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ABSTRACT 

MHD flow of micropolar fluids over a stretching sheet is studied and the numerical results have been 

obtained. The highly non-linear governing partial differential equations of fluid motion have been converted into 

ordinary differential form by using similarity transformations. The resulting equations are then solved numerically 

using Simpson's (1/3) rule and Successive Over Relaxation (SOR) method. Richardson's extrapolation to the limit is 

used to improve the results. The effects of Magnetic parameter M
2
 and non-dimensional material constants C1, C2 

and C3 (related to micropolar nature of the fluids) are examined on velocity and microrotation profiles. Comparison 

of the results for Newtonian fluids and micropolar fluids is presented. 

AMS Subject Classification: 76M20 
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I  INTRODUCTION 

 The study of fluid flow problems over stretching surfaces has generated considerable interest because of its 

applications in several technological processes, examples may be found in continuous casting, glass fiber 

production, metal extrusion, hot rolling, textiles and wire drawing. Hiemenz [1] studied the steady two-dimensional 

boundary layer flow near the forward stagnation point on an infinite wall using similarity transformation. This 

solution is later improved by Howrath [2]. Crane [3] obtained a closed form solution for the stretching sheet whose 

velocity is proportional to the distance from the slit. The three-dimensional and axisymmetric stretching surface was 

studied by Wang [4]. Shafique et al. [5] presented numerical solution of uniform suction/blowing effect on 

Newtonian fluid flow due to a stretching cylinder. Magnetic effect in fluid dynamics is considered important 

because of its role in many industrial applications. Mamaloukas [6] studied the steady, laminar flow of a Newtonian 

electrically conducting fluid over a stretching sheet. Chiam[7] analyzed hydromagnetic flow over a surface 

stretching with a power-law velocity. Mamaloukas et al. [8] examined MHD flow of a Newtonian fluid over a 

stretching sheet. 

 Eringen [9] formulated and presented the theory of micropolar fluids. Eringen’s micropolar model includes 

the classical Navier-Stokes equations as a special case. Micropolar fluids theory includes the flow of low 

concentration suspension, liquids crystals, animal blood, colloidal fluids, lubrication, turbulent shear flow etc. These 

fluids are interesting in themselves and important from practical point of view. Several researchers have made 

extensively theoretical and experimental investigations for micropolar fluid flows along with magnetic field, 

suction/injection, stagnation point flow and stretching sheet. Kasiviswanathan and Gandhi [10] obtained a class of 

exact solutions for the MHD flow of a micropolar fluid confined between two infinite, insulated, parallel, non-

coaxially rotating disks. The effect of the magnetic field on the flow of a micropolar fluid past a continuously 

moving plate has been studied by Seddeek [11]. Kamal and Hussain [12] studied the three dimensional micropolar 

fluid motion caused by the stretching surface. Shafique and Rashid [13] obtained numerical solution for three 

dimensional micropolar fluid flows due to stretching flat surface. Sajjad and Kamal [14] obtained numerical solution 

of micropolar fluid flow over a stretchable disk. Gorla et al. [15] examined the simultaneous occurrence of buoyancy 

and magnetic forces in the flow of an electrically conducting micropolar fluid along a hot vertical plate in the 

presence of a strong cross magnetic field. Kumar [16] analyzed the effect of heat and mass transfer in the 

hydromagnetic micropolar fluid flow along a stretching sheet. Srinivasacharya and Shiferaw[17] have presented 

numerical solution of the steady conducting micropolar fluid through porous annulus under the influence of an 
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applied uniform magnetic field. Further, an important investigation for flow due to stretching sheet were made by 

Andersson [18]. Chakraborty and Mazumdar [19] found an approximate solution of MHD flow of a Newtonian fluid 

over a stretching sheet. 

  In this work, MHD flow of micropolar fluids over a stretching sheet is examined and numerical solutions 

have been obtained using SOR method and Simpson's (1/3) rule. The results have been obtained and presented for 

velocity and microrotation for different values of magnetic parameter 2M . The numerical results are improved by 

using Richardson's extrapolation to the limit. This numerical scheme is very easy, straightforward and efficient. 

 

II  MATHEMATICAL ANALYSIS 

The fluid flow is assumed to be steady, two dimensional and incompressible. Fluid is electrically 

conducting and a uniform magnetic field of strength 
0B  is applied in the positive y-direction normal to the 

sheet. The flow is confined in the region 0y  and sheet coincides with the plane y=0. The Cartesian 

coordinates system is being used.  

Under these assumptions the basic equations of motion Eringen [9] become: 

,0. V                     (1) 

 V   .    ) () ()(  VV  BJp ,  (2) 

    .    2) ()  (  VV j   ,    (3)       

where   is the density, p is pressure, )0,,( vuVV   the velocity vector, ),0,0( 3  , the  micro-rotation 

or spin,   is dynamic viscosity coefficient, j  the micro-inertia,       and   are material constants.  

The boundary conditions are 
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where c >0 is stretching constants.  
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y
c


   is dimensionless variable.  

The continuity equation (1) is satisfied identically. The equations (2) and (3) are given below in 

dimensionless form.   

0)1( 11
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with the corresponding boundary conditions : 
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where prime denotes differentiation with respect to  , 
c

B
M



 2

02   is magnetic parameter and  











 j
C

c
CC  321 ,,  are dimensionless material  constants. When the microtation vector   and 

 are made zero the problem reduces to Newtonian fluid flow. 
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III. FINITE DIFFERENCE EQUATIONS 

 In order to obtain the numerical solution of nonlinear ordinary differential equation (6), let 

qf                                                                  (10)  
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2  LCqMqqfqC                                                        (11) 
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The boundary conditions (8) become: 
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By using the central difference approximation for derivatives involved in equations (11) and (12) at a typical point  

n   of the interval [0, b ], where b is sufficiently large. we obtain 
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where h  denotes a grid size. Also the symbols used denote )( nqnq  and )( nfnf  . 

IV   RESULTS AND DISCUSSION 

 

The equation (10) is integrated using Simpson's (1/3) rule Gerald [20] with the formula given by Milne [21] 

and the finite difference equations (14) and (15) are solved by using SOR method Smith [22] subject to the 

appropriate boundary conditions. 

The numerical solutions of qf  and microrotation L are of order of accuracy )( 2hO  due to second order 

finite differences approximations to the derivatives. However, the solution of f  is accurate to the order of accuracy 

)( 5hO and the higher order accuracy )( 6hO  for the solution of f  and L  is achieved by using Richardson's 

extrapolation to the limit Burden [23]. 

Numerical results have been computed for several values of the magnetic parameter
2M , the 

calculations are made on three different grid sizes namely h, h/2 and h/4 to check the accuracy of the 

numerical results. Three different sets of material constants
1

C , 
2

C and 
3

C have been chosen arbitrarily to 

make better understanding of micropolar fluids behavior.  

Table 1. 

 

 

 

  

 

The micropolar fluids have four additional viscosity coefficients along with the usual viscosity of the Newtonian 

fluids. The material constants
1

C , 
2

C and 
3

C given in table 1 are related to these viscosities and play role for the 

micromotion of the fluids. 

Table 2 presents the results for skin friction coefficient - )0(f  . The comparison of the  results for Newtonian 

fluids, micropolar fluids and the previous results is given to elaborate the validity of present results. The results are 

in good comparison. The magnitude of - )0(f  is lesser for micropolar fluids than for Newtonian fluids. Fig.1 and 

fig.2 depict the pattern of velocity components f  and f respectively for different values of 
2M . Both the velocity 

Case 
1

C  
2

C  
3

C  

I 

II 

II 

0.1 

1.5 

3.0 

0.5 

2.5 

4.0 

1.5 

3.5 

5.0 
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components decrease with increase in the values of 
2M . Fig.3 demonstrates the dimensionless microrotation L. It 

is observed that the microrotation increases initially but decreases afterward under the effect of increasing values of 

2M . Comparison of micropolar fluids and Newtonian fluids is shown in fig.4. The velocity component f  is less 

in magnitude for Newtonian fluids than for micropolar fluids. Fig.5 shows the characteristics of f  for three 

different cases of the material constants given in table 1. The increase in the magnitudes of these constants increase 

the magnitude of f  for fixed value of 
2M .    

        Table 1. Numerical results for skin friction coefficient - )0(f  for different values of 
2M . 

2M  
Anderson[18] Chakarborty and 

Mazumdar[19] 

Present numerical results 

(Newtonian fluids) 

Micropolar fluids 

0 

1 

2 

1. 

1.414 

1.732 

0.988 

1.403 

1.722 

1.0052 

1.4134 

1.7228 

1.0013251 

1.3588726 

       1.645147 

 

 

 
 

Fig.1 Graph of f   for different values of 
2M  

 

 
 

Fig.2. Graph of f for different values of 
2M = 0, 1, 2, 3, 4, 5 from top to bottom. 
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Fig.3 Graph of microrotation L for different values of 
2M . 

 

 

 

Fig.4. Graph of f   for comparison of Micropolar and Newtonian fluids when 
2M =2. 

 

 

 

FIG.5. GRAPH OF f   FOR COMPARISON OF MICROPOLAR AND NEWTONIAN FLUIDS WHEN 
2M =2. 
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