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ABSTRACT 

 

In this paper we introduce the concept of quasimonotone maps and some concepts of generalized monotonicity for 

multimappings, then establish connections between some concepts of generalized monotonicity for multimappings 

introduced during the last several years. 
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I.  INTRODUCTION 

 

The theory of monotone mappings in Banach spaces is of a recent origin.Some special results which now can 

be stated or interpreted in terms of this theory were obtained in the early 1950s for gradient mappings considered in 

the calculus of variations in Banach spaces. The explicit definition of the monotone mapping of a Banach space into 

its dual space which arose in a natural way from these investigations and was first introduced in a short note of  

Kacurovskii. This clearly showed that the theory of monotone mappings need not be restricted to gradient mappings 

and can be based on more primary structural properties of normed spaces. In recent years, operators which have 

some kind of generalized monotonicity property have a lot of attention. Many papers considering generalized 

monotonicity were devoted to the investigation of its relation to generalized convexity. 

Monotonicity and convexity are closely connected. It is well known that if a function is convex then its 

(Clarke) generalized sub gradients are monotone; see Rockafellar [Rockafellar,1970] (a set-valued map 

:
n n

R RΓ →  is monotone if whenever ( )
i i
y x∈Γ , 1,2,i =  then 

1 2 1 2
, 0,y y x x〈 − − 〉≥  where ,y z〈 〉  

is the usual dot product in 
n

R  ). The convers was established by F.H. Clarke in the particula case of a locally 

Lipschitzian function; see Clarke [Clarke,1983]. In [Poliquin,1990] Poliquin showed that a lower semi continuous 

function defined on 
n

R  is convex if (and only if) its Clarke sub differential is a monotone set-valued operator. Then 

for the particular case of a locally Lipschitzian function this fact had been remarked by Clarke [2, proposition 2.2.9]. 

Some characterizations of generalized convex functions are established by means of Clarke’s subdifferential 

and directional derivatives. There is a characterization of the convexity of a function     :        f X R→  via its 

Clarke generalized sub differential f↑∂ : namely,     X
∗

 is convex if and only if f↑∂  is monotone (see 

[Clarke,1983]). After the work in generalized monotonicity and the developments in the area of non smooth 

analyses, there has been an effort to characterize the generalized convexity of functions in terms of the generalized 

monotonicity of their sub differential. In particular, it was shown that a lower semi continuous function f  is 

quasiconvex, if and only if its Clark -Rockafellar subdifferential is quasimonotone; under the further assumption that 

the function f  is radially continuous, f  is pseudoconvex if and only if its Clark-Rockafellar sub differential is 

pseudo monotone. In order to establish characterizations of generalized convexities of a function via natural 

properties of its generalized subdifferential (Minty, 1964), some concepts of generalized monotonicity for multi-

mappings have been introduced in Ref [Schaible,1992]. This work establishes connections between monotone 

operators and convex function. Associated to each monotone operator, there is a family of convex functions, each of 

which characterizes the operator. The aim of this paper is to establish links for some other generalizations of 

convexity and monotonicity. The outline of the paper is as follows. In section 2, we establish some notation and 

recall the definitions and some results presented. In section 3, introduce some concepts of generalized monotonicity 

for multimappings and the equivalence between distinct concepts of quasimonotonicity proposed in the papers 

mentioned above is established. 
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II. BASIC DEFINITIONS and PRELIMINARY RESULTS 

 

 In the sequel, X  is a Banach space with dueal space X
∗

. A multimapping F  from X  to X
∗

 is said to 

be monotone (Ref. [Minty,1964]) if  

 ,   –    ,    –     0 ,x y x y x y
∗ ∗

〈 〉+〈 〉≤      ( ) ( ) ( )     ,      ,   ,  .          1x y X x F x y F y
∗ ∗

∀ ∈ ∀ ∈ ∀ ∈  

We recall that a function     f  is said to be quasiconvex if its sublevel sets are convex, 

 i .e.,  

( )( ) ( ) ( ){ }   max  ,  ,f x t y x f x f y+ − ≤                [ ]  ,      ,     0 ,1 .x y X t∀ ∈ ∀ ∈  

Let X  be a real topological vector space, X
∗

 be its dual space, and   K X⊆  be nonempty and convex. A 

multivalued map :T K X
∗

Ã  is called pseudomonotone (in the karamardian,s sense) (Ref [Karamardian,1990]) 

if for every ( ) ,      ,  x y K x T x
∗

∈ ∈ and   ( )y T y
∗

∈ , the following implication holds: 

 ,   –   0  ,    –     0x y x y y x
∗ ∗

〈 〉 ≥ ⇒ 〈 〉 ≥  

A monotone map is pseudomonotone, while a pseudomonotone map is quasimonotone. The converse is not true. 

The notation that we use is for the most part standard; however, let us provide a partial list for the reader ,s 

convenience. The spaces X  and X
∗

 are paired in duality by the continuous bilinear from , : ( )x x x x
∗ ∗

〈 〉 =  

Given 0, x Xε > ∈  we denote by ( , )B x ε  the closed ball centered at x  with radius ε . Let 

 :     : { , }f X R→ = −∞ +∞ be a given function. Assume that the value of the function is finite at a 

point x X∈ . The Clarke-Rockafellar generalized derivative of f at x  in the direction v  is defined by:  

0 ( , )( , ) 0

[ ( ) ]
( , ) sup lim sup inf ,

x
f

u B vy t

f y tu
f x v

tε εα

α↑

> ∈↓ ↓

+ −
=  

 Where ( , )
f

y xα ↓  means that ( ) ( )   ,  ,   y x f x f yα α→ → ≥ .When f  is locally lipschitzian 

[Rockafellar,1980], this derivative coincides with the Clarke directional derivative, which is defined by  

0

, 0

[ ( ) ( )]
( , ) lim sup .

z x u v t

f z tu f z
f x v

t→ → ↓

+ −
=  

The circa-subdifferential (or Clarke-Rockafellar subdifferential) of f  at x  is 

( )  { :  ,      ( ,  ), } ,f x x X x v f x v v X↑ ∗ ∗ ∗ ↑
∂ = ∈ 〈 〉 ≤ ∀ ∈  

with the convention that ( )f x↑
∂  is empty if f  is not finite at x . We need the following lemma, which was 

established in [Luc, 1983] . 

Lemma 2. 1. Assume that f  is lower semicontinuos and that ( ) ( )f b f a> . Then, there exists a sequence 

( )
k
x  in X  converging to some [ ) ( )

0
  a,b  ,    

k k
x x f x∗ ↑
∈ ∈∂  such that, for any 

( )c a t b a= + −  with 1t ≥  and for every k ,one has    ,   –   0
k k
x c x
∗

〈 〉 > . 

 

III. QUASIMONOTONICITY of MULTIMAPPING 
 
The following definition is a generalized version of [Schaible, 1992 Definition 2.9 for multimappings] (or 

multifunctions or set-valued maps). 

Definition 3.1. A multimapping :    F X X
∗Ã is said to be quasimonotone if, for every pair of distinct 

points ,   x y X∈ , one has  
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( )

( ) ( )

  :   ,   –     0  

     :  ,   –   0       2

x F x x y x

y F y y y x

∗ ∗

∗ ∗

∃ ∈ 〈 〉 >

⇒∀ ∈ 〈 〉 ≥
 

In [Avriel, Diewert, et al.,1988, Proposition 2.8] Schaible has shown that a differentiable function  :  
nf R R→  

is quasiconvex if and only if f∇  is quasimonotone, and his result has been extended to nondifferentiable functions 

in [Hassouni] . 

Another notion of quasimonotonicity is the concept of directional quasimonotonicity of Hassouni given in [Ellaia, 

Definition 3.4]. Let us recall it and compare it with the preceding one. 

Definition 3.2. A multimapping :    F X X
∗Ã is said to be quasimonotone in the direction d  if, for every 

x X∈  there exists      : { }R Rλ∈ = ∪ ±∞  such that: 

(  ) ,    0,

,   ( ). (3)     

v d

R v F x d

λ λ

λ λ

∗

∗

− 〈 〉 ≥

∀ ∈ ∀ ∈ +
 

F  is called quasimonotone if it is quasimonotone in every direction d  of X  .  

In [Ellaia, 1994 Theorem 3.10], it is shown that a Lipschitz function defined on a finite-dimensional space is 

quasiconvex if and only if  f↑∂  is quasimonotone (in any direction). 

In comparison with the generalization from convexity to quasiconvexity, the following statement seems to be the 

most natural concept of quasimonotonicity of maps. 

Definition 3.3. See [Luc,1994 Definition 2.1]. A multimapping F  is said to be quasimonotone if, 

for every ( ) ( ) ,    , , x y X x F x y F y
∗ ∗

∈ ∈ ∈  one has  

min{ , , , } 0 . (4)x y x y x y
∗ ∗

〈 − 〉 〈 − 〉 ≤  

In [Luc,1994 Definition 2.1], it is shown that a lower semicontinuous function is quasiconvex if and only if its 

generalized subdifferential is quasimonotone . 

Theorem 3.1. The three preceding concepts are coincide. 

Proof . Obviously (2) is equivalent to (4). Now, suppose that :    F X X
∗Ã   satisfies (3) for every  ,   x d X∈  . 

Let  ,   x y X∈ , and let ( ) ( ), x F x y F y
∗ ∗

∈ ∈  be given. We take  –  d y x= ; from (3) , if 0λ > , by 

taking 0λ = , it follows that  

  ,   –     0, ( );x y x x F x
∗ ∗

〈 〉 ≤ ∀ ∈  

and if 0λ ≤ , by  taking 1λ =  , we get: 

  ,   –     0, ( ).y x y y F y
∗ ∗

〈 〉 ≤ ∀ ∈  

So, (4) follows. 

Conversely, let (4) hold. For a given pair
2( ,  )x d X∈  and t R∈ , let us set  

( )   { , : ( )}, (5 )H t w d w F x td a
∗ ∗

= 〈 〉 ∈ +  

 { : ( ) (0, ) }, (5 )T t R H t b= ∈ ∩ +∞ ≠∅  

 { : ( ) ( ,0) }. (5 )S s R H s c= ∈ ∩ −∞ ≠∅  

We observe that, for any ,  t T r t∈ > , one has r S∉ , since otherwise we could 

find ( ) ( ), y F y z F z
∗ ∗

∈ ∈  ,with   ,   y x td z x rd= + = +  ,such that  

,     0,             ,     0, y d z d∗ ∗

〈 〉 > 〈 〉 >    
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and the following would hold ; 

max{ , , , }y y z z z y∗ ∗

〈 − 〉 〈 − 〉  

max{( ) , ,( ) , }  0,t r y d r t z d∗ ∗

= − 〈 〉 − 〈 〉 <  

a contradiction with (4). 

Thus, for any pair ( ,  )t s T S∈ × , we have t s≥ ; hence, 

Sup inf .S T≤  

Take 

sup , inf .S Tλ λ≥ ≤  

Let , ( )R v F x dλ λ
∗

∈ ∈ + . If   λ λ> ,we have    Sλ∉ , hence 

( ) , 0 ;v dλ λ
∗

− 〈 〉 ≥   

If  λ λ< , we have     Tλ∉ , hence 

( ) , 0,v dλ λ
∗

− 〈 〉 ≥  

so (3) is proved. 

Corollary 3.1. If F  is monoton, then F  is quasimonotone in every direction [Hassouni]. 
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