Z(j—])l 2 Zpn) — (D(Zj]’ Z(k-])z) + (D(Z(j—])l > Z(k—])z)

Boeen= || #Giz.p) dzdz

Z(e-1)2 Z(r-1

=1- q)(Z(r—])]) - q)(Z(c—])Z) + (D(Z(r—])] > Z(c—])Z)
RESULTS AND DISCUSSION
The following is the discussion of parameter estimation and test statistic of bivariate binary

probit model (¥ xc).

Parameter Estimation

Table 1 shows that the event on each respondent will have Multinomial distribution, i.e.
(o> Yor, Y1y o Y(r—l)(c—l)) ~M(; Ry, By Bys-oes P(r—l)(c—l)) . Based on (Greene, 2008)

and (Gujarati, 2003), the parameters on probit model could be estimated by using MLE
method. The initial step to gain parameter estimation by MLE method is by taking n sampel
randomly, i.e.

(YOOiaYOIiaYloani""’Y(r-l)(c—l)i Xy Xopry X ),Where i=12,..,n.

1> s A pi

Function of the likelihood can be written as follows.

L(B) = HP(YOOi = Yooi» Yii = Yiois You = yon""wY(r—l)(c—l)i :y(r—l)(c—l)i)

i=1

or
n r-1 c-l1 ¥
— Jki
L(B)- By
i=l j=0 k=-0

Function In of the likelihood is available on the equation (1).

n r—1 c-l1

mL(B)=>>. [y_,.,a. 1nP_,.k,] (1)

i=l j=0 k=0

T
Probability on the equation (1) contains parameter B:[B]T BZJ . Then, lnL([}) is

derived to its parameter f, and B, , i.c.

Oln L() 0 n r—1 c-1 n r-1 c-1 1 aPk
_ e, ]| = L% @)
B’ B | 54 k_o[y S ﬂ Z;;{y P, aﬁf}

and
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olL(:) {

B, OB

n r-1 c-1 1 aP

=2 Z{ Vi —} (3)
i 0

where:

Py = q)(Zj] 2 Z4y) q)(Z(j—])] 2 Z42) q)(zj] s Zgn) T (D(Z(j—])] s Zny)
an/a' _ acD(Zj]i’ZkZi) B acD(Z(j—])]i’ Zp2) B acD(Zj]i’Z(k—])Zi) + 6q)(z(j—])]i’z(k—])2i)
By oB; oB; B/ B/
an/a' _ acD(Zj]i’ZkZi) B acD(Z(j—])]i’ Zp2) B acD(Zj]i’Z(k—])Zi) + 6q)(z(j—])]i’z(k—])2i)
op; B B oB; oB; '

Equations (4) and (5) is obtained by substituting:

4)

)

acD(Z,i’Z 1') 0 Zjli Zgo;
6][]3]T 2= aﬂlr _L _L #(z,;,25)dz,dz,

6CD(Z -D1i > 2, i) o b Fk
(él];]; k2 :6B]T _J;) _J;O d(2,,, 2y, )dz,dz,

aCD(Zjli’Z(k—l)zi): 0 Z"iz(k:r)zi
oBy Bl %

#(z,;, 2y, )dz,dz,

OD(z ;i Zoy) 0 U
op! opl .

P(2,;,2,,)dz,dz,

The estimates obtained by Equations (2) and (3) are not close form, then one of numerical
approaches that can be used to find the estimates is Newton-Raphson method. Through the
process of Newton-Raphson iteration, the maximum likelihood estimator can be obtained for

B, where ﬁ(m) is the parameter estimation at iteration m. Newton Raphson iteration process is
the need of the vector g(P) and the Hessian matrix. Vector g(P) is the first derivative of the
function In likelihood to its parameters. Hessian Matrix elements H(P) are the second
derivatives of their parameter. Vector component g(f8) which sizes [2(p +1)x1] is as follows.

o1n L(B)

| OB/
8(b) = oln L(B)

T
6B2 [2(p+D)x1]

The vector components g(f}) could be calculated in equation (2) and (3). Hessian matrix
sizes is [2(p+D)x2(p+1)], i.e:
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o*InL(B) &°InL(P)

T T

H(B) = (ZBI % iﬁl >

0"InL(B) 0 InL(P)
5[‘26[5{ 8[325B§ [2(p+1)x2(p+1)]

In details, matrix components of Hessian could be found on equations (6), (7), and (8). The
equation (6) is derived from equation (2) tof, , i.e.

FPnL(p) &y oP,, &P,
Y 2| Yz a’ | 5 |35 a7 (©)
B] B] k=0 j=0 i B] ]/a B] ]/a B] B]

where:
o1 1 (6P,klj
aB] ]kl ]kl 65]

The value of

’f is calculated from equation (4) and
1

o P]/a azq)(zj]i’ZkZi) B 62®(Z(j—])]i’zk2i) B azq)(zj]i’z(k—l)zi) N 62®(Z(j—l)li’z(k—l)2i)
oB,oB; oB,oB; OB, OB, OB, OB/ B, OB/

Equation (7) is obtained by deriving equation (3) to B, , i.e.

O*InL(p) Ly o [ 1 |oP, O’P,
(T ) = z yjla' - +yjki (7)
op,oB, DT oB, | Py, ) OB; P, | oB,0B;
where

0 L _ L Py |
B\ Py ) oB,

P, . .
Whereas, —’T is obtained from (5) and

2

o P]/a . azq)(zj]i’ZkZi) B 62@(2(,'—1)11" Z42i) B azq)(zj]i’z(k—l)zi) N 62(1)(2(]—1)11"2(/(—1)21')
oB,oB; oB,0B; oB,0B; oB,0B; oB,0B;

Equation (8) is found from equation (2) to B, , i.c.

InL(B) L& K OP,; o’P,,
T & Z{y . 5[%( ]GB] " [ ,,a]aﬂzaﬂl v
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o1 __L[%]
B, Py ) P\ B,

oP,.
Then, ’f is derived from equation (4) and

1

aZiji _ azq)(zjli’ZkZi) B aZq)(z(j—l)li’ Z42i) B azq)(zj]i’z(k-l)zi) N az(D(Z(j—l)li’Z(k—l)Zi)
B 0B, oB,0B; oB,0B; oB,0B/ oB,0B;

Parameter Significance Testing

To test the goodness of fit of the model, the parameters are evaluated. It is intended to
determine whether the predictor variables contained in the model have a significant effect or
not. Testing of the model parameters is carried out either at simultaneously and individual.
The method used to obtain the test statistic is MLRT.

Simultaneously hypothesis is a hypothesis that state whether the variable x,,x,,...,x ) has a

significant effect on the response variable P, . The hypotheses are:

Ho:ﬁn :ﬁlzz'“:ﬁlp:ﬁzl :ﬁzzz'“:ﬂzp:o

H,:atleasthasone B, #0 ,where s=1,2 and 1 =1,2,...,p.

The parameter under population is Q=1{ By, By15.» By, Ba> Bays+++» Ba,} » Whereas the

parameter under Hois @ ={ B,,, B,,} -

A A L 0 . . .
Test Statistic is obtained by making ratios of L(®) and L(QQ), A = ng; . Hy is rejected if

A= Lg; <Ay, Where 0<4,<1. Thus, G* =-2InA is obtained and according to (Agresti,
L

2002), G* follows y* distribution, i.e.

L(®)

G?’=-2InA=-2In
L(2)

}:21@(@)-21@(@).

In detalils, L(f)) is:
LY :[(D(Zmazoz )]yoo X[(D(Znszoz) _(D(Zmazoz)]ym X[(D(Znazoz) —(D(Zmazoz)]ym X
Yk
x [q)(zj] 2 Zk2) — q)(z(j—])] 2 Zk2) — q)(zj] > Z(k-])z) + q)(z(j—])] > Z(k-1)2 )J oo X

Yr-1)(c-1)
x [1 = D(Z(1y1) = P(Z(e-1)2) + P(Z(1yis Z(em1y2 )J

or
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~ ~ ~ b ~ ~ ~ ~
L) = |:(D(7/01 _plrx’ O _ﬁgxﬂ Y x [(D(J/n - ﬁlT X,00p — ﬁzT X) —D(yo; — BIT X, 00 — BzT X)J X

~ ~ A A N
x| (11— BT %60 — B33~ 0y ~B .8 —B10) | x

Yot

x| (1 =Bl %81, ~BEX) = D71y — B .80 =BI%) ~ 0(r — B x. 81, ~BI0) +

g7 nT Yjk
+(D()/(j_])] _B] X:(;(k_])z _BZX):| i

~ A A A Yr=1y(e-1)
X|:1_(D(y(r—])] —ﬁlrx)—q)@(c—])z —3§X)+®(7(r—1)1 —31TX35(C—1)2 —[i;x)} .

The values of ﬁ] and ﬁz could be obtained by using equations (2) and (3). Moreover, the

value of L(®) is as follows:

L(®) =[(D(V01 _ﬁAmsaoz _ﬁAzo)J " X[(D(J/n _ﬁA10=502 _ﬁAzo)_(D(}’m _B10a502 _Bzo)J

~ ~ A A N
X[‘D(?/n = B10-002 = B20) = P(Yo1 = Bi0>%2 _ﬁzo)J " x

X|:q)(yj] _Bloa5k2 _Bzo) =Py _B]0’5k2 _Bzo)_q)U/ﬂ _ﬁ]0’6(k—1)2 _ﬁ20)+

. v,
+ O — Bros Oy —ﬂzo)J VIV

X[l —‘D(?/(r—l)l _B]O) —q)(5(c—1)2 _ﬁzo) +q)(7/(r_1)1 _ﬁ]035(c—1)2 —ﬁzo)J

Yo

X

Yir-1)(e-1)

Then, the values BIO and Bzo could be found by using equations (9) and (10).

Derivative of In likelihood to f3,, is

*

o
= s

Thus, the result of
10

£ £

oP 8CD(Z: , Z;) 6(1)(2( ™

(k=1)2i

’Z:z) 6(1)(2’:,2* )

O(z

*

G-ni’

*

)

(k=1)2i

B, Py 3By, By,

* *
where Zini =V~ Bio > Zg-n = Y- — B

.
Z-y2i = 5(/(—])21’ — By

While, the first derivative of In(p) to f,, is
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Oln L(- n_ =l ¢l 1 oP:.
n—():z' l:y_*_/’“:l (10)

where the derivative of probability P, and P, to 3,,is

S £

oP

* * * * * * *
Mo aq)(zjli ? ZkZi) _ aq)(z(j—l)li ? Zkz: ) _ 6(1)(2111 ? Z(k—I)ZI) 6CD(Z(1—|)|: ? Z(k—I)Zx )

= +
8ﬁZO 8ﬁZO aﬁZO 6ﬁZO 6ﬂZO

If G*> xé’v then H, is rejected, where degree of freedom (v) is the number of model

parameters under population subtracted by the number of model parameters under Hy, with a
large population. After conducting the test of parameter significance simultaneously, the next
step is the partial testing. In this testing, it is desirable to know the contribution of each
predictor variable. The hypothesis of individual testing on bivariate binary probit model is

Ho: B, =0

Hi: By, #0, where s=1,2 and t=0,1,2,...,p .
Set of the parameters (@) under the null hypothesis is
o= {ﬁs*t*,s* = l,2;t* = 0,1,...,p;s* £, £ t}
where:

~ Axr ok ~yrox ] Yoo Nk g ok gk A B
L) =[®(701 _BITX »0n _Bzrx )J X[(D(J/n _BITX »002 _Bzrx )—D(¥ _BITX »00 _Bzrx )J " x

Ak AXT AXT ~Axr x| Mo
X[‘D(?/n _B]TX »802 _ﬁzrx )= D(¥y; _B]TX » 602 _ﬁzTX )J X

X[q’(?’jl —ﬁTTX*ﬁkz _ﬁ;TX*)_q)(y(j—])] —ﬁTTX*ﬁkz —ﬁ;TX*) —D(y —ﬁTTX*ﬁ(k—])z —ﬁ;TX*)+
+‘D(7(j—1)1 _ﬁTTX*ﬁ(k-])z _ﬁ;TX*)J & Xeee X
X[l —O(¥(n _ﬁTTX*) = DSy _ﬁ;TX*) + (¥ (y _ﬁrr"*ﬁ(c-])z _ﬁ;TX*)J e
and X = {l,x],xz,...,x(,_]),x(m),...,xp}
ﬁf = {ﬁ]O’ﬁ]]””’ﬁ](t—])’ﬂ](t+])""’ﬂ]p} and ﬁ; = {ﬁZO’ﬁZ]"”’ﬁZp} or
ﬁf = {ﬁlo’ﬁ]]””’ﬁ]p} and ﬁ; = {ﬁZO’ﬁZI””’ﬁZ(t—])’ﬁZ(H])”"’ﬂZp}‘

The partial test statistic was done by using MLRT method as in simultaneous testing, so test

A

B,

———=—. For large sample, t follows Normal standard

SE(p,,)
distribution, i.e. # ~ N(0,1).If |¢|> Zy) then the null hypothesis is rejected.
2

statistic ¢ was gained, that is ¢ =
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Conclusion

This paper already discussed about theoretical part of bivariate probit model, particularly
about estimation method and test statistic. The results showed that estimation of model
parameters by using MLE yielded not closed form solution. Then, these estimated parameters
could be obtained by Newton-Raphson iteration. Furthermore, two test statistics to validate
significance of model parameters could be constructed by MLRT method based on asymptotic

properties of these estimators, i.e. G for overall test and ¢ for partial test.
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