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ABSTRACT 
 

Study on the vibration of cylindrical shell made of a functionally gradient material (FGM) composed of 
stainless steel and nickel is presented. The effects of the FGM configuration are studied by studying the 
frequencies of two FGM cylindrical shells. Type I FGM cylindrical shell has Nickel on its inner surface 
and stainless steel on its outer surface and Type II FGM cylindrical shell has stainless steel on its inner 
surface and nickel on its outer surface. The study is carried out based on third order shear deformation 
shell theory. The objective is to study the natural frequencies, the influence of constituent volume 
fractions and the effects of configurations of the constituent materials on the frequencies. The 
properties are graded in the thickness direction according to the volume fraction power-law 
distribution. The governing equations are obtained using energy functional with the Rayleigh-Ritz 
method. Results are presented on the frequency characteristics, the influence of the constituent various 
volume fractions on the frequencies for a Type I, II FGM cylindrical shell. 
KEY WORDS: Stainless Steel, Nickel, Vibration, FGM. 

 
INTRODUCTION 

 
      The study of the vibration of cylindrical shells is an important aspect in the successful 
applications of the cylindrical shells. The study of the free vibrations of cylindrical shells has been 
carried out extensively. Among those who have studied the vibrations of cylindrical shells include 
Arnold and Warburton [1], Ludwig and Krieg [2], Chung [3], Soedel [4], Forsberg [5], Bhimaraddi [6], 
Soldatos and Hajigeoriou [7], Bert and Kumar [8]. The concept of functionally gradient materials 
(FGMs) was first introduced in 1984 by a group of materials scientists in Japan, [9], [10]. as a means of 
preparing thermal barrier materials. Since then FGMs have attracted much interest as heat-Shielding 
materials. FGMs are made by combining different materials using power metallurgy methods [11].  
      They possess variations in constituent volume fractions that lead to continuous change in the 
composition, microstructure, porosity, etc. and this results in gradients in the mechanical and thermal 
properties [12] and [13].  
      Studies on FGMs have been extensive but are largely confined to analysis of thermal stress 
and deformation [14], [15] and [16]. Najafizadeh and Isvandzibaei presented the vibration of 
functionally graded cylindrical shells based on higher order shear deformation plate theory with ring 
support [17].The advantage of on FGMs is that desired mechanical properties can be tailored and this 
holds enormous application potential for FGMs.  
      In this paper a study on the vibration of cylindrical shells composed of functionally gradient 
material (FGM) is presented. The functionally gradient material considered is composed of stainless 
steel and nickel where the volume fractions follow a power–law distribution. The objective is to study 
the natural frequencies, the influence of constituent volume fractions, the effects of configurations of 
the constituent materials on the frequencies for two kind of FGM cylindrical shell.     The analysis of 
the functionally graded cylindrical shell is carried out using third order shear deformation shell theory 
and solved using Rayleigh-Ritz method with energy functional, obtained using an energy approach. 
The displacement fields employ consist of some beam eigenfunctions of vibrations that guarantee 
satisfaction of edge boundary conditions.  
   

1- FUNCTIONALLY GRADED MATERIAL 
 

      For the cylindrical shell made of FGM the material properties such as the modulus of 
elasticity E , Poisson ratio and the mass density are assumed to be functions of the volume fraction 
of the constituent materials when the coordinate axis across the shell thickness is denoted by z and 
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measured from the shell’s middle plane. The functional relationships between E ,   and   with z  
for a stainless steel and nickel FGM shell are assumed as 
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The strain-displacement relationships for a thin shell [18].  
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           where 1A  and 2A  are the fundamental form parameters or Lame parameters, 1U , 2U  and 3U  are the 

displacement at any point ( 1 , 2 , 3 ), 1R  and 2R are the radius of curvature related to 1 , 2  and 3  
respectively. The third- order theory of Reddy used in the present study is based on the following 
displacement field: 
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These equations can be reduced by satisfying the stress-free conditions on the top and bottom faces of 
the laminates, which are equivalent to 02313  at 

2
hZ   Thus for third order theory 
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where
21 3

4
h

C  . Substituting Eq. (11) into nonlinear strain-displacement relation (4) - (9), it can be 

obtained for the third-order theory of Reddy 
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2- FORMULATION 
      

Consider a cylindrical shell is shown in Fig.1. R  is the radius, L  is the length and h is the 
thickness. The reference surface is chosen to be the middle surface of the cylindrical shell where an 
orthogonal coordinate system zx ,,  is fixed. The deformations of the shell with reference to this 
coordinate system are denoted by 1U , 2U  and 3U  in the ,x  and z  directions, respectively. 

 
Fig. 1. Geometry of a FGM cylindrical shell 

 

For a thin cylindrical shell, plane stress condition can be assumed. The constitutive relation 
for a thin cylindrical shell is consequently given by the tow-dimensional Hook's law as 
 

     Q                                                                 (14) 
 

where,    is the stress vector,    is the strain vector and  Q  is the reduced stiffness matrix. The 
stress vector for plane stress condition is  
 

   2313122211  T                                          (15)                                      
 

where 11 is the stress in x direction, 22  the stress in the   direction and 12  is the shear stress on 
the x  plane and 13  is the shear stress on the zx  plane and 23  is the shear stress on the z  
plane. The strain vector is defined as  
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     where 11  is the strain in x direction, 22  the strain in the   direction and 12  is the shear strain 

on the x  plane and 13  is the shear strain on the zx  plane and 23  is the shear strain on the z  
plane. The reduced stiffness  Q  matrix is given as 
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     For an isotropic cylindrical shell the reduced stiffness ijQ  ( i , j=1, 2 and 6) are defined as 
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     where E  is the Young's modulus and   is Poisson's ratio. For a thin cylindrical shell the force and 
moment results are defined as 
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The constitutive equation is obtained as 
  

     SN                                                        (24)                                                          
where }{N  and    are, respectively, defined as 
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and ][S  is defined as 
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     where A, B, E, D, F, H and G are the extensional, coupling and bending stiffness matrices and ijQ  

are functions of z  for functionally gradient materials. Here ijA  denote the extensional stiffness, ijD  

the bending stiffness, ijB  the bending-extensional coupling stiffness and ijijijij HGFE ,,,  are the 
extensional, bending, coupling, and higher-order stiffness. Defining 
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The strain energy and kinetic energy of a cylindrical shell can be defined as 
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     where,   is the mass density,    is the strain vector and    is the stress vector. By substituting 
from Eq. (14), the strain and kinetic energies can be written as  
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where   is the strain vector defined in Eq. (26) and ][S  is the stiffness matrix defined in relation 
(27). The parameter T  is the density per unit length defined as 
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The displacement fields for a cylindrical shell can be written as: 
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     where, A , B , C , D  and E  are the constants denoting the amplitudes of the vibrations in the 
,x  and z  directions, )(x  is the axial function that satisfies the geometric boundary conditions, n  

denotes the number of circumferential waves in the mode shape and   is the natural angular frequency 
of the vibration. The axial function )(x is chosen as the beam function as: 
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     where )4,...,1( ii are some constants with value 0 or 1 chosen according to the boundary 
conditions. m , are the roots of some transcendental equations and m  are some parameters 
dependent on m . The )4,...,1( ii , the transcendental equations and the parameters m  for the 
simply supported boundary condition considered. The geometric boundary condition for simply 
supported boundary condition can be expressed mathematically in terms of )(x as:  

0)()(  xx                                                         (36)                                                                                         
To determine the natural frequencies, the Rayleigh-Ritz method is used. The energy functional   
defined by the Lagrangian function as  

maxmax UT                                                           (37) 
Substituting Eq. (34) into Eqs. (31) and (32) and minimizing the energy functional   with respect to 
the unknown coefficients as follows, 
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In Eq. (37), Tmax and Umax are the maximum kinetic energy and strain energy, respectively. In Eq. (38), 
the five governing eigenvalue equations can be obtained. These five governing eigenvalue equation can 
be expressed in matrix from as 























5554535251

4544434241

3534333231

2524232221

1514131211

CCCCC

CCCCC
CCCCC
CCCCC

CCCCC





























E
D
C
B
A

=



























0
0
0
0
0

                                  (39)                                                                    

                                                                                                    

The eigenvalue equations are solved by imposing the non-trivial solutions condition and equating the 
determinant of the characteristic matrix ][ ijC  to zero. Expanding this determinant, a polynomial in 
even powers of   is obtained 

  5
2

4
4

3
6

2
8

1
10                                    (40)                                                       

     where )5,4,3,2,1,0( ii  are some constants. Eq. (40) is solved five positive and five negative 
roots are obtained. The five positive roots obtained are the natural angular frequencies of the 
cylindrical shell in the x  ,   and z  directions. The smallest of the five roots is the natural angular 
frequency studied in the present study. 

3- RESULTS AND DISCUSSION 
 

     In this paper studies are presented on the vibration of simply supported functionally graded (FG) 
cylindrical shell. The functionally gradient material (FGM) considered is composed of stainless steel 
and nickel and its properties are graded in the thickness direction according to the volume fraction 
power-law distribution. The influence of constituent volume fractions is studied by varying the volume 
fractions of the stainless steel and nickel. This is carried out by varying the value of the power law 

928 



Isvandzibaei, 2011 
 

exponent N . The effects of the FGM configuration are studied by studying the frequencies of two FG 
cylindrical shells. Type I FG cylindrical shell and Type II FG cylindrical shell. Type I FG cylindrical 
shell has Nickel on its inner surface and stainless steel on its outer surface and Type II FG cylindrical 
shell has stainless steel on its inner surface and nickel on its outer surface. The material properties for 
stainless steel and nickel, calculated at KT 300 , are presented in table 1. 
 

TABLE I: PROPERTIES OF MATERIALS 
 
 

Coefficients Stainless Steel Nickel 
E     E     

P 0  201.04 109 0.3262 8166 223.95 109 0.3100 8900 

P 1  
0 0 0 0 0 0 

P 1  3.079 10-4 -2.002 10-4 0 -2.794 10-4 0 0 

P 2  -6.534 10-7 3.797 10-7 0 -3.998 10-9 0 0 

P 3  
0 0 0 0 0 0 

 2.07788 1011 0.317756 8166 2.05098 1011 0.3100 8900 

 
To validate the present analysis, results for cylindrical shells are compared with Chung [20]. The 
comparisons show that the present results agreed well with those in the literature. 
 
 

TABLE II: COMPARISON OF FREQUENCY 







s
rad PARAMETER 

E
R ))1(( 2 




  FOR A CLAMPED-

CLAMPED ISOTROPIC CYLINDRICAL SHELL 
  

  
Case 









s
rad

 Chung [20] Present 

4
500)/(
10)/(





n
hR
RL   

327.5406 
 
0.01508 

 
0.0154656 

2
20)/(
10)/(





n
hR
RL   

1254.2173 
 
0.05787 

 
0.0592211      

3
20)/(
2)/(





n
hR
RL   

1380.3668 
 
0.3117 

 
0.235887 

 
     Tables 3 and 4 show the variations of the volume fractions fV  of Nickel and Stainless Steel, 
respectively, in the thickness direction z  for a Type I FG cylindrical shell. the volume fraction for 
Nickel fNV  decreased from 1 at hz 5.0 to 0 at hz 5.0  and the volume fraction of Stainless Steel 

fssV  increased from 0 at hz 5.0 to 1 at hz 5.0 .  

TABLE III: VARIATION OF THE VOLUME FRACTION fssV IN THE THICKNESS DIRECTION z FOR A TYPE I FG 

CYLINDRICAL SHELL 
 

      

z  
fssV  

N=0.5 N=0.7 N=1 N=2 N=5 N=15 
 

-0.5h 
-0.4h 
-0.3h 
-0.2h 
-0.1h 

0 
0.1h 
0.2h 
0.3h 
0.4h 
0.5h 

 

 
0 

0.3162 
0.4472 
0.5477 
0.6324 
0.707 
0.7745 
0.8366 
0.8944 
0.9486 

1 

 
0 

0.1995 
0.3241 
0.4305 
0.5265 
0.6155 
0.6993 
0.7790 
0.8553 
0.9289 

1 

 
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

 
0 

0.01 
0.04 
0.09 
0.16 
0.25 
0.36 
0.49 
0.64 
0.81 

1 

 
0 

0.00001 
0.00032 
0.00243 
0.01024 
0.03125 
0.07776 
0.1680 
0.3276 
0.5904 

1 

 
0 

110 15   

27.310 11   

43.110 8   
0.00000107 
0.00003051 
0.0004701 
0.004747 
0.03518 
0.20589 

1 
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TABLE IV: VARIATION OF THE VOLUM FRACTION fNV  IN THE THICKNESS DIRECTION z FOR A TYPE I FG 

CYLINDRICAL SHELL 
 

      

z  
fNV  

N=0.5 N=0.7 N=1 N=2 N=5 N=15 
 

-0.5h 
-0.4h 
-0.3h 
-0.2h 
-0.1h 

0 
0.1h 
0.2h 
0.3h 
0.4h 
0.5h 

 

 
1 

0.6837 
0.5527 
0.4522 
0.3675 
0.2928 
0.2254 
0.1633 
0.1055 
0.0513 

0 

 
1 

0.8004 
0.6758 
0.5694 
0.4734 
0.3844 
0.3006 
0.2209 
0.1449 
0.0710 

0 
 

 
1 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 

 
1 

0.99 
0.96 
0.91 
0.84 
0.75 
0.64 
0.51 
0.36 
0.19 

0 

 
1 

0.9999 
0.9996 
0.9975 
0.9897 
0.9687 
0.9222 
0.8319 
0.6723 
0.4095 

0 

 
1 
1 
1 

0.9999 
0.9999 
0.9999 
0.9995 
0.9952 
0.9648 
0.7941 

0 

 
     In this section variations of natural frequencies with the circumferential wave number n for two type 
functional graded cylindrical shells with different volume fractions are presented. Tables 5 and 6 show 
variations of natural frequencies for type I FG cylindrical shell and type II FG cylindrical shell. The 
influence of the constituent volume fraction on the frequencies for Type I and II FG cylindrical shells 
has been found to be different. For the Type I FG cylindrical shells, the natural frequencies decreased 
when N  increased, and for the Type II FG cylindrical shells, the natural frequencies increased when 
N  increased. In Types I and II FG cylindrical shells, the natural frequencies for all values of N  lie 
between those for a stainless steel and Nickel cylindrical shells. For 1N , the natural frequencies for 
Type I FG cylindrical shells are higher than for Type II FG cylindrical shells and for 1N , the 
natural frequencies for Type II FG cylindrical shells are higher than Type I FG cylindrical shells. 
 

TABLE V: VARIATION OF NATURAL FREQUENCIES WITH THE CIRCUMFERENTIAL WAVE NUMBER n FOR A 
TYPE I FG CYLINDRICAL SHELL. 

m=1, h/R=0.002, L/R=20 
 

       
n 

f(Hz) 
N=0.5 N=0.7 N=1 N=2 N=5 N=15 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
 

 
 13.319 
4.514 
4.190 
7.101 

11.345 
16.609 
22.848 
29.052 
38.219 
47.347 

 

 
13.267 
4.496 
4.173 
7.074 

11.301 
16.545 
22.760 
29.937 
38.072 
47.166 

 

 
13.209 
4.476 
4.156 
7.044 

11.254 
16.475 
22.664 
29.811 
37.912 
46.967 

 

 
13.101 
4.440 
4.123 
6.989 

11.166 
16.348 
22.489 
29.580 
37.618 
46.604 

 

 
12.996 
4.4046 
4.0914 
6.9357 
11.080 
16.222 
22.315 
29.351 
37.328 
46.244 

 

 
12.930 
4.382 
4.070 
6.899 

11.022 
16.1374 
22.199 
29.198 
37.133 
46.002 

 

 
TABLE VI: VARIATION OF NATURAL FREQUENCIES WITH THE CIRCUMFERENTIAL WAVE NUMBER n FOR A 

TYPE II FG CYLINDRICAL SHELL. 
m=1, h/R=0.002, L/R=20 

 

       
n 

f(Hz) 
N=0.5 N=0.7 N=1 N=2 N=5 N=15 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
 

 
 13.321 
32.679 
91.388 
174.998 
282.855 
414.818 
570.840 
750.900 
954.987 
1183.096 

 

 
13.269 
32.553 
91.037 
174.326 
281.769 
413.225 
568.648 
748.016 
951.319 
1178.552 

 

 
13.211 
32.416 
90.652 
173.590 
280.578 
411.480 
566.246 
750.853 
947.300 
1173.573 

 

 
13.103 
32.165 
89.951 
172.246 
278.407 
408.295 
561.863 
739.091 
939.968 
1164.489 

 

 
12.997 
31.917 
89.258 

170.920 
276.263 
405.151 
557.537 
733.400 
932.731 
1155.52 

 

 
12.932 
31.751 
88.795 
170.035 
274.832 
403.053 
554.650 
729.603 
927.902 
1149.542 

 
 
4- Conclusions 
      

A study on the vibration of functionally graded (FG) Cylindrical shell with clamped-clamped 
boundary condition composed of stainless steel and nickel has been presented. The study was carried 
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out for two types of functionally graded cylindrical shells where the configurations of the constituent 
materials in the functionally graded cylindrical shells are different. One is termed as a Type I FG 
cylindrical shell and has properties that vary continuously from nickel on its inner surface to stainless 
steel on its outer surface. The other is termed as a Type II FG cylindrical shell and has properties that 
vary continuously from stainless on its inner surface to nickel on its outer surface. The analysis of the 
functionally graded cylindrical shell is carried out using third order shear deformation shell theory and 
solved using Rayleigh-Ritz method with energy functional, obtained using an energy approach. Studied 
were made on study the natural frequencies, the influence of constituent volume fractions, the effects of 
configurations of the constituent materials on the frequencies for two kind of FG cylindrical shell and 
the influence of boundary conditions simply support on the frequencies. The study showed that the constituent 
volume fractions and the configurations of the constituent materials affect the natural frequencies. 
However, because of the functionally graded cylindrical shells exhibit interesting frequency 
characteristics when the constituent volume fractions are varied. This is done by varying the power law 
exponent N . The influence of the constituent volume fraction on the frequencies for Type I and II FG 
cylindrical shells has been found to be different. For the Type I FG cylindrical shells, the natural 
frequencies decreased when N  increased, and for the Type II FG cylindrical shells, the natural 
frequencies increased when N  decreased. In Types I and II FG cylindrical shells, the natural 
frequencies for all values of N  lie between those for a stainless steel and Nickel cylindrical shells. 
For 1N , the natural frequencies for Type I FG cylindrical shells are higher than for Type II FG 
cylindrical shells and for 1N , the natural frequencies for Type II FG cylindrical shells are higher 
than Type I FG cylindrical shells. Thus the constituent volume fractions and the configurations of the 
constituent materials affect the natural frequencies. 
 

REFERENCES 
 

[1] Arnold, R.N., Warburton, G.B., 1948. Flexural vibrations of the walls of thin cylindrical shells.   
Proceedings of the Royal Society of London A; 197:238-56. 

 [2] Ludwig, A., Krieg, R., 1981.An analysis quasi-exact method for calculating eigen vibrations of 
thin circular shells. J. Sound vibration; 74,155-174. 

 [3] Chung, H., 1981. Free vibration analysis of circular cylindrical shells. J. Sound vibration; 74, 331-
359. 

 [4] Soedel, W., 1980.A new frequency formula for closed circular cylindrical shells for a large variety 
of boundary conditions. J. Sound vibration; 70,309-317. 

 [5] Forsberg, K., 1964.Influence of boundary conditions on modal characteristics of cylindrical shells. 
AIAA J; 2, 182- 189. 

 [6] Bhimaraddi, A., 1984. A higher order theory for free vibration analysis of circular cylindrical   
shells. Int, J. Solids Structures; 20, 623-630. 

 [7] Soldatos, K.P., 1984. A comparison of some shell theories used for the dynamic analysis of cross-
ply laminated circular cylindrical panels. J. Sound vibration; 97, 305-319. 

 [8] Bert, C.W., Kumar, M., 1982.vibration of cylindrical shell of biomodulus composite materials. J. 
Sound vibration; 81,107-121. 

 [9] Soldatos, K.P., 1984. A comparison of some shell theories used for the dynamic analysis of cross-
ply laminated circular cylindrical panels. J. Sound vibration; 97, 305-319. 

 [10] Makino A, Araki N, Kitajima H, Ohashi K. Transient temperature response of functionally 
gradient material subjected to partial, stepwise heating. Transactions of the Japan Society of 
Mechanical Engineers, Part B 1994; 60:4200-6(1994). 

 [11] Koizumi, M., 1993.The concept of FGM Ceramic Transactions, Functionally Gradient Materials; 
1993; 14, 3-10. 

 [12] Anon, 1996.FGM components: PM meets the challenge. Metal powder Report. 51:28-32. 

 [13] Obata, Y., Noda, N., 1994. Steady thermal stresses in a hollow circular cylinder and a hollow 
sphere of a functionally gradient material. Journal of Thermal stresses; 17:471-87. 

931 



J. Basic. Appl. Sci. Res., 1(8)924-932, 2011 
 

 [14] Takezono, S., Tao, K., Inamura, E., Inoue, M., 1996. Thermal stress and deformation in 
functionally graded material shells of revolution under thermal loading due to fluid. JSME 
International Journal of Series A: Mechanics and Material Engineering; 39:573-81. 

 [15] Wetherhold, R.C., Seelman, S., Wang, J.Z., 1996. Use of functionally graded materials to 
eliminate or control thermal deformation.Composites Science and Technology; 56:1099-104. 

 [16] Zhang, X.D., Liu, D.Q., Ge, C.C., 1994.Thermal stress analysis of axial symmetry functionally 
gradient materials under steady temperature field. Journal of Functional Materials; 25:452-5. 

 [17] Yamanouchi, M., Koizumi, M., Hirai, T., Shiota, I.  Proceedings of the First International 
Symposium on Functionally Gradient Materials, Japan ; 1990; pp. 327-332. 

 [18] Najafizadeh, M.M., Isvandzibaei, M.R., 2007. Vibration of functionally graded cylindrical shells 
based on higher order shear deformation plate theory with ring support. Acta Mechanica; 
191:75-91. 

 [19] Loy, C.T., Lam, K.Y., Reddy, J.N., 1998.Vibration of functionally graded cylindrical shells. 
International Journal of Mechanical Sciences; 41(1999), 309-324. 

 [20] Soedel, W., 1981. Vibration of shells and plates. MARCEL DEKKER, INC, New York. 

 
 
 
 
 
 
 
 
 
 
 
 
 

932 


