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ABSTRACT 

 

Theoretical and computational study for the magnetohydrodynamic flow of Casson fluids past a stretching inclined 

plate is considered to examine the effects of chemical diffusion and buoyancy. The governing equations of the 

problem are finally obtained in the ordinary differential form by employing similarity function which are than 

solved by a using straight forward and efficient coding in computational software Mathematica 11. An extensive 

computational work has been carried out to evaluate the effect of the pertinent parameters of the study to reveal the 

physical insight of the problem. Graphical patterns for velocity, chemical species concentration and heat function are 

presented for representative values of parameters of importance. 

KEYWORDS: Computational Study, Chemical diffusion, Differential form , Casson fluids, magnetohydrodynamic 

flow. 

 

1. INTRODUCTION 

 

Non-Newtonian fluid flow arises in many diciplins of material processing and chemical engineering. There are 

different kinds of non-Newton fluids like  power-law fluid and viscoelastic fluid etc. In addition, there is another 

non-Newtonian fluid model i.e. Casson fluid model., it is generally claimed that, the Casson model is better than the  

visco plastic models in fitting the rheological data. The influence of thermal radiation and chemical reaction on 

micro polar fluid flow in a rotating frame was discussed by Das [1] and concluded that an increase in the volume 

fraction of nano particles enhances the velocity profiles. Hayat et al. [2] discussed the cross diffusion effects on 

MHD  flow of Casson fluid. Rashidi et al. [3] analytically discussed the flow due to a rotating disk in a porous 

medium and used homotopy analysis method (HAM). The effects of radiation on free convective flow of  

nanofluids, due to an infinite plate was considered by Sandeep et al. [4]. Further Sandeep and Sugunamma [5] 

discussed the effect of inclined magnetic force field on dusty viscous fluid. Nandy [6] studied the heat transfer for  

MHD flow of Casson fluid flow over a stretching sheet. Sandeep and Sugunamma [7] studied the radiation effects  

for inclined magnetic field  for natural convection flow.The effects of chemical reaction on MHD flow near an 

expanding sheet with heat generation were investigated by Mohan krishna et al. [8]. Nandeppanavar [9-11] studied 

the heat transfer analysis of Casson fluids. Attia and Ahmed[12] examined the transient Coutte flow analysis of 

Casson fluid. Bhattacharyya et.al.[13] analyzed magnetohydrodynamic boundary layer flow of Casson fluid with 

wall mass transfer. Swati [14] observed the effect of  radiation on the flow of Casson fluid over an unsteady 

stretching permeable sheet. Shehzad et.al.[15] considered chemical reaction magnetohydrodyanamic flow of Casson 

fluid. A comparative study has been done by Sandeep et al. [16] to analyze the heat and mass transfer for nanofluid 

past a permeable stretching surface. Raju et al. [17] discussed the effects of thermal diffusion on the flow over a 

stretching surface with inclined magnetic field. Very recently, the researchers [18-22] investigated the heat and mass 

transfer of non-Newtonian and Newtonian flows by considering various channels. Hassan et al [24] worked at 

chemical diffusion and radiative heat transfer heat transfer effects on magnetohydrodynamics stagnation oint flow of 

Casson fluid over a porous shrinking sheet. Recently, Hassan et al and Nadeem et al  [25-26] investigated the 

unsteady magnetic hydrodynamic (MHD) stagnation point flow of Casson fluids with radiation heat transfer has 

been investigated. The fluid flows past porous shrinking sheet. Recently, Hassan et al [27-29] worked on the thermal 

effects in magnetohydrodynamics (MHD) stagnation point flow of Casson fluids over a flat stretching/shrinking 

sheet. 
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2. MATHEMATICAL ANALYSIS 
 

The steady incompressible and two dimensional flow of Casson fluid is considered in the presence of uniform 

magnetic field of strength 0B .The flow of fluid is due to a vertical sheet inclined at an angle γ . The sheet is  porous 

and stretches /shrinks. The fluid velocity components are u and v respectively in x and y directions.The temperature 

and velocity in the external flow are respectively T∞  and U.The temperature at the surface of sheet is wT  and the 

fluid temperature is T. The fluid flows through a porous medium of permeability 1K . The concentration of chemical 

diffusion is C,where concentration of species in the external flow in C∞ .     

 
Figure 1: Flow Geometry 

 

Under the above assumptions the equations governing the problems are: 
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Where β  is the Casson parameter, 
µ

υ
ρ

=   is kinematic  viscosity, µ  is the coefficient of fluid viscosity, ρ is the 

fluid density eσ is the electrical conductivity, 
1

K is the permeability of the porous medium, 
*β is the coefficient of 

thermal expansion, C
p

is the specific heat capacity at constant pressure, α is thermal diffusivity. The non-uniform heat 

generated or absorbed per unit volume is taken as 
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Where A* and B* are parameters of space-dependent and temperature-dependent heat generation/absorption. A* 

and B* are  positive in case of internal heat source and negative in the case of internal heat sink. Thus qm >0 in the 
case of heat generation; it is negative in the case of heat absorption. 

The boundary conditions are: 
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The continuity equation (1) is identically satisfied by introducing a stream function  
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Substituting the above appropriate relation in equations (2), (3) and (4) we get  
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=  is the Prandtl number, 
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solutal. Sc
D

υ
= Schmidt number, S is the suction parameter and c is stretching/shrinking parameter.  

3. RESULTS AND DISCUSSION 

 

The resulting set of governing equations (8) to (11) is nonlinear in higher order. It is hard to find any analytical 
solution of this system of equations. Thus a numerical treatment of the situation has been employed to obtain a 

reliable solution of the problem. The higher order derivatives have been reduced to their first order form. We take 

uf ='
, vu ='

, 
' wθ = , g='φ Thus the resulting system of first order equations is as follows: 
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Fig.2 shows that velocity ( )f η′ is enhanced in magnitude with increase in the value of parameter M. But the 

flow slows down as the magnitude of  ( )f η′  decreases with increase in 
r

P as depicted in fig. 3. Increase in the 

magnitude of ( )f η′  is observed in increasing the values of K as shown in fig 4. 
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The mixed convection parameter λ implies small increasing effect on velocity ( )f η′ as demonstrated in fig.5. 

The parameter c has significant increasing effect on ( )f η′ as shown in fig.6. The Casson parameter β  also has 

increasing effect on ( )f η′  as presented in fig.7. Fig. 8 depicts the effect of inclination of the plate on ( )f η′ .  

Fig.9 maps the temperature function under the effect of Pr. Fig.10 and fig.11 shows that the increase in the value of 

magnetic parameter M and porosity parameter K have small decreasing effects on temperature function ( )θ η . 

Fig.12 shows that the temperature distribution increases with increase in values of shrinking parameter but decreases 

with increase in the values of stretching parameter. 

The increase in the value of Casson parameter reduces heat distribution as shown in fig.13. 

The heat distribution on ( )θ η increases with increase in the values of parameter 
*A and 

*B as depicted in fig.14 

and fig.15 respectively. 

Fig.16 depicts the effect of Schmidt number cS  on ( )φ η . It is noted that ( )φ η decreases with increase in the 

values of cS . But fig.17. shows that ( )φ η increases with increase in the values of parameter of R. 
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Fig.2: The plot for curves of f ′ under the effect of 

magnetic parameter M when  S=1, 

c=−0.1,   Pr=1,   K=0.1,  A*=B*=0.05,  β=2, Sc=0.1, γ 

=0.1, λ=0.2 and α =π/4. 
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Fig.3: The plot for curves of f ′ under the effect of 

Prandtl number Pr when  S=1, c=−0.1, M=0.1, K=0.1, 

A*=B*=0.05, β=2, Sc=0.1, γ =0.1, λ=0.2 and α =π/4. 
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Fig.4: The plot for curves of f ′ under the effect of 

parameter K when  S=1, c=−0.1,  Pr =1, M=0.1, 

A*=B*=0.05, β=2, Sc=0.1, γ =0.1, λ=0.2 and α =π/4. 
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Fig.5: The plot for curves of f ′ under the effect of 

parameter λ  when  S=1, c=−0.1,  Pr =1, M=0.1, 

A*=B*=0.05, β=2, Sc=0.1, γ =0.1, K=0.1 and α =π/4. 
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Fig.6: The plot for curves of f ′ under the effect of 

parameter c  when  S=1, K=0.1,  Pr =1, M=0.1, 

A*=B*=0.05, β=2, Sc=0.1, γ =0.1, λ =0.1 and α =π/4. 
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Fig.7: The plot for curves of f ′ under the effect of 

parameter β  when  S=1, K=0.1,  Pr =1, M=0.1, 

c=−0.1, A*=B*=0.05, Sc=0.1, γ =0.1, λ =0.1 and α 

=π/4. 
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Fig.8: The plot for curves of f ′ under the effect of 

parameter α when  S=1, K=0.1,  Pr =1, M=0.1, 

c=−0.1, A*=B*=0.05, Sc=0.1, γ =0.1, λ =0.1 and β =2 
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Fig.9: The plot for curves of θ under the effect of 

Prandtl number Pr when  S=1, c=−0.1, M=0.1, K=0.1, 

A*=B*=0.05, β=2, Sc=0.1, γ =0.1, λ=0.2 and α =π/4. 
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Fig.10: The plot for curves of θ under the effect of 

magnetic parameter M when  S=1, 

c=−0.1,  Pr=1,  K=0.1,  A*=B*=0.05, β=2, Sc=0.1, γ 

=0.1, λ=0.2 and α =π/4. 
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Fig.11: The plot for curves of θ under the effect of 

parameter K when  S=1, c=−0.1,  Pr =1, M=0.1, 

A*=B*=0.05, β=2, Sc=0.1, γ =0.1, λ=0.2 and α =π/4. 
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Fig.12: The plot for curves of θ under the effect of 

parameter c  when  S=1, K=0.1,  Pr =1, M=0.1, 
A*=B*=0.05, β=2, Sc=0.1, γ =0.1, λ =0.1 and α =π/4. 
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Fig.13: The plot for curves of θ under the effect of 

parameter β  when  S=1, K=0.1,  Pr =1, M=0.1, 

c=−0.1, A*=B*=0.05, Sc=0.1, γ =0.1, λ =0.1 and α 

=π/4. 
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Fig.14: The plot for curves of θ under the effect of 

parameter B*  when  S=1, K=0.1,  Pr =1, M=0.1, 

c=−0.1, A*=0.05, Sc=0.1, γ =0.1, β=2, λ =0.1 and α 

=π/4. 
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Fig.15: The plot for curves of θ under the effect of 

parameter A*  when  S=1, K=0.1,  Pr =1, M=0.1, 

c=−0.1, B*=0.05, Sc=0.1, γ =0.1, β=2, λ =0.1 and α =π/4. 
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Fig.16: The plot for curves of φ  under the effect of 

Schmidt number cS   when  S=1, K=0.1,  

Pr =1, M=0.1, c=−0.1,  A*=B*=0.05, γ =0.1, β=2, λ 
=0.1 and α =π/4. 
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Fig.17: The plot for curves of φ  under the effect of 

of Solutal number γ  when  S=1, K=0.1,  

Pr =1, M=0.1, c=−0.1,  A*=B*=0.05, Sc=0.1, β=2, λ 

=0.1 and α =π/4. 
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