
 

   J. Appl. Environ. Biol. Sci., 5(8)85-97, 2015 

© 2015, TextRoad Publication 

ISSN: 2090-4274 

Journal of Applied Environmental  

and Biological Sciences 

www.textroad.com 

 

*Corresponding Author: Fazal Ghaffar, Department of Mathematics, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, 

Pakistan 

Multigrid Method Based on Transformation Free Higher Order Scheme for 

Solving 3D Helmholtz Equation on Nonuniform Grids 
 

Fazal Ghaffar1, S. Islam1, Noor Badshah2 

 

1Department of Mathematics, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan 
2Department of Basic Sciences and Islamiat, University of Engineering and Technology, Peshawar, Khyber 

Pakhtunkhwa, Pakistan 
Received: April 9, 2015 

Accepted: June 25, 2015 

ABSTRACT 

 

Higher-order compact difference schemes can achieve higher order accuracy on uniform grids. However, in some cases 

these may not achieve the desired accuracy. Therefore, this paper proposes a multigrid method based on higher-order 

compact difference scheme for 3D Helmholtz equation on nonuniform grids. Interpolation and restriction operators are 

designed accordingly. The suggested scheme has up to third to fourth order accuracy. Lastly, some numerical examples 

are presented in order to show the accuracy and performance of the considered scheme. 

KEYWORDS: Helmholtz equation, Compact iterative schemes, Multigrid method, Non uniform grids.  

 

1. INTRODUCTION 

 

Two and three dimensional elliptic PDEs play a pivotal role in different fields of science and technology. Higher 

order compact schemes (HOC) are used for the solution of Helmholtz equation and other elliptic PDEs [3, 24]. The 

three-dimensional (3D) Helmholtz equation is consider  

 
2

( , , ), ( , , ) ,
xx yy zz

u u u u f x y z x y z+ + + = ∈Ωl  (1) 

where Ω  is a cubic domain and k is a wave number. The forcing function f(x, y, z) and the solution u(x, y, z) have 

the required continuous differentiability up to a specific order. Helmholtz equation has many real world applications 

like elasticity, electromagnetic waves, acoustic wave scattering, weather and climate prediction, water wave 

propagation, noise reduction in silencers and radar scattering. In this paper, we use a finite difference approximation on 

nonuniform grids in discrete domain to obtain a scheme up to fourth order accuracy. We also considered Helmholtz 

equation with constant value of k. The discretized form of equation (1) is  
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Equation (1) has been solved by different techniques such as finite-difference method (FDM) [22], fast Fourier 

transform- based (FFT) methods [15], finite element method (FEM) [14], the spectral-element method [18], compact 

finite-difference method [19] and multigrid methods [1]. Multigrid method based on HOC schemes is among the most 

efficient iterative technique for solving PDEs [12, 30].  

In FDM the number of mesh points will be enlarged to increase the accuracy however, it will also increase the 

computational time. Helmholtz equation is solved by FEM and spectral-element method, but the limitations of these 

methods are of high computational cost [18]. Many iterative techniques for Helmholtz equation suffer due to their slow 

convergence. The investigation for fast iterative methods to achieve higher order accuracy for PDEs is more attractive a 

area of research. 

Multigird method together with the HOC schemes on uniform grids are developed in [9,10 ,11 ,30]. In most cases, 

when sudden changes occur in a flow, the step sizes have to be rectified over the entire domain. Under these situations, 

where points are concentrated in the regions of sharp variation local mesh refinement procedures [3, 1, 4, 16, 25, 32] 

are necessary, thus dramatically reducing the computational time and computer storage. Cao and Ge developed a 

multigrid method with HOC scheme on nonuniform grids for solving 2D convection diffusion equation [4]. This paper 

is based on approach that an interpolation operator and a projection operator that are suited for HOC scheme using 

nonuniform mesh is represented by transformation-free HOC scheme on nonuniform grids. The main focus in this 

paper is to develop multigrid method based on HOC scheme on nonuniform grids for solving of 3D Helmholtz 

equation. To the best of our knowledge 3D Helmholtz equation is not solved by multigrid method based on HOC 

scheme on nonuniform grids.  
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2 Mathematical formulation 

Consider a cubic domain
1 2 1 2 1 2

( , , ) [ , ] [ , ] [ , ]x y z a a b b c c∈ × × . Discretization is performed on a 

three-dimensional nonuniform girds points. The above intervals [a
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Also for y-direction, 
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Furthermore, we define, 
x

α ,
x

β ,
x

γ  as x fx bxα θ θ= , x fx bxβ θ θ= + and x fx fxγ θ θ= − .     

Similarly, yα , yβ , 
y

γ  and 
z

α , 
z

β , 
z

γ  can be find accordingly for y and z directions. If      

1( , , )fx bx fx bx fy by fz bzh h h h h hθ θ= = = = =  then the grids turn to be uniform. The approximate value of a function 

u(x, y, z) at the interior grids points (x
i
,y
j
,z
k
) is represented by u

0
 and the approximate values of other twenty six (26) 

nearest grid points are determined by 
i
u , i=1,2,3,...,26, as in Fig. 1(b). 

  

 
Figure 1: (a) Non uniform grids distribution in xy-plane.       (b) Stencil of nonuniform 3D grids. 

 

Taylor series expansion is performed for appropriate description of sufficient smooth function u(x,y,z) in the given 

domain at points 1 and 3 are 
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Multiplying equation (3) by 
bx
θ  and equation (4) by fxθ , then adding and solving for the second derivative which 

gives  
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in equation (5) 
4 2

5 ( )x x x x xη β α β α= − − , hence the second order central difference operator along x− direction is 

defined as  
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if 1fx bxθ θ= = , equation (6) reduces to uniform grids of central difference operator. Therefore, the second order 

derivative for x direction is 
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The approximation of the second order derivative for the variables y and z can be finding accordingly. Therefore, the 

central difference scheme for Helmholtz equation can be discretized as 
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 is the truncation error and is defined as  
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If 
0

τ  is dropp off from equation (8), the central difference scheme (CDS) for nonuniform grids will be  
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In above equation (11) only seven grids points are involved. From the definition of 
0

τ , it is observed that when 

h
fx

=h
bx

, h
fy

=h
by

 and h
fz

=h
bz

, then equation (11) is of third order accuracy. In order to improve the order of accuracy 

we consider  
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Through central difference schemes the first order and second order derivative in equations (Error! Reference 

source not found.) and (13) can be approximated. Now combining equations (8) and (Error! Reference source not 

found.) with equations (Error! Reference source not found.) and (13), the nineteen point HOC scheme on 

nonuniform mesh points for the three dimensional Helmholtz equation (1) can be written as  
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The coefficients on the LHS in equation (14) are given as 
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It is easier to know that this scheme has fourth order of accuracy from expansion of t
0

. Under uniform grids 

distribution the scheme has four to fifth order accuracy as proposed by [5, 8, 9].  

 

3 Multigrid method 

Multigrid method is one of the most efficient and fastest methods for solving PDEs. In multigrid method the rate 

of convergence is independent of the mesh size. This method is more effective for solving large scale of sparse linear 

systems obtained from the discretization of elliptic PDEs [1, 6, 12, 29, 31]. The main principle of multigrid method is 

to smooth the error on coarse grid level using basic iterative methods such as Jacobi or Gauss-Seidel method, etc. 

Multigrid method consists of three important components that are relaxation, restriction and interpolation operators. 

These are applied as “ a single iteration of multigrid cycle comprised of manipulating the error by the application of 

relaxation method, fixing the residuals on the coarse grid level, solving the error equation on the coarse grid and 

adjusting the correction of coarse grid up to the fine grid level”. 

Some specific methods have been applied for the solution of 2D and 3D Helmholtz equation with HOC schemes 

on uniform grids [3, 9, 10, 14, 19, 22, 24]. A full weighting restriction operator and the standard bilinear interpolation 

operator are used as the inter grid transfer operators. But in case of nonuniform grids these restriction and interpolation 

operators are quite different. 

 

3.1 Restriction operator 

The principle of developing restriction operator is based on the evaluation of the residuals on the coarse grid level 

with the use of residuals on the fine grid level. In multigrid method Liu developed a law for the restriction of the 

residual [17], known as area law. 

For every point on the coarse grid level, there are corresponding twenty six (26) fine grid points surrounding it. 

On coarse grid, there is a contribution of different degree between the reference grid points and the corresponding 

surrounding grid points on the fine grids; a full weighting restriction operator for nonuniform grids is constructed on 

the base of volume law. We have shown these points for convenience in Fig. 1(b). The basic idea for getting the full 

weighting restriction operator of each grid points is to analyze the weighting coefficients of the residuals. On the coarse 

grids the reference point (i, j, k) of the fine grids have the major contribution to it, so the corresponding weighting 

coefficient is evaluated by V
0
/V. At that instant we noticed that the grid points near the reference point (I, j, k) have 

much more contributions than those far away from it. For instance, the weighting coefficient of the point (i+1, j, k) is 

given by V
3

/V and the point (i−1, j, k) by V
1
/V and so on. Now suppose that r

ijk
 is the residual at the fine grid point 

(i, j, k) and 
, ,i j k

r  is the corresponding residual at the coarse grid point (  i  ,  j  ,  k  ) . It is very simple to know 

that 2i i= , 2j j=  and 2k k=  thus the full weighting restriction operator on nonuniform grids can be written as  
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0 , , 1 1, , 2 , 1, 3 1, , 4 , 1, 5 , , 1,

6 , , 1 7 1, 1, 8 1, 1, 9 1, 1,

10 1, 1, 11 1, , 1 12 , 1, 1 13 1, , 1 14 , 1, 1

15 1,

1 ( i j k i j k i j k i j k i j k i j ki j

i j k i j k i j k i j k

i j k i j k i j k i j k i j k

i

r V r V r V r V r V r V r
V

V r V r V r V r

V r V r V r V r V r

V r

− − + + −

+ − − + − + +

− + − − − − + − + −

−

= + + + + +

+ + + +

+ + + + +

+
, 1 16 , 1, 1 17 1, , 1 18 , 1, 1

19 1, 1, 1 20 1, 1, 1 21 1, 1, 1 22 1, 1, 1

23 1, 1, 1 24 1, 1, 1

25 1, 1, 1 26 1, 1, 1
,)

j k i j k i j k i j k

i j k i j k i j k i j k

i j k i j k

i j k i j k

V r V r V r

V r V r V r V r

V r V r

V r V r

+ − + + + + +

− − − + − − + + − − + −

− − + + − +

+ + + − + +

+ + +

+ + + +

+ +

+ +

  (15) 

In which  

 

0

1
( ) ( ) ( ), ( ) ( ) ( ),

8
fx bx fy by fz bz fx bx fy by fz bzV h h h h h h V h h h h h h= + × + × + = + × + × +  

1 2

1 1
( ( ) ( )), ( ( ) ( )),

8 8
fx fy by fz bz fy fx bx fz bzV h h h h h V h h h h h= × + × + = × + × +  

3 4

1 1
( ( ) ( )), ( ( ) ( )),

8 8
bx fy by fz bz by fx bx fz bzV h h h h h V h h h h h= × + × + = × + × +  

5 6

1 1
( ( ) ( )), ( ( ) ( )),

8 8
fz fx bx fy by bz fx bx fy byV h h h h h V h h h h h= × + × + = × + × +  

7 8

1 1
( ( )), ( ( )),

8 8
fx fy fz bz bx fy fz bzV h h h h V h h h h= × × + = × × +  

9 10

1 1
( ( )), ( ( )),

8 8
bx by fz by fx by fz bzV h h h h V h h h h= × × + = × × +  

11 12

1 1
( ( )), ( ( )),

8 8
fx fz fy by fy fz fx bxV h h h h V h h h h= × × + = × × +  

13 14

1 1
( ( )), ( ( )),

8 8
bx fz fy by by fz fx bxV h h h h V h h h h= × × + = × × +  

15 16

1 1
( ( )), ( ( )),

8 8
fx bz fy by fy bz fx bxV h h h h V h h h h= × × + = × × +  

17 18

1 1
( ( )), ( ( )),

8 8
bx bz fy by by bz fx bxV h h h h V h h h h= × × + = × × +  

19 20 21

1 1 1
( ), ( ), ( ),

8 8 8
fx fy fz bx fy fz bx by fzV h h h V h h h V h h h= × × = × × = × ×  

22 23 24

1 1 1
( ), ( ), ( ),

8 8 8
fx by fz fx fy bz bx fy bzV h h h V h h h V h h h= × × = × × = × ×  

25 26

1 1
( ), ( ),

8 8
bx by bz fx by bzV h h h V h h h= × × = × ×  

If the step sizes reduce to equal size, then the whole volume V is divided into sixty-four equally small parts by the 

grid lines and half gird lines. Consider the Area of each part is ‘ V ’, we obtain that 8V V
0
= , 

1 2 6
... 4V V V V= = = = , 

7 8 18
... 2V V V V= = = =  and 

19 20 26
...V V V V= = = = . Due to this situation, the 

restriction operator will get reduced to the full weighting operator on equal mesh sizes [28].  
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, , 1, , 1, , , 1, , 1, , , 1 , , 1 1, 1, 1, 1, 1, 1, 1, 1,,

, 1, 1 , 1, 1 , 1, 1 , 1, 1 1, , 1 1, , 1 1, , 1

1
[8 4( ) 2(

64
i j k i j k i j k i j k i j k i j k i j k i j k i j k i j k i j ki j

i j k i j k i j k i j k i j k i j k i j k i

r r r r r r r r r r r r

r r r r r r r r

− + + − + − + + − + + − − −

+ − + + − − − + + − + + − − −

= + + + + + + + + + +

+ + + + + + + +
1, , 1 1, 1, 1 1, 1, 1

1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1

) (

)].

j k i j k i j k

i j k i j k i j k i j k i j k i j k

r r

r r r r r r

+ + + − − + +

+ − − − − − + + + − + − + − + − − +

+ +

+ + + + + +

 

3.2 Interpolation operator 

Similar strategy is used for constructing the interpolation operator. We observed that when grid points are shifted 

from coarse level to the fine level, at that instant the grids points on the coarse level are the grid points on fine level. 

These grid points are shifted directly from the coarse grid level to the fine grid level. Interpolation operator is expressed 

as 
, ,i j ki j kr r

, ,

= . Thus, the points on the fine grid are interpolated with their own neighboring points on the coarse 

level. The formula for error correction along x-, y- and z - directions are interpolated as  

 

1, , , , , 1, , , , , 1 , ,

1, , , 1, , , 1

( ) ( ) ( )
, , .

fx bx fy by fz bzi j k i j k i j k i j k i j k i j k

i j k i j k i j k

fx bx fy by fz bz

h r h r h r h r h r h r
r r r

h h h h h h

− − −

− − −

+ + +

= = =

+ + +

 

 

In case of central grid points as in Fig.3(a), we use four grid points around them on the coarse grids to interpolate 

as following  

 

1, 1, 1 2 3 41, 1, , 1, , , 1, ,

1
,( )i j k xy xy xy xyi j k i j k i j k i j k

xy

r S r S r S r S r
S

− − − − − −

= + + +  

 

, 1, 1 1 2 3 4, 1, 1 , , 1 , , , 1,

1
,( )i j k yz yz yz yzi j k i j k i j k i j k

yz

r S r S r S r S r
S

− − − − − −

= + + +  

 

1, , 1 1 2 3 41, , 1 , , 1 , , 1, ,

1
,( )i j k xz xz xz xzi j k i j k i j k i j k

xz

r S r S r S r S r
S

− − − − − −

= + + +  

In which  

 

( ) ( ), ( ) ( ),xy fx bx fy by yz fy by fz bzS h h h h S h h h h= + × + = + × +  

 

1 2 3
( ) ( ), , , ,xz fx bx fz bz xy fx fy xy bx fy xy bx byS h h h h S h h S h h S h h= + × + = × = × = ×  

 

4 1 2 3 4
, , , , ,xy fx by yz fy fz yz by fz yz by bz yz fy bzS h h S h h S h h S h h S h h= × = × = × = × = ×  

  

1 2 3 4
, , , .xz fx fz xz bx fz xz bx bz xz fx bzS h h S h h S h h S h h= × = × = × = ×  

 

We use eight grids points around the central points in odd planes as in Fig. 3(b) on the coarse grids to make average as  

1, 1, 1 1 2 3 4 5 6 7 81, 1, 1 , 1, 1 , , 1 1, , 1 1, 1, , 1, , , 1, ,

1
,( )i j k i j k i j k i j k i j k i j k i j k i j k i j k

r V r V r V r V r V r V r V r V r
V

− − − − − − − − − − − − − − −

= + + + + + + +
% % % % % % % %

%

  

where iV %  for i=1,2,...,8, is the volume designed by all the grid lines around the reference points (i−1, j−1, k−1). V %  

is the total volume of iV %  for i=1,2,...,8, the formula for its calculation is 

 

1
( ) ( ) ( ), ,fx bx fy by fz bz fx fy fzV h h h h h h V h h h= + × + × + = × ×% %  

 

2 3 4
, , ,bx fy fz bx by fz fx by fzV h h h V h h h V h h h= × × = × × = × ×% % %  

 

5 6 7
, , ,fx fy bz bx fy bz bx by bzV h h h V h h h V h h h= × × = × × = × ×% % %  
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8

.fx by bzV h h h= × ×%  

When the grid spacing reduced to equal space, then the interpolation operator reduces to the trilinear interpolation 

on equal step sizes [28].  

 

1, 1, 1 1 2 3 4 5 6 7 81, 1, 1 , 1, 1 , , 1 1, , 1 1, 1, , 1, , , 1, ,

1
,( )i j k i j k i j k i j k i j k i j k i j k i j k i j k

r V r V r V r V r V r V r V r V r
V

− − − − − − − − − − − − − − −

= + + + + + + +
% % % % % % % %

%

, , 1 1, 1,, , 1 , , 1, 1, , 1, , , 1, ,

1 1
( ), ( ),

2 4
i j k i j ki j k i j k i j k i j k i j k i j k
r r r r r r r r

− − −− − − − −

= + = + + +  

, 1, 1 1, , 1, 1, 1 , , 1 , 1, 1, , 1 , , 1 , , 1, ,, ,

1 1
( ), ( ),

4 4
i j k i j ki j k i j k i j k i j k i j k i j k i j ki j k
r r r r r r r r r r

− − − −− − − − − − − −

= + + + = + + +  

1, 1, 1 1, 1, 1 , 1, 1 , , 1 1, , 1 1, 1, , 1, , , 1, ,

1
( ),

8
i j k i j k i j k i j k i j k i j k i j k i j k i j k
r r r r r r r r r
− − − − − − − − − − − − − − −

= + + + + + + +   

 

3.3 Relaxation operator (Smoother) 

In multigrid method, relaxation operator is an important operator. Its work is not to remove the errors, but to damp 

the high frequency components of the errors on the present grid level. Simple smoother (Gauss-Seidel relaxations) 

method can efficiently remove the errors in all directions for simple isotropic problems [18, 29], but in case of 

anisotropic and boundary layers problems, line Gauss-Seidel [6, 31] and alternating line Gauss-Seidel method [4, 7, 21, 

33] are shown more robust smoothers. Plane relaxation is another efficient smoother which simultaneously updated all 

the grid points in a plane [20, 27]. 

 

4 Numerical experiments 

To show the effectiveness of the considered schemes, we give some problems. V-cycle multigrid method is used 

with zero initial guess and the process is stopped when the Euclidean norm of the residual vector is reduced by 10
-10

 

on the finest grid level. The effectiveness of multigrid method with HOC scheme and CD scheme (11) is presented. 

The reported errors are the maximum absolute errors between the computed solution and the exact solution on finest 

grid. The order of accuracy for a difference scheme is defined as,  

 Order=log
2

 

Error(N
1

)

Error(N
2

)
, 

where Error(N
1
) and Error(N

2
) are maximum absolute errors approximated for two different grids with N

1
+1 and 

N
2
+1 points in both directions while N

1
 is half of N

2
. 

Example 1 Consider the following elliptic PDE with the source term  

 
2

( , , ), 0 1, 0 1,
xx yy zz

u u u k u f x y z x y+ + + = < < < <  (16) 

 

 
2 4 100 100( , , ) ( 10 )[ (1 ) (1 )] 200 ,x xf x y z k e y y x z z e− −

= + − − − +  (17) 

the boundary conditions and the source function are given by the analytic solution, that is  

 

 
100( , , ) [ (1 ) ( 1)].x

u x y z e y y x z z
−

= − − − −  

The above problem has a steep boundary layer along x=0; therefore, we are using nonuniform grids along x- axis 

which are accumulating near x=0 and uniform grids along y,z -axis with the following stretching function [23],  

 x
i
= 

i

N
x
+ 

l

p
sin( 

pi

N
x
),    y

j
= 

j

N
y
,    z

k
= 

k

N
z

 

where λ is a stretching parameter and controlling the tightness of the grid points in x- direction. When λ<0, then 

more grid points are accumulated to the boundary x=0 and the boundary x=1 for λ>0. If λ=0 , then the grids reduce to 

be uniform. Also when the grid points are 32
2
 and λ=0.8, then the distribution of grids in xy -plane is shown as in Fig. 

1(a). The estimated accuracy and maximum absolute error with different stretching parameter λ is presented in Table 1. 

When λ=0, then the results are very poor. More accurate solution and order of convergence is obtained from HOC 

schemes with decreasing stretching parameter λ in nonuniform grids. We observed that when λ=0.8, the solution 

obtained with HOC schemes is more accurate, but when λ is decreases continuously to -0.9, then the accuracy does not 

further increase. This situation is not wondering because putting more grids in the boundary layer area that will 

necessarily cause lack of mesh points in the other regions in domain. indicates the configuration of solution in xy-plane 
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with y=0.5, (a) shows the exact solution, (b) solution obtained from HOC scheme on uniform grids, (c) HOC scheme 

nonuniform grids, (d) computed solution with CDS scheme non uniform grids. 

 
Figure 2:  (a) Exact solution.      (b) Computed solution from HOC scheme on uniform grids.      (c) HOC scheme 

nonuniform grids.    (d) CDS scheme with non uniform grids. The error vector 
ij ij ij
e u v= −  and N=32 are the 

number of nodes and k=10 and λ=0.8, for example 1. 

 

Table 1. Comparison of maximum absolute errors, CPU timing and order of accuracy of the two 

schemes for example 1, 
2

|| ||e , k=10, N=16,32,64,128 .  
 

 N   λ  2
16  2

32  
2

64  
2

128  CPU(seconds) Order 

     0.0 

     0.2 

     0.4 

CDS  0.6 

    0.8     

   0.9 

1
7.8052e

−

 
1

5.4212e
−

 
1

1.1184e
−

 
2

7.8100e
−

 
2

4.8327e
−

 
3

8.4346e
−

 

1
6.9881e

−

 
1

1.1012e
−

 
2

7.1572e
−

 
2

3.9180e
−

 
3

6.1500e
−

 
3

6.1984e
−

 

1
4.9012e

−

 
2

7.1100e
−

 
2

3.8067e
−

 
3

5.8733e
−

 
3

1.9150e
−

 
4

6.8769e
−

 

2
5.4880e

−

 
3

6.3876e
−

 
3

1.0695e
−

 
4

8.3434e
−

 
4

1.8422e
−

 
5

8.5500e
−

 

0.590  

1.500  

1.610  

1.980  

2.430  

3.600  

1.88  

1.98  

1.99  

2.20  

2.60  

3.00  

        0.0  

        0.2  

HOC  0.4−  

      0.6−  

       0.8−  

      0.9−  

1
4.8322e

−

 
2

16.3118e
−

 
2

7.8711e
−

 
2

3.8237e
−

 
3

8.6227e
−

 
3

9.8844e
−

 

2
3.6630e

−

 
3

9.8861e
−

 
3

2.6821e
−

 
3

6.8582e
−

 
4

3.8117e
−

 
4

6.5600e
−

 

2
4.4090e

−

 
3

6.3039e
−

 
3

2.1025e
−

 
4

8.8101e
−

 
4

1.6056e
−

 
5

7.4371e
−

 

4
7.1218e

−

 
5

8.8812e
−

 
5

1.0080e
−

 
6

6.5230e
−

 
7

5.4452e
−

 
7

9.4331e
−

 

0.610  

0.700  

1.840  

2.800  

3.220  

4.350  

2.95  

3.10  

3.84  

3.95  

4.00  

4.25  

  

Example 2 Consider the PDE with a source term f(x, y),  
 

 
2

( , , ), 0 , , 1,
xx yy zz

u u u k u f x y z x y z+ + + = < <  (18) 

with the analytic solution is  

 

100( 1) 100( 1) 100( 1)

100 3

(1 )(1 )(1 )
( , , ) .

(1 )

x y z
e e e

u x y z
e

− − −

−

− − −

=

−

 

The source function is given by the analytic solution with the boundary layers along x=1, y=1 and z=1. Hence a 

nonuniform grids along both directions with accumulation near x=1, y=1 and z=1 is used by the following stretching 

formula 
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 ( ), ( ), ( ).i j k

x x y y z z

i i j j k k
x sin y sin z sin

N N N N N N

λ π λ π λ π

π π π
= + = + = +  

When λ is going closer to 1, more grids are accumulated near x=1, y=1. When the grids size is 32
2
 and λ=0.8, the 

distribution of grids is given as Fig. 5. Table 2 indicates the maximum absolute errors CPU timing and order of 

accuracy for different stretching parameter λ, for example 2. The value of λ changes from 0.0 to 0.9. We observed that 

in nonuniform grids with increasing the stretching parameter λ, more and more grids are accumulating into the 

boundary layers; consequently more accurate results are obtained from two different methods. Also the rate of 

convergence is continuously increases with the increase of λ. We observed that when λ=0.8, then considerably most 

accurate solution is obtained with the HOC scheme, but when λ is increased to 0.9, it leads to decrease in accuracy. Fig. 

6 shows depicts contours of the exact solution in the plane for y=0.688. (a) Exact solution (b) by HOC on uniform 

grids, (c) computed solution by the CDS scheme on uniform grids, (d) solution by HOC on nonuniform grids with 

λ=0.8.  

 
Figure 3: (a) Exact solution.   (b) Computed solution by HOC scheme on uniform grids. 

(c) CDS  scheme on uniform grids (d) HOC scheme on nonuniform grids, 32
2

, λ=0.8. 

 

Table 2. Comparison of maximum absolute errors, CPU timing and order of accuracy of the two schemes for example 

2, 
2

|| ||e , k=10, N=16,32,64,128. 

 N   λ  2
16  2

32  
2

64  
2

128  CPU(second) Order 

     0.0 

     0.2 

     0.4 

CDS  0.6 

    0.8     

    0.9 

2
5.2002e

−

 
2

3.4421e
−

 
2

2.5541e
−

 
2

1.1983e
−

 
3

5.1287e
−

 
4

2.4566e
−

 

2
4.8890e

−

 
2

2.2213e
−

 
2

1.7002e
−

 
3

7.2100e
−

 
3

1.9520e
−

 
4

1.5424e
−

 

2
3.2290e

−

 
2

1.1180e
−

 
2

1.1040e
−

 
3

4.1033e
−

 
5

7.1530e
−

 
6

7.8900e
−

 

3
7.1098e

−

 
3

5.3112e
−

 
4

3.1255e
−

 
5

6.1043e
−

 
5

1.6054e
−

 
6

2.6041e
−

 

0.109  

0.155  

0.161  

0.880  

2.221  

2.233  

1.44  

1.82  

1.98  

2.44  

2.88  

3.87  

       0.0  

       0.2  

HOC  0.4  

       0.6  

       0.8  

       0.9  

2
4.2122e

−

 
2

1.1218e
−

 
3

9.7110e
−

 
4

3.9328e
−

 
5

3.7022e
−

 
5

3.8844e
−

 

3
3.3211e

−

 
3

1.6601e
−

 
4

6.1218e
−

 
5

4.1155e
−

 
6

1.8676e
−

 
6

2.8600e
−

 

4
7.4412e

−

 
4

6.3318e
−

 
5

3.6152e
−

 
6

2.6001e
−

 
7

5.2260e
−

 
7

8.7210e
−

 

4
5.8234e

−

 
5

4.7715e
−

 
6

3.1961e
−

 
6

2.3087e
−

 
7

3.3350e
−

 
7

5.3421e
−

 

0.142  

0.160  

0.416  

1.808  

3.541 

4.322  

1.52  

1.86  

2.00  

 2.48  

2.96  

3.90  
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5 Conclusion 

A transformation free high-order compact finite difference scheme on nonuniform mesh sizes for discretizing a 

3D Helmholtz equation. We have used special multigrid methods which solve the resulting system efficiently. It is 

observed that multigrid method with the Gauss-Seidel relaxation work very well in solving the high-order scheme 

discretized 3D Helmholtz equation. The HOC scheme has three to fourth order accuracy and is more efficient than 

CDS scheme. It is also observed that on uniform grids the HOC and CDS schemes can attain its maximum accuracy. 

But in case of boundary layer problems with suitable grid stretching ratios, the HOC scheme has the desired accuracy. 

Therefore it is reveal that grid distributions have much more significant effect on calculated accuracy for boundary 

layers problems. Numerical results shows that multigrid method with HOC has the required accuracy by the 

accumulating many more grid points into the boundary layer and faster than the CDS scheme. It is also obvious from 

the results that an increasing in the wave number k, overall error does not decrease. 
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