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ABSTRACT 

 

This article is dedicatedly analyzed for the investigation of exponential flow over the slippage of fractionalized second 

order fluid under the influence of exponential plate. Fractionalized second order fluid is analyzed for the expression of 

velocity and shear stress profiles under the existence and nonexistence of slip effects. The general solutions are perused 

with help of discrete Laplace transform along with its inverse and expressed in the form of newly defined generalized 

hyper geometric function. The contrast among the solutions has been declared for ordinary as well as fractional types of 

fluid. All the solutions satisfy usual conditions (natural, boundary and initial conditions) for verification as well. Finally, 

Rheology of slippage, viscosity, fractional parameters, material parameters and few others have been underlined in order to 

bring physical aspects through graphical depictions. 

KEY WORDS: Non-integer derivative, Slippage, Second Order Fluid, Discrete Transforms, depictions of Graphs. 

 

1. INTRODUCTION 

 

Numerous constitutive models for partial differential equations have been suggested for non-Newtonians fluids 

due to their typical and diverse structures [20-21]. In general, models of non-Newtonians fluids are divided in three brands; 

they are (i) the integral brand (ii) the rate brand and (iii) the differential brand. The best brand amongst them is the 

differential brand so called ���grade model. In brevity, the ���grade model has gotten huge importance due its various 

industrial and technological applications. In this manuscript, the second grade fluid commonly known as a simplest 

subclass lies in the category of differential brand. For second grade fluid one can optimistically expect the prediction 

regarding differences among normal stress for steady exponential flow over a rigid boundary [1-3].In this manuscript, the 

assumptions of slippage are analyzed under the influence of exponential plate. In continuation, it is well known fact that 

the slip boundary assumptions are adequate for characteristics of Newtonian fluids but in comparison these assumptions are 

not sufficient for all characteristics of non-Newtonian fluids. In general, impacts of slippage on non-Newtonian fluids have 

not attained much interest. Despite slip effects occurs in many technological applications and experimental observations for 

instance, polymer melts, emulsions, fractional wave diffusions, non-linear creeping, micro and nano channels and several 

others. To best of our knowledge, the literature regarding no slip conditions for second grade fluid includes. Fetecau and 

Corina[4] has investigated solutions for unsteady unidirectional flow without considering slip effects for second grade 

fluid. Hayat et al. [5]has achieved analytical solution in cylindrical geometries for second grade fluid in the absence of slip 

assumptions. Investigation of first problem of stoke’s without slip effects in presence of porous medium for second grade 

fluid is perused by Tan and Masuoka [6]. Kashif [7] has considered influences of magnetohydrodynamics flow for second 

grade fluid in nonexistence of slippage. Free convection unsteady flows on vertical oscillating plate over second grade fluid 

have been obtained by Farhad[8]. Athar et al.[9]has tracedout rotational flow through circular cylinder for second grade 

fluid using Caputo fractional derivatives. Generalized second grade fluid flow between two parallel plates with fractional 

calculus approach has been investigated by Tan and Mingyu [10]. Mohamad et al [11] analyzed heated generalized second 

grade fluid by implementing a new spectral collocation technique in which they acquired high accuracy via certain 

numerical tests. They focused the results obtained for multi-dimensional fractional stokes’ first problem. Samiulhaq et al. 

[12] observed a porous flow of a second-grade fluid induced by an infinite plate between two side walls that exerts an 

accelerated shear stress. They investigated exact solutions by using Laplace transform, finite Fourier cosine and sine 

transform on governing partial differential equation to have solutions for velocity field and shear stress. Furthermore, the 

concept of fractional calculus has focused the attention of researchers in exploring the enormous applications for modeling 

of the fluid mechanics with non-local phenomenon. The fractional approach is widely used in the many engineering and 

scientific fields because of its remarkable expansion in providing the results, either it is used in numerical or differentials 

schemes. The most common non-integer order fractional derivatives with singular kernel, Riemann-Liouville and Caputo 

derivative both of them are better in dealing mathematical problems and they have effective results from applications point 

of view [2-21].In concision, we include here recent literature referenced in [13-17].Motivated by above research work, we 
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are interested for the investigation of exponential flow over the slippage of fractionalized second order fluid under the 

influence of exponential plate. Fractionalized second order fluid is analyzed for the expression of velocity and shear stress 

profiles under the existence and nonexistence of slip effects. The general solutions are perused with help of discrete 

Laplace transform along with its inverse and expressed in the form of newly defined generalized hyper geometric function. 

The contrast among the solutions has been declared for ordinary as well as fractional types of fluid. All the solutions satisfy 

usual conditions (natural, boundary and initial conditions) for verification as well. Finally, Rheology of slippage, viscosity, 

fractional parameters, material parameters and few others have been underlined in order to bring physical aspects through 

graphical depictions. 

 

2. Formulation of Problem with Governing Equations 

Flow equations for incompressible fluid include in the nonexistence of body forces are[18] � ���� + �	�. ∇�� − ∇. � = 0,        ∇. � = 0,                                                                                                                 	1� 

Where, �, ∇, �, �, �are time, gradient operator, velocity of fluid, density of fluid, Cauchy stress tensor respectively and the 

cauchy stress �given by � = −�� + �, � = ����� + ���� + ���,                                                                                                             	2� 

 

here, ��, ��, ��, ��, �, �, −��are kinematic tensors, normal stress moduli, dynamic viscosity, extra tensor, hydrostatic 

pressure. The kinematic tensors are expresed as  �� = ∇. V + 	∇. V� 
�� = ��	∇. V� + ��	∇. V� + !��!� ,                                                                                                                                  	3� 

 

For the problem under consideration, it is assumed for velocity field � and extra-stress tensor � of the form � = �	#, ��,      � = �	#, �� = $	#, ��% ,                                                                                                                            	4� 

 

For these flows the constraint of incompressibility is automatically satisfied. If the fluid is at rest up to the moment t = 0, 

then � = 	#, 0� = 0,    � = 	#, 0� = 0 ,                                                                                                                                     	5� 

 

we obtained governing differential equations for second grade flow  �(	#, ���� − ��(	#, ���#� )� ��� + *+ = 0,                                                                                                                            	6� 

-	#, �� − �(	#, ���# )� + �� ���+ = 0.                                                                                                                                  	7� 

where, � = �� �⁄  and * = � �⁄  are kinematic viscosity and 1
α

α
ρ

=  the viscoelastic parameter of second grade fluid. using 

caputo operatorfor the fractional parameter is 0 < 1 < 1 and the fractional differential operator 2�3  is described as [19] 

 

2�34	�� =
567
68 1

Γ	1 − 1� 9 4 ′	:�	� − :�3 !:, 0 < 1 < 1�
;!4	��!� ,                                     1 = 1    ,                                                                                            	8� 

�(	#, ���� − ��(	#, ���#� =�2�3 + *> = 0,                                                                                                                             	9� 

-	#, �� − �(	#, ���# =� + ��2�3> = 0.                                                                                                                                	10� 

 

Assume that an unsteady fractionalized fluid of order second possessing the space lying over an interminably amplified 

plane having its location in @A plane and vertical to #- axis. At the very initial, the fluid is at rest and the occasion � = 0B 

the plane begins to waver in its own particular plane. Here we accept the presence of slip limit between the speed of the 

fluid at the plane. Because of shear, the liquid over the plane is steadily moved as described in goemetry of the problem:  
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Depiction of Geometry of the problem 

 
 The fitting initial and boundary conditions are (	#, ��, �(	#, ���� → 0   as   # → ∞   F�!    � > 0,                                                                                                         	11� 

 (	0, �� = ΩH	��I@J	K�� + L(�	#, ��|NO;    � ≥ 0.                                                                                                 	12� 

 (	#, 0� = 0,           -	#, 0� = 0,        # > 0,                                                                                                                  	13� 

are mollified as natural, boundary and initial conditions. 

 

3. Exploration of Velocity Field 

Applying Laplace trasform to equation (9) and keeing in consideration equations (11) and (13), we found  

 Q	�Q3 + *� (	#, Q� = ��(	#, ���#� ,                                                                                                                              	14� 

 

Using bounary conditions in equation (14), we have 

 

(	#, Q� = ΩRSNT UVWUXYZ[
	Q − K� \1 + L] ^=_^XB`>a,                                                                                                                         	15� 

 

Before applying discrete Laplace transform, firstly we rework on equation (15) for series form as   

 

(	#, Q� = Ω	Q − K� + Ω b	K�c∞

cO; b ) L√�+e∞

eO� b V−*� [f∞

fO;
Γ Vg + e�[h! Γ Ve�[ 1Q	3S��jkBf3BcB� + l b	K�c∞

cO; b ) L√�+e∞

eO;  

                     × b )−#√�+f∞

fO;
Γ Vn + fBe� [n! Γ VfBe� [ 1Q	3S��VoYjk [B3pBcB� ,                                                                                   	16� 

 

 

 

 

90 



Abro et al., 2018 

 

Inverting equation (16) by Laplace Transfrom, we attain  

(	#, �� = ΩH	��Rq� + ΩH	�� b	K�c∞

cO; b ) L√�+e∞

eO� b VS_̀ �3[f
Γ Vg + e�[ �	3S��jkBc

h! Γ Ve�[ Γ )	1 − 1� e� + h1 + g + 1+
∞

fO; + Ω b )−#√�+f∞

fO;  

                × b	K�c∞

cO; b ) L√�+e∞

eO; b VS_̀ �3[p
Γ Vn + fBe� [ �	3S��VoYjk [Bc

n! Γ VfBe� [ Γ )	1 − 1� VfBe� [ + 1n + g + 1+
∞

pO; ,                                          	17� 

 

expressing equation (17) in terms of wright generalized Hyper-geometric function, we get simple expression for velocity as  

 

(	#, �� = ΩH	��Rq� + ΩH	�� b	K�c∞

cO; b ) L√�+e∞

eO� Ψ�� rss
t− *�3� uu V�2 , 1[

V�2 , 0[ , v	1 − 1� �2 + g + 1, 1wxyy
z �	3S��jkBc

 

+Ω b	K�c∞

cO; b ) L√�+e∞

eO; b )−#√�+f∞

fO; Ψ�� rss
st− *�3� uu )h + �2 , 1+

)h + �2 , 0+ , v	1 − 1� )h + �2 + + g + 1, 1wxyy
yz �	3S��VoYjk [Bc. 	18� 

 

Where,  the property of wright generalized Hyper-geometric function is 

b 	−{�| ∏ Γ	~� + ����_�O��! ∏ Γ	!� + 2�����O�
∞

| = ��� �{ � 	��, ���, 	��, ���, … , 	�_ , �_�	��, ���, 	��, ���, … , =�� , ��>�.  
 

4. Exploration of Shear Stress 

Applying Laplace trasform to equation (10) and keeing in consideration equations (11) and (13), we found  

 -̅	#, Q� − �(�	#, Q��# =��Q3 + �> = 0,                                                                                                                                	19� 

 

Substituting the value of 
���	N,^��N  in equation (19), we get 

 

-̅	#, Q� = −Ω � RSNT UVWUXYZ[�	�Q3 + *�
	Q − K� \1 + L] �=_^XB`>a ,                                                                                                                    	20� 

 

Before applying Laplace transform, firstly we rework on equation (20) for series form as   

 

-̅	#, Q� = −Ω√� � b	K�c∞

cO; b ) L√�+e∞

eO; b )−#√�+f∞

fO; b VS_̀ [p
Γ Vn + fBeS�� [

n! Γ VfBeS�� [ Q	3S��VoYjk [B3pBc
∞

pO; ,                              	21� 

 

 

applying Laplace transform to equation (21) and expressing it in the format of wright generalized Hyper-geometric 

function, we get simple expression for shear stress as 

 

-	#, �� = −Ω√� � H	�� b	K�c∞

cO; b ) L√�+e∞

eO; b )−#√�+f∞

fO;  

             × Ψ�� rss
st− *� �3 uu )h + � − 12 , 1+

)h + � − 12 , 0+ , v	1 − 1� )h + � − 12 + + g, 1wxyy
yz �	3S��VoYjk [Bc .                                  	22� 
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Equations (18) and (22) are the solutions of velocity and shear stress respectively satisfying initial and  boundary 

conditions as well.   

 

5. Special Solutions 

Solutions of second grade fluid in the absence of slippage if � → � 

 

PermittingL → 0 in equations (18) and (22), we acquire 

 

(	#, �� = ΩH	��Rq� + ΩH	�� b	K�c∞

cO; b )−#√�+f∞

fO�  

              × Ψ�� rss
st− *� �3 uu )h2 , 1+

)h2 , 0+ , v	1 − 1� )h2+ + g + 1, 1wxyy
yz �	3S��Vok[Bc .                                                              	23� 

 

-	#, �� = −Ω√� � H	�� b	K�c∞

cO; b )−#√�+f∞

fO;  

           × Ψ�� rss
st− *� �3 uu )h − 12 , 1+

)h − 12 , 0+ , v	1 − 1� )h − 12 + + g, 1wxyy
yz .                                                                              	24� 

 

Ordinary solutions of second grade fluid in the presence of slippage if 1 → 1 and L � 0 

 

Letting1 → 1 and L � 0 in equations (18) and (22), we acquire  

 

(	#, �� = ΩH	��Rq� + ΩH	�� b	K�c∞

cO; b ) L√�+e∞

eO� Ψ�� �− *� � u V�2 , 1[
V�2 , 0[ , 	g + 1,1�� �c + l b	K�c∞

cO; b ) L√�+e∞

eO;  

           × b )−#√�+f∞

fO; Ψ�� �− *� � u )h + �2 , 1+
)h + �2 , 0+ , 	g + 1,1�� �c.                                                                                     	25� 

 

-	#, �� = −Ω√� � H	�� b	K�c∞

cO; b ) L√�+e∞

eO; b )−#√�+f∞

fO; Ψ�� �− *� � u )h + � − 12 , 1+
)h + � − 12 , 0+ , 	g, 1�� �c.                  	26� 

 

Furthermore, one can investigate the few limiting solutions for instance, when1 → 1 and � → 0 solutions are termed into 

ordinary fluid and Newtonian fluid from general solutions as well.  

 

6. RESULTS AND DISCUSSIONS 

 

In this portion, numerical discussion regarding results and their effects are highlighted for the investigation of exponential 

flow over the slippage of fractionalized second order fluid under the influence of exponential plate. Fractionalized second 

order fluid is analyzed with help of graphical depiction under the existence and nonexistence of slip effects. The general 

solutions are plotted using distinct rheology of slippage, viscosity, fractional parameters, and material parameters. It is 

worth pointed out that while depiction of graphical illustrations, we have considered couple of graphs for velocity field and 

shear stress respectively. However, the major outcomes are: 

 

• In Fig.1, by fixing all rheology except time parameter in presence and absence of slip assumption, the effects 

display the velocity is decreasing while shear stress is increasing at variation of time for the whole domain.  

• The sequestrating and scattering behavior of fluid flow has been identified on the plate by increasing the fractional 

parameter at domain in Fig. 2 in presence and absence of slip assumption. This phenomenon happens when we consider the 

order of fractionalization as 0.2 � 1 � 0.8. 
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• Fig. 3 is prepared to display effects of viscosity in presence and absence of slip assumption in which velocity field 

and shear stress has contradictory behavior of fluid as expected on the exponential plate with the no slip assumptions. 

• Due to increment in exponential flow shown in Fig. 4, we observed that the range of fluid flow for coincident 

without slip effect and maximum with slip effect at the free surface.  

• Fig. 5 indicates the comparisons made on fractionalized and ordinary fluid flows in which it is observed that both 

the velocity field as well as shear stress have reciprocal behavior in four models of fluid namely (i) fractionalized second 

grade fluid, (ii) ordinary second grade fluid, (iii) fractionalized Newtonian fluid and (iv) ordinary Newtonian fluid. 

 

7. CONCLUSION 

 

The conclusion is based on the rheological and pertinent parameters, the effects of such parameters have key notes 

similarities and differences which are: 

 

• The velocity is decreasing and shear stress is increasing at variation of time either slip strength is considered or not. 

• Fractional parameter is considered for the order of fractionalization as 0.2 � 1 � 0.8. which represent sequestrating and 

scattering behavior of fluid flows. 

• Effects of viscosity in presence and absence of slip assumption has reversal behavior of fluid flows. 

• The analysis for the comparisons on fractionalized and ordinary fluid flows suggested opposite effects on different 

models. 

 

 

 

Fig. 1: Effects of time parameter on the velocity field with and without slip assumptions. 

 

 

 
    

Fig. 2: Effects of fractional parameter on the velocity field with and without slip assumptions. 
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Fig. 3: Effects of viscosity on the velocity field with and without slip assumptions. 

 

 
Fig. 4: Effects of exponential flow on the velocity field with and without slip assumptions. 

 

 
Fig. 5: Comparison of four rheological models on the velocity field with and without slip assumptions. 

 

 

ACKNOWLEDGEMENT  

 

The author Kashif Ali Abro and Imran Qasim Memonare highly thankful and grateful to Mehran university of Engineering 

and Technology, Jamshoro, Pakistan for generous support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

94 



Abro et al., 2018 

 

REFERENCES 

 

[1] Rajagopal K.R., (1982), A note on unsteady unidirectional flows of a non-Newtonian fluid, International Journal of 

Non-Linear Mechanics, 17, 369-373. 

 [2] Kashif Ali Abro, Mukarrum Hussain, Mirza Mahmood Baig, Khalil-ur-Rehman Channa, Analysis of Generalized 

Burger’s Fluid in Rayleigh Stokes Problem, Journal of Applied Environmental and Biological Sciences (JAEBS),7(5) 

55-63 (2017). 

 [3] Kashif Ali Abro, Mukarrum Hussain, Mirza Mahmood Baig, Impacts of Magnetic Field on Fractionalized 

Viscoelastic Fluid, Journal of Applied Environmental and Biological Sciences (JAEBS), 6(9) 84-93 (2016).  

 [4] Fetecau C., Corina F., (2005), Starting solutions for some unsteady unidirectional flows of a second grade fluid, 

International Journal of Engineering and Science, 43, 781-789. 

 [5] Hayat T., Khan M., Ayub M., (2006), Some analytical solutions for second grade fluid flows of cylindrical 

geometries, Mathematics and Computer Modeling, 43,16-29. 

 [6] Tan W.C., Masuoka T., (2005), Stokes’ first problem for second grade fluid in a porous half-space with heated 

boundary, International Journal of Non-Linear Mechanics, 40,515-522. 

 [7] Kashif A.A., (2016), Porous effects on second grade fluid in oscillating plate, Journal of Applied Environmental and 

Biological Sciences, 6, 71-82. 

 [8] Farhad A., Ilyas K., Shafie S., (2014), Closed form solutions for unsteady free convection flow of a second grade 

fluid over an oscillating vertical plate, PLoS ONE,9(2):e85099. 

 [9] Athar M., Kamran M., Imran M., (2011), On the unsteady rotational flow of a fractional second grade fluid through a 

circular cylinder, Meccanica, 81(11), 1659-1666.  

 [10] Tan W., Mingyu X., (2004), Unsteady flows of a generalized second grade fluid with the fractional derivative model 

between two parallel plates, Acta Mechanica Sinica, 20(5), 471-476.  

 [11] A. Mohamed, A. Rubayyi, Shifted Jacobi collocation method for solving multi-dimensional fractional Stokes’ first 

problem for a heated generalized second grade fluid, Advances in Difference Equations, 2016:114, DOI 

10.1186/s13662-016-0845-z. 

 [12] Samiulhaq, A. Rahman, I. Khan, A. Farhad, S. S. A Inayat, The impact of side walls on the MHD flow of a second-

grade fluid through a porous medium, Neural Comput & Applic (2016), DOI 10.1007/s00521-016-2733-6  

 [13] Khan M., Hyder A.S., Haitao Q., (2009), Exact solutions for some oscillating flows of a second grade fluid with a 

fractional derivative model, Mathematics and Computer Modeling, 49 (7-8) 1519-1530.  

 [14] Shah N.A., Ilyas K., (2016), Heat transfer analysis in a second grade fluid over and oscillating vertical plate using 

fractional Caputo-Fabrizio derivatives, Eur Phys J C, 76(7) 1–11. 

 [15] Vieru D., Fetecau C., Corina F., (2015), Time fractional free convection flow near a vertical plate with Newtonian 

heating and mass discussion, Thermal Sciences,19  S85-598. 

 [16] Hussanan A., Ilyas K., Shafie S., (2013), An exact analysis of heat and mass transfer past a vertical plate with 

Newtonian heating, Journal of Applied Mathematics, Article ID: 434571. 

 [17] Hussanan A., Salleh M.Z., Tahar R.M., Ilyas. K, (2014), Unsteady boundary layer flow and heat transfer of a Casson 

fluid past an oscillating vertical plate with Newtonian heating, PloS One, 9 (10) (2014) e108763. 

 [18] Samiulhaq, K. Ilyas, F. Ali, S. Shafie, (2014), Free convection flow of a second-grade fluid with ramped wall 

temperature, Heat Transfer Research, 45(7) 579–588. 

 [19] Podlubny, I, (1999), Fractional Differential Equations. Academic Press, San Diego. 

 [20] Muzaffar Hussain Laghari, Kashif Ali Abro, Asif Ali Shaikh, Helical flows of fractional viscoelastic fluid in a 

circular pipe, International Journal of Advanced and Applied Sciences, 4(10) 97-105 (2017). 

 [21] Arshad Khan, Kashif Ali Abro, Asifa Tassaddiq, Ilyas Khan, Atangana-Baleanu and Caputo Fabrizio Analysis of 

Fractional Derivatives for Heat and Mass Transfer of Second Grade Fluids over a Vertical Plate: A Comparative 

study, Entropy, 19(8) 1-12, (2017).  

 

95 


