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ABSTRACT

Study of the vibration cylindrical shells made of a functionally gradient material (FGM) composed of
stainless steel and nickel is important. Material properties are graded in the thickness direction of the
shell according to volume fraction power law distribution. The objective is to study the natural
frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the
natural frequencies of the FG cylindrical shell. The study is carried out using third order shear
deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based
on shear deformation theory. Results are presented on the frequency characteristics, influence of
constituent volume fractions and the effects of clamped-clamped boundary conditions.
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INTRODUCTION

Cylindrical shells have found many applications in the industry. They are often used as load bearing
structures for aircrafts, ships and buildings. Understanding of vibration behavior of cylindrical shells is
an important aspect for the successful applications of cylindrical shells.

Researches on free vibrations of cylindrical shells have been carried out extensively [1-5]. Recently,
the present authors presented studies on the influence of boundary conditions on the frequencies of a
multi—layered cylindrical shell [6]. In all the above works, different thin shell theories based on Love—
hypothesis were used.

Vibration of cylindrical shells with ring support is considered by Loy and Lam [7]. The concept of
functionally graded materials (FGMs) was first introduced in 1984 by a group of materials scientists in
Japan [8-9] as a means of preparing thermal barrier materials. Since then, FGMs have attracted much
interest as heat-shielding materials.

FGMs are made by combining different materials using power metallurgy methods [10]. They
possess variations in constituent volume fractions that lead to continuous change in the composition,
microstructure, porosity, etc., resulting in gradients in the mechanical and thermal properties [11-12].
Vibration study of FGM shell structures is important. However, study of the vibration of FGM shells
with ring supports is limited.

The FGMs considered are composed of stainless steel and nickel where the volume fractions follow
a power-law distribution. The study is carried out based on third order shear deformation shell theory.
Studies are carried out for cylindrical shells with clamped-clamped (C-C) boundary conditions. Results
presented include the frequency characteristics of cylindrical shells, and the influence of boundary
conditions. The present analysis is validated by comparing results with others in the literature.

1- FUNCTIONALLY GRADED MATERIAL

For the cylindrical shell made of FGM the material properties such as the modulus of elasticity E ,
Poisson ratioV and the mass density P are assumed to be functions of the volume fraction of the

constituent materials when the coordinate axis across the shell thickness is denoted by z and measured
from the shell’s middle plane. The functional relationships between £,V and p with z for a
stainless steel and nickel FGM shell are assumed as [13].

E:(EI—EZ)(ZZ+h) +E, M
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The strain-displacement relationships for a thin shell [14].
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where A4; and A, are the fundamental form parameters or Lame parameters,U;, U, and U; are
the displacement at any point (@;,a, ,03 ), R; and R, are the radius of curvature related to ay,c,

and a5 respectively. The third- order theory of Reddy used in the present study is based on the
following displacement field:

U :ul(al,a2)+a3.(A(a1,a2)+a32.l//1(a1,a2)+a§’.ﬂ1(a1,a2) (1)
U, =u2(0‘1=0¢2)+0‘3~¢z(0‘1=0¢2)+0‘32~l//2(0‘1=0¢2)+0‘§~ﬁ2(0‘1=0¢2)
Uy =us(ey.0,)

These equations can be reduced by satisfying the stress-free conditions on the top and bottom faces

of the laminates, which are equivalent to € ;=e,;=0at 7 = + L4 Thus,

U, =ul(al’a2)+a3'¢l(al’a2) G 0‘3(—*+¢1 )
Aaal (12)
u
U, :uz(al,az)+0¢3~¢2(0¢1,0¢2)—C1~0¢3(—*+¢2 .
A26a2

Us =us(ay,3)

Where C = _4 . Substituting Eq. (12) into nonlinear strain-displacement relation (4) - (9), it can be
3n’
obtained for the third-order theory of Reddy

0 /

€11 €11 ki ki (13)
0 3)

€ p=1€2 rt a3 ky ptaziky
0 /

€12 €12 kip kis

965



J. Basic. Appl. Sci. Res., 1(8)924-932, 2011

0 2 3
{613}:{}/103}4_“32{}/123}4_“;{}/;3} (14)
€23 V23 V23 V23

0
n (L%_,_ “ % 7)
A 0oy A4, Oy, R

where

1 6142 u %4_”73 (15)
4, 6a2 Ay 60c1 R,

71671 e 7@%)

Lo, b b (16

ki 1 6¢, 9y 04 )
o, T A2 o,

k22 A a
4 @, A, da,
a ¢2 AI a ¢I
ki, (Z%(Z) A*ZE(A*I))
Qo o Fu ofag o1 u  d
0 e e e @544(1;“’3 i)
RPN R SN R T (17)
AWy @44(1@“‘?4@)
=6 0 o4 13 1a§@
1 BBy o8,1 %
k| |4 RnA g4 Aan A
4,04 04 10 1000,
TI@@E W doin Ay
0
713 S 1o
) B e s
_uy 1 Ouy
79, @ R, A4, oa,
2
713 _ﬂ+¢ + 3 )
—3c R - e (19)
uz 6143
2 _1T+¢2+Aaa
723 2 272
7133 Ou,
+¢| Aaa,) (20)
Rl
=G ou
(_7+¢2 Azadz)
¥ R,

Where(¢°,5°) are the membranes strains and (k,k’,y*,y’) are the bending strains, known as the
curvatures.

2- FORMULATION

Consider a cylindrical shell as shown in Fig. 2, where R is the radius, L the length and 4 the
thickness of the shell. The reference surface is chosen to be the middle surface of the cylindrical shell

where an orthogonal coordinate system x,60,z is fixed. The displacements of the shell with reference

this coordinate system are denoted by ,U, and Uj; in the x,0 and z directions, respectively.
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Fig 1: Geometry of FGM cylindrical shell

For a thin cylindrical shell, the stress -strain relationship are defined as
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For a isotropic cylindrical shell the reduced stiffness o (1,j=1,2 and 6) are defined as

On=90xn-= E2 O = VE2 (22)
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where E is the Young's modulus and v is Poisson's ratio. Defining
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where Ql-,- are functions of z for functionally gradient materials. Here Al-,- denote the extensional

stiffness, Dy stiffness, B ;;
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cylindrical shell the force and moment results are defined as

the bending the bending-extensional coupling stiffness and

are the extensional, bending, coupling, and higher-order stiffness. For a thin
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3- THE EQUATIONS OF MOTION FOR VIBRATION OF A GENERIC SHELL

The equations of motion for vibration of a generic shell can be derived by using Hamilton's
principle which is described by

5f2(n—1<)dt=0 . M=U-V (28)

Where K,II,U and ¥ are the total kinetic, potential, strain and loading energies, #,and ?,are
arbitrary time. The kinetic, strain and loading energies of a cylindrical shell can be written as:

[ [pw; +U3 v 02y (29)
U:jjj(an €, 10y, €, 101, €, 103 €340y, €)dV (30)
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a;ay

The infinitesimal volume is given by
dV=A44,doda,da, (32)

with the use of Egs. (11)-(20) and substituting into Eq. (28), we get the equations of motions a generic shell.

_ANA) 34 ANA) Q34A2 o BG4 BLAL
0o 509 40, R " dq R R O

ai(RZR?AZ); 3GR”AAZ GP;A 2 (il +Hl, +- Q(7+ (33)
P ]”%“ %(2
ANA) e A 5(7\’21422) Q“A,A2+ 0 (quA.) RGao |
5% 5% Ao, Rz o R Rz 60‘2 (34)
—c](“z+¢z+%)+& : g 2+¢2+%)1)

Aé‘oa

(52(1?1@4/4) i Ah 0GR A4 FBAG/A),
aof R & 4d "R &

6,32G642) FRG)_ 2 qua‘ﬁ) CAGES) 6(qu@42)
o 4 e, o 4 Gy eade, o A4 oo

AQ:4)  ABCRA) 0 RGA AQA) AOGRA)

o, o, ooy R o, oo,
o CPA4, 0 RGAM. 0 A &4
a%(&>a%(48%a%nq )H

0 u, 0 u . o 4 2 iy
+C[£(A) oo, 4, )}I C[(T(A) oo a) }I -Gl R@az 4,
b | Oy oA Gy, 04
6052( 2) 4, 603 Ao, 6052) ¢ R@al( 1) 6051( 1)+
L L0ty o4, o (35)
A, da A7 6051 oa
am4) aGh4) M@/lz 4, aM.4) 5(32@42)
2

B ”aoq Adoy, Ao,
CRAAAAG A =il Gl H G -

968



Isvandzibaei, 2011

_C, ai, Ol
1,+C;} ——+ 1
" aal) ( 9+ 400 ) o]

AMpA) AGAR) 4 ., 4 AM.4) ARGA)

o a e May T aae T A
3GR A +4AZQ3+GR?34AZ i ] +hT, ~Ci ], +(2Ch +
CIILZ_Q%[ C2
YR 4w, R2+¢2+A2 ek

For Egs. (33) — (37) are defining as
h
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4- Equations of motion for vibration of cylindrical shell

The curvilinear coordinates and fundamental from parameters for a cylindrical shell are:

1
R, = a,E =04, =a4, =00, =a,0, =00, =x

(36)

G37)

(38)

(39)

Substituting relationship (39) into Egs. (33)-(37) the equations of motions for vibration of cylindrical

shell with the third-order theory of Reddy are converted to
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The displacement fields for a FG cylindrical shell and the displacement fields which satisfy these

boundary conditions can be written as
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u, cos(n@)cos(wt)

-0
ox

u, = B ¢ (x) sin(nf)cos(wt)

u, = C¢(x)cos(nd) cos(wt)

¢ = Emcos(ne)cos(a)t)
ox

¢, = E¢(x) sin(n0)cos(wt)

(45)

where, A , B , C ,5 and E are the constants denoting the amplitudes of the vibrations in the x,0
and z directions,, and @, are the displacement fields for higher order deformation theories for a
cylindrical shell, ¢ (x) is the axial function that satisfies the geometric boundary conditions. The axial

function ¢ (x)is chosen as the beam function as

a)=y, cos‘h%)ﬂ/2 cos@)—gm(y_; sin}@)ﬂq sin(%x)) (46)

The geometric boundary conditions for free boundary conditions can be expressed mathematically in
terms of ¢ (x) as: clamped boundary condition

P(x) =¢'(x)=0 (47)

Substituting Eq. (45) into Egs. (40) - (44) for third order theory we can be expressed

det (C, - M ;0°)=0 (48)
Expanding this determinant, a polynomial in even powers of @ is obtained
.0 + fio" + Br0° + fi0° + Py + s =o (49)

where g, (i=0,1,2,3,4,5) are some constants. Eq. (49) is solved five positive and five negative roots

are obtained. The five positive roots obtained are the natural angular frequencies of the cylindrical shell
based third-order theory. The smallest of the five roots is the natural angular frequency studied in the
present study.

5- RESULTS AND DISCUSSION

To validate the present analysis, results for cylindrical shells are compared with Loy and Lam [15]
and with M.R.Isvandzibaei [16]. The comparisons show that the present results agreed well with those
in the literature.

Table 1: Comparison of natural frequency (Hz) for a clamped isotropic cylindrical shell.
L=203cm , R=508cm , h=025cm , E=2.07788 *10"' N m 2 ,v = 0.317756
p =8166 kg m >

n m Loy[15] M.R.Isvandzibaei [16] Present

20 1 2043.8 2043.6 2045.1
2 5635.4 5635.2 5624.6
3 8932.5 8932.1 8821.5
4 11407.5 11407.2 11437
5 13253.2 13252.8 13197.5
6 14790.0 14789.8 14790.6

In this paper, studies are presented for a FGM cylindrical shell with clamped-clamped boundary
conditions are considered. Table 2 shows the variation of the natural frequency with the circumferential
wave number n for a functional graded cylindrical shell. The frequencies for the clamped-clamped
boundary conditions increased with the circumferential wave number.
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Table 2: The natural frequencies for a FGM cylindrical shell under (C-C) boundary conditions
(m=1,h/R=0.01, L / R=20).

m n  (HZ)
1 1 0.376687
2 0.472224
3 0.496101
4 0.506079
5 0.513007
6 0.520445
7 0.530317
8 0.544065
9 0.562919
10 0.587923

Studies are presented for vibration of FG cylindrical shell. The boundary conditions, clamped-
clamped (C-C) is considered in the study. Natural frequencies of the FG cylindrical shell for this
boundary conditions is computed and plotted in Fig. 2. For this boundary conditions the frequency first
decreases and then increases as the circumferential wave number n increases.

507 ——C-C
40
N 30
T
o 20
10
0
0 2 4 6 8 10 12
n

Figure 2: Natural frequencies FG cylindrical shell associated with C-C boundary conditions.
(m=1, WR=0.002, L/R=20)

For simplicity, we actually vary the value of power law exponent whenever we need to change the
volume fraction. Varying the value of power law exponent N of the FG cylindrical shell, natural
frequencies are computed for clamped-clamped boundary conditions. Results are also computed for
pure stainless steel and pure nickel shells. All these results are plotted in Fig. 3.
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o —a—N=0(N)
—+—N=05
% —N=07
40 ——N=1
f(Hz) 0 —-N=2
——N=5
2 o N=15
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0 T T T T T )
0 2 4 6 8 10 12
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Figure3: Natural frequencies FG cylindrical shell associated with various power law exponent for C-C boundary
condition.
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6- CONCLUSIONS

A study on the free vibration of functionally graded (FG) cylindrical shell composed of stainless
steel and nickel has been presented. Material properties are graded in the thickness direction of the
shell according to volume fraction power law distribution. The study is carried out using third order
shear deformation shell theory. The analysis is carried out using Hamilton’s principle. Studies are
carried out for cylindrical shells with clamped-clamped (C-C) boundary conditions. The study showed
that in this boundary conditions the frequency first decreases and then increases as the circumferential
wave number n increases. The minimum frequency occurs in between n equals 2 and 3 for this
boundary conditions. The results showed that one could easily vary the natural frequency of the FG
cylindrical shell by varying the volume fraction.
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