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ABSTRACT 

 

Dynamic ridesharing is a profitable way to reduce traffic and carbon emissions by providing an opportunity for a 

flexible and affordable service that utilizes vehicle seating space. Matching of ride seeker requests with the rides, 

distributed over the roads is a tedious work. While fulfilling the request of all passengers, the total travel distance of the 

trip may get increased. Therefore, this article proposes optimal dynamic ridesharing system which matches rides and 

requests in real time by satisfying multiple participant constraints (e.g. time bounds, availability of empty seat, 

maximum allowed deviation distance and minimized route ride)  to minimize the total travel distance. To efficiently 

match ride givers and riders we are proposing a novel dynamic ride matching algorithm MRB (Minimal route bi-

searching algorithm) considering all above mentioned constraints. We demonstrate working of our algorithm by 

developing a prototype and evaluated our system on GPS (Global positioning system) trajectories of Lahore city 

dataset. Evaluated results are compared with existing algorithms which shows that our system significantly reduces the 

travel distance and computation cost in comparison with other recent ride searching methods to maximize efficiency. 

KEYWORDS: Dynamic ride sharing system, optimal ride matching algorithm, spatial grid indexing, road 

networks. 

 

1. INTRODUCTION 

 

Despite the advancement of air and railway services around the world, still roads are the primary source of 

major traffic and transportation mean. Private cars have become the predominant transport mode globally that 

steadily worsened traffic congestion and fuel emissions [1]. The burning of fuels adds about 6.3 Giga tons [2] of 

carbon to the atmosphere each year and twenty-three per cent of world energy-related CO2 emissions originate from 

the transport sector. 

Usage of public vehicles (e.g. buses and vans) eradicates these environmental issues, however, they boost 

social issues (i.e. privacy threat, inflexibility in usage (e.g. with whom a traveler wants to share a ride) and 

unavailability of rides at passenger desired places. To earn high revenue public transport owners usually fill up their 

vehicles more than their space which is an obstacle, providing comfort and ease to travelers. Researchers spanning 

over various disciplines such as transportation [3], behavioral, social, environmental psychology [4], economics [5] 

have identified ridesharing as a good solution to the inefficiency of current transportation models. Therefore, 

ridesharing is a promising approach to mitigate all these issues. 

Ridesharing is the sharing of ride among people with similar itineraries and time schedules by utilizing spare 

seats in the vehicle [6]. Ridesharing can be either static or dynamic [7], Static ridesharing arranges trips that are 

known in advance, usually one to two days before the departure time while dynamic ridesharing uses an automated 

process to arrange trip on an adhoc basis(e.g. incorporating requests received  minutes before the departure time) by 

using GPS (Global positioning system) on mobile phones [8]. 

Currently, many mobile phone ridesharing applications are providing their services, like Carticipate 

(www.carticipate.wordpress.co), EnergeticX/Zebigo (www.zebigo.com), Avego (www.carmacarpool.com) and 

Piggyback (www.piggyback.com). In such application’s, user sets his pickup and destination location by giving a 

pickup and drop off time. These systems adequately match passengers and rides in real time by considering some 

constraints (i.e. time bounds, spare seat availability, travel cost reduction and safety etc.) for an optimal solution.  

Let’s take an example to describe ride matching by considering different constraints. 
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Figure 1 exhibits certain scenario: passengers and rides are dispersed on a road network. There are two rides, 

one is at location Rehmanpura and second is at Gulberg. There are four passengers standing in different locations, 

i.e., one passenger is at some later location from Rehmanpura, second is at Mayo Gardens, third is at some farther 

location from Mayo gardens, and fourth is at some farther location from Shadman. All passengers have set their 

pickup points where they are currently standing and their destination is Gari-Shaho. These passengers are requesting 

for rides at the same time. Now system has to find out the optimal ride matched with the user’s requests under 

participant’s constraints. If the constraint is to maximize passengers, then the ride R2 will be assigned to passengers 

P2 and P3, if constraint is to minimize the travel distance, then ride R2 will be assigned to the passenger P4, in case 

constraint is to share a ride with only one passenger then the ride R2 will be assigned to passenger P4, if constraint is 

to fulfill all passenger requests by allowing 15km deviation then R2 will be assigned to passenger P2, P3 and P4. In 

this fashion ride matching in a real world scenario is difficult to tackle. The more restrictions a ride share places 

while searching a ride, the more difficult it will be to find successful matches. 

Unlike others [6, 9-11], the goal of this study is to develop a ride searching system considering time, distance, 

spare seat availability, deviation and minimized route constraints to optimally match rides with rider requests while 

meeting the service quality guarantee. 

The rest of the paper is organized as follows: In section II we sum up the related work and describe our 

research contributions. Section III formally describes the dynamic ridesharing problem with ride giver and rider 

constraints and section IV illustrates our proposed service. In section V an optimization scheme is developed for the 

real-time ride searching system. Section VI presents a simulation environment. Section VII represents the evaluation 

of our results to investigate how such a ride matching system can minimize total travel distance, considering 

multiple routes between source and destination by utilizing ride resources more efficiently, compared with 

conventional ride matching systems. Section VIII concludes and discusses future research directions. 
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2. RELATED WORK 

 

Development of an optimal ride matching algorithm is a key to ridesharing system optimization. Most state of 

the art ridesharing systems used different searching algorithms. This is a wide research area which needs to be 

explored more. Earlier researcher [9] used rolling horizon approach, where plans are made using all known 

information retrieving ride matches at each execution run, but only a subset of these matches was provided as output 

before the execution of next optimization request. Their phenomenon for travel distance minimization was that, cost 

is directly proportional to the travel distance, therefore ridesharing not only reduces cost but also travel distance. 

They did not use any shortest path technique or other method to reduce distance, did not bother about time bounds 

also. Moreover, rolling horizon strategy increases computational burden as it provides a lot of matches during the 

planning horizon process. In contrast to their work, this work uses shortest path technique and spatial factor to 

reduce travel time and distance. 

Afterwards [10] used single side and dual side searching algorithm to obtain best rides matched with the 

passenger request with minimum increase in travel distance. Single side algorithm finds rides that are spatially and 

temporally nearest to pickup and destination location. Although, Dual side searching algorithm finds the common 

ride retrieved from spatial and temporal closeness at both source and destination side. However, dual side searching 

algorithm may not always minimize the total increase in travel distance, because by utilizing spatial factor they are 

reducing travel distance. However, this work not only considers spatial factor, but also deviation and minimized 

route ride constraint to decrease the total travel distance of the participants. Their focus was on minimizing increases 

in travel distance to fulfill passenger request, however, aim of this work is to decrease the total travel distance of 

passenger and ride giver including shortening the increase in travel distance. 

Practically, from a source to a destination, there exist multiple routes to travel. Finding an optimal minimized 

route considering different constraints is vital in ridesharing. Limited research has been performed on finding an 

optimal route in this domain. Researcher [11] used matching route algorithm, which finds the longest common route 

from passenger and driver routes even when they start and end elsewhere (i.e. passenger and driver routes origin and 

destination are different) and suggested rides on commonality. However, our work considers the routes of the 

matched ride (i.e obtained as a result of ride matching algorithm execution) and referred minimized distance route 

ride to the passenger. 

Apart from travel distance, moving unfilled seats of a vehicle raises environmental and economic issues. Earlier 

recommender systems [12-14] dispatched vacant taxi near to passengers request location on receiving requests without 

considering ridesharing. Yet [10] and [15] considered rides occupied under full capacity. Although researchers did not 

consider the spare seat availability in a ride, while execution of searching algorithm. Systems usually checked the 

availability of empty seats after a ride matching algorithm provides ride matches. Considering time and computations 

saving, this work is checking vacant seat availability in the ride during searching algorithm execution. 

Some researchers [16, 17] proposed systems based on historical trajectories(e.g. recorded log files of rides), 

offering parking areas for taxi drivers  through which  they can easily find multiple passengers . Similarly, [18] 

proposed set of pickup points for a driver to pick up passengers easily and fill up empty seats .While these systems 

are only designed from the perspective of drivers, however, our system accommodates both driver and passenger 

needs by providing ridesharing service on passenger desired location for pickup and drop off, and allow deviation to 

a limited distance, set by the ride giver(i.e. from 0 to 4 km). 

Fast retrieval of rides and request processing is very crucial in ridesharing. System usually takes long time to 

match rider requests with a ride that makes dynamic ridesharing system less feasible to use. For fast processing of 

passenger request, indexing scheme is appropriate. Earlier work [9, 19] did not use any indexing scheme for query 

processing. However, in our work, spatial grid indexing method is used for faster request processing. 

This research is highly motivated by the work proposed by [10]. On receiving request their system ( i.e. 

T_SHARE) finds a ride match nearer to the request origin and destination location based on spatial closeness (i.e. 

closest distance) and checks  whether it can fulfill the request within the predefined time bounds based on temporal 

closeness (i.e. minimum travel time). After finding rides at origin and destination side, they found the common ride 

on both sides and provide its searching results. We extend this concept by considering seat availability check during 

algorithm execution, obtaining routes of each matched ride and measure deviation distance from the ride original 

route to passenger source and destination location by using an efficient shortest path technique. Subsequently, 

system provides the ride that travels on a minimized route from passenger source to destination among all matched 

rides. T_share [10] system provide matches on basis of shortest pickup and drop off distance, however our proposed 

system provides ride matches based on total minimized distance from passenger source to destination and also 

shortens the increase in travel distance of a ride. 
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Research contributions of this paper are summarized as follows: 

• Proposing an approach to consider vacant seat availability during algorithm execution. In case, empty seat 

is not available during ride matching process it will expand the searching area to find another ride having 

free seating capacity. Contrary to other systems proposed by [10, 11] that relied on checking ride capacity 

after ride matching algorithm execution. Checking occupancy of rides during algorithm execution saves 

time and computations. 

•  Minimizing the travel distance by considering multiple matched ride routes from request source to 

destination and recommending a minimized distance route ride among all of them. 

• Applying detour distance constraint in contrast to [20] and [10] work where ride fulfilled the passenger 

request at any detour distance and only take account of time bounds. This work measures the deviation 

distance using precomputed shortest path technique and provide ride within limited deviation; set by the 

ride giver (i.e. between 0 to 4 km), to minimize the total increase in travel distance. 

• Considering all above factors we are proposing a new algorithm MRB for fast processing of passenger 

query and finding an optimal ride match on passenger request. 

 

3. PRELIMINARIES AND PROBLEM DEFINITION 

 

Major notations used throughout in this paper are listed below: 

 

Table 1: Major Notations 
Notations  Definitions 

r Request for a ride. 

rs Stream of requests. 

r.t Request generating time. 

r.o Request pickup (source) point. 

r.d Request destination (delivery) point. 

r.o.e Earliest pickup time. 

r.o.l Latest pickup time. 

r.d.e Earliest drop off time. 

r.d.l Latest drop off time. 

V Set of rides (i.e. vehicles) available. 

v.id Ride identifier. 

v.l Ride current location. 

v.p Number of On board passengers in the ride. 

G A grid cell. 

gc Geographical centre of the cell. 

lg
t Temporally ordered list of grid cell g. 

lg
d Spatially ordered list of grid cell g. 

l g
c Ride list of grid cell g. 

V.s Ride schedule. 

 

Before we formally define the problem, we provide definitions of some basic concepts and terms. 

 

Definition1:- (Passenger request) A passenger requests r for a ride associated with r.t (request generating time), r.o 

(origin or pickup location) and r.d (destination or delivery location), r.o.e (earliest pickup time i.e. when the 

passenger wants to be picked up), r.o.l  

(Latest pickup time i.e. maximum waiting time of the passenger to be picked up), r.d.e (the earliest drop off 

time i.e. when the passenger wants to be dropped off earliest) and r.d.l (the latest drop off time i.e. maximum travel 

time of the passenger) as explained in Table 1. 

     Ridesharing system usually retrieves the origin location r.o and request generating time r.t automatically 

through the passenger’s mobile phone. In this work, we assume that earliest pickup (r.o.e) and earliest drop off 

(r.d.e) time is equivalent to the request generating time r.t and the latest pickup time is obtained by adding a fixed 

value e.g. 10 minutes to earliest pickup time. A passenger only needs to explicitly define the drop off location r.d 

and latest drop off time r.d.l. 

 

Definition 2 :- ( Ride) From a Set of rides V= {vi} where i=1, 2….n, a ride vi€ V is comprised of its id vi.id, location 

vi.l, time stamp vi.t and number of boarded passenger vi.p. 
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Definition 3 :- ( Route) A Route w of a ride is a sequence of road segment w: w1, w2…….wn, such that 

wm+1.s=wm+1.e, (1<=m<n) where s and e represents starting and ending point of a road segment. Multiple routes w1, 

w2….wn exist from source r.o to sdestination r.d. 

 

Definition 4:- (Detour) Detour distance (dd) is the deviated distance from the original route of the ride. To fulfill 

passenger request, rides often deviated from the original route. A constraint on maximum deviation is applied by the 

ride giver (i.e. from 0 to 4km) from the original route of the ride.  

 

Definition 5:- (Optimal match) Given a passenger request r and a set of rides V, we say that a ride vi matches with a 

passenger request if 1) vi.p is less than the seat capacity of ride 2) vi can pick up the passenger before r.o.l and 

dropped off before r.d.l. 3) vi can pick up the passenger only if it’s at wm location or within the dd distance 4) vi has 

minimum distance from r.0 to r.d. 

 

Problem definition 

This work focuses the dynamic ridesharing problem in the following context: aiming to fulfill a stream of passenger 

requests rs arranged in an ascending order of their birth time in the queue by dispatching the rides which satisfies the 

requests r with minimum additional travel distance on road networks and reducing passenger total travel distance by 

providing a minimized route ride.  

      Mainly this work focuses on reducing the total travel distance by considering multiple routes from source to 

destination and recommending the optimal minimized route to travel. Minimizing distance in ride matching problem 

is similar to TSP (traveling salesman problem)[21]. This work also considers the time bounds (i.e. earliest and latest 

pickup and drop-off time). The total travel distance minimization problem with time windows is NP-complete 

because it has been proved that it is a generalization of the Travelling Salesman Problem with time windows 

(TSPTW), which has already been proved to be NP-complete [22].Therefore only an optimal solution is possible. 

 

4. FRAMEWORK 
   

The framework of the system is illustrated in Figure 2. 

A passenger login to the system and requests for a ride according to definition 1.A ride gets registered in the 

system when joining the ridesharing system. Ride dynamically uploads its status p. 1) when the passengers entered 

or leave the ride. 2) When the location and timestamp changes (e.g. after every 1 minute) while connected to the 

system. Ride giver can also offer a ride for multiple passengers. 

System receives a set of requests rs in a queue and serves them by considering FIFO (first come first out) 

technique. System maintains the spatial indexes of grid cells for fast processing of passenger request. For each 

request r system invokes ride searching module to find set of rides that are most likely to satisfy passenger request 

according to definition 5.If passenger request r is satisfied then system give response to the passenger rp with the 

ride id. In case of dissatisfaction, system will provide a spatially and temporally nearest available ride which may 

pickup or drop off passenger after his r.o.l or r.d.l.   
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Spatial Grid Indexing 

In ridesharing main challenge is how to handle a large number of requests as they flow real time in the system 

[23]. Searching module aims to quickly provide an optimal ride match with the new passenger request with 

minimum increase in travel distance and follow a minimized route. For this purpose, system will search the rides 

nearest to the request location. A straightforward strategy is to find distance between the request pickup point and all 

rides available. After finding minimum distance, selected ride will be assigned to the passenger. While this approach 

is not practical, because measuring distances between request r and all rides are extremely time consuming. Hence 

pre computed distances are recommended to approximate the distance of the shortest path. This idea motivated us to 

use spatial indexing method. 

The road network is divided into 5*5 km grid cells where for each grid cell, this work finds out the 

geographical center of the cell gc. For each node pair gci and gcj we used the precomputed distance dij and 

precomputed travel time tij, saved in a matrix. Despite of using advanced travel time estimation techniques, this work 

only utilizes speed limit on the road network for calculating travel time to lessen the computational load on the 

system. Now imagine that all points in one grid cell fall to its geographical centre, and then the distance between any 

two points is equivalent to the distance between two geographical centres of the grid cells. The matrix contained an 

approximated distance and travel time. Hence, an expensive calculation is avoided by utilizing approximation 

strategy. 

Each grid cell has some data structure for searching rides. System maintains three lists for each cell as 

demonstrated in Figure-3. 

1) Temporal ordered grid list lg
t  , containing the list of neighbor grid cells arranged on the basis of shortest travel 

time tij to the cell gi.  
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2) Spatial ordered grid list lg
d of gi, containing the list of neighbor grid cells arranged on the basis of shortest travel 

distance dij to the cell gi. 

3) Ride list lg
c of the grid cell gi containing the list of rides which will enter in the cell in near future along with the 

timestamp tf when they will enter. Ride list will be dynamic as compared to temporal and spatial lists which are 

static .Their value changes as the ride moved on from the grid cell gi or a new ride added in the system.  

 

 

 

 

 

 

 

 

 

                                                

 

 

 

                                      

       

FIGURE 3. Grid Cell Data Structures 

 

Constraints on Matches 

This work incorporating many participant constraints i.e. maximum deviation distance, minimized route ride 

and seat availability constraint to achieve an optimal ride match.  

 

Deviation 

The amount by which a ride moved away from their original route is called deviation. Each vehicle has a 

predefined route, but is allowed to deviate from this route to pick-up and drop-off passengers at preferred locations 

within a certain service area. Deviation services accommodate spontaneous unscheduled requests. However, by 

fulfilling all passenger requests at any distance, total travel distance of the ride gets increased. To accommodate this 

tradeoff, this work is providing flexibility to the ride giver to set deviation constraint within 4km and decide whether 

to deviate or not from the original route by reducing increase in travel distance. In this way without increasing much 

distance most of the requests will be fulfilled. However, some requests remain unfulfilled by utilizing this constraint. 

 

Minimized Route 

From a source to destination, there exist many routes in reality, finding the minimized route to travel will give 

us an optimal solution. Our work finds rides moving across a given source to the destination within time bounds. 

Searching results provide a list of matched rides. This work will find the distance of all resulting rides from 

passenger source to destination and provide minimized route ride to the passenger for saving the total travel distance 

of the passenger. 
 

Vacant Seat Availability Check 

Availability of seat is an important factor which needs to be checked in ride sharing system. Existing systems 

checked the seat availability after executing the matching algorithm. Resultant rides list was usually large, which 
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wasted a lot of time by increasing computation cost. Our work focuses on checking vacant seat availability in a ride 

while executing ride matching algorithm. Whenever an algorithm finds a ride fulfilling time bound constraint, then it 

will check seat availability, if ride doesn’t have vacant seat, system will expand the searching area to find another 

ride fulfilling empty seat available constraint. This method reduces execution time as compared to existing systems. 

 

5. The Proposed Searching Algorithm :- ( Minimal Route Bi-Searching Algorithm MRB) 

 

To provide an optimal solution to the dynamic ride matching problem, we are proposing a new searching 

algorithm including all above mentioned constraints, named minimal route bi-searching algorithm (MRB).  

 

Algorithm: Minimal Route Bi-Searching Algorithm (MRB) 

Input: Passenger request r with request generating time tcur, destination location r.d, latest delivery time r.d.l. 

Output: Best matched ride. 

1          go<-Passenger pickup location 

2          gd<-Passenger delivery location 

3          S0<-Set of rides entered in go before r.o.l 

4    For each ride in So check spare seat availability 

5       If rides have vacant seat                      do 

            S0 <- rides having empty seats. 

        else  

            S0 <- � 

6          Sd<-Set of rides entered in gd before r.d.l 

            Repeat step 5 for Sd. 

7         S <- S0⋂Sd 

8             M0 <- � 

9             Md <- � 

10           If(S contains rides) 

              Break and jump to step 19 

               else 

11         For grid cell gi in gO.lg
t      do 

12            If       tcur+ tio ≤ r.o.l     then M0 <- gi 

                else break 

13           For grid cell gj in gd.lg
t        do 

14               If         tcur + tjd ≤ r.d.l       then Md <- gj 

                   else break 

15       While (S is empty)              do 

16          For all grid cells gi in lg
d            do 

                    So <- Find rides whose tf is no later than r.o.l-tcur. 

                    Repeat step 5 for So 

17            For all grid cells gj in lg
d      do 

                    Sd <- find rides whose tf is no later than r.d.l-tcur. 

                    Repeat step 5 for Sd 

18                 S<- So ⋂ Sd 

19             For each ride in S                  do 

                     S.route [] <- calculate stopping points (analyzing coordinates along the path) 

20               If any point in S.route [] = go  and any point in S.route []= gd   do 

                       MD= {selected ride} 

                   Else 

                      Deviation distance� allowed predefined ride deviation distance. 

21                  Measure distance from go to S.route [] points ≤ r.o.l and distance from 

                      gd to S.route [] points ≤ r.d.l 

22               If (distance (go, S.route [] ) ≤ deviation distance) and  

                                            distance (gd, S.route []) ≤ deviation 
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                    Distance) 

                       MD= {selected ride} 

                   Else break 

23              For all rides in MD                 do 

                        Measure distance between passenger pickup and delivery point 

                        Distance (r.o, r.d) on that ride route 

                        Shortest distance among all distances will be selected and saved in MD 

24                    Return MD 

 

Working of Algorithm  
To understand the working of algorithm, suppose a request r comes at time tcur, r source is at g6 grid cell and 

destination is at g4. 

Algorithm working is divided into two sections described as follows: 

Section 1 

MRB algorithm is a bidirectional searching algorithm that searches rides both from source and destination side 

simultaneously. Detailed working of MRB algorithm as shown in Figure 4 is given below: 

     First cell selected by the searching algorithm is g6 form source and g4 from destination side. The algorithm scans 

the ride list of the grid cells g6 and g4 and selects rides entering in g6 before r.o.l and in g4 before r.d.l as shown in 

equation 1 and 2. 

tf   ≤ r.o.l            (for source g6)         1) 

tf   ≤ r.d.l            (for destination g4)   2) 

Resulting ride list of cell g6 satisfying the equation 1 is stored in a set So and g2 resulting rides list satisfying 

equation 2 stored in the set Sd . Algorithm then checks the spare seat availability for all rides in the set SO and Sd. 

Rides having spare seats selected from S0 set will be stored in S0.In case, no spare seat is available in any ride of set 

S0, S0 will become empty and same process will be repeated for Sd. Afterwards, algorithm finds the intersection 

among both sets. If any common ride found, it will jump to section 2 and find an optimal minimized route ride. 

In other case, if intersection returns the empty set then the algorithm will expand the searching area by 

scanning the temporal lg
t list of grid cell g6 and g4 at the same time and determines the grid cells which satisfy these 

equations. 

tcur + ti6 ≤ r.o.l         (for g6 )            3) 

tcur+ti4 ≤ r.d.l           (for g4)             4) 

     To select rides with minimum increase in travel distance the algorithm then checks the spatial ordered  lg
d list of 

both g6 and g4 and selects the cells which satisfy equation 3 and 4. Algorithm then traverse the ride list of each 

selected cell gs and selects those rides that satisfy these equations: 

tf ≤ r.o.l-ts6       (for g6)                     5) 

tf ≤ r.d.l-ts4       (for gs)                      6) 

     Vacant seat availability will be checked again for all rides in the set S0 and Sd and satisfactory rides will be stored 

in both sets. After taking intersection of source So and destination sets Sd, the resulting rides list S will be passed 

towards section 2. 
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FIGURE 4.  Calculation of Ride Set in MRB 

 

Algorithm finds the routes of the each ride in the resulting set S and determines whether passenger is on the 

ride original route or away from the route as shown in Figure 5. This algorithm finds the commonality of rides at 
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ride contains g0 and gd points within its route points (i.e. coordinates) then its deviation is 0 and passenger is on the 

way of resulting rides routes, algorithm then retrieves the distance from passenger source to destination location for 

each ride. Consequently minimized distance route ride will be assigned to the passenger. In other case, if passenger 

is not within the selected ride route, algorithm will measure the deviation distance between the pickup point of r and 

the routes stopping points of less than r.o.l , and drop off  point of r and the routes stopping points of less than r.d.l 

by using precomputed shortest path technique. If distance is less than the ride giver allowed deviation, then ride will 

be selected .On contrary; ride will be omitted from the searching space. For all selected rides fulfilling deviation 

constraint, system will compute the total travel distance between r.o pickup and delivery point r.d including 

deviation distance. Correspondingly, minimized route ride will be assigned to the passenger. 

 

 
FIGURE 5. Multiple Routes of Ride form set S 

 

Shortest Path Method 

In ridesharing for each request shortest path algorithm needs to be executed many times, which will increase 

the computational burden on the system. Therefore, we are using pre-computed shortest path distance matrix 

approach. In this scheme, shortest path is computed between every pair of centroids (i.e. geographical centre) and 

stored in a distance matrix. Whenever we need to calculate the shortest distance between two locations, system will 

search the distance matrix and retrieves the shortest path that reduces heavy computations. Recently retrieved 

distances will be added in the cache, to eliminate relooking of the matrix if the same request received again. This 

scheme is efficient for both small and large road networks compared with invoking shortest path algorithm several 

times for a single request. 

Data Set  
Since there exist a lot of adequacy and deficiency of transport planning in Pakistan’s most urbanizing city 

Lahore. Therefore, for developing a sustainable urban transport system in the city, we developed Lahore city ride 

trajectory dataset. Ride trajectory contains mobility patterns of a ride having 60 sec time interval. Trajectories are 

recorded by Comsats university Lahore students, faculty members and doctors of Jinnah and General hospital using 
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mobile phones having GPS feature. Trajectories are recorded by of 150 - 200 rides over a period of 20 days in the 

year of 2014. Therefore, each file contains ride route on a certain path having predefined schedule. The total 

distance of the data set is more than 500 kilometers. 

 

6. DEMONSTRATION SCENARIO 
 

To practically evaluate our proposed approaches, we develop a prototype system based on realistic Lahore ride 

trajectories dataset. Requests are generated randomly from the trajectory dataset. To start experimenting, we need 

current status of a ride (i.e. rides current location), in this work we determine the current status by slicing historical 

trajectory to a certain time stamp Tb to determine whether a ride is occupied or not? All rides passing through 

timestamp Tb are considered to be occupied and others are non occupied. To provide feasibility and considering 

more rides in our experiment we use a temporal parameter. The rationale behind this idea is that: If  Tb is set to be 

10:00am and some rides don’t exactly pass through 10:00am , however, it passes through 9:58am and then 10:03am 

, then system will not consider it. Therefore, a temporal parameter of 5 minutes is added. In case any ride is passing 

through within 5 minutes of before and after 10:00 am then system will consider that ride for the experiment also. 

On the basis of above mentioned settings we evaluated requests on the prototype, whose screenshot is shown in 

Figure 6. MRB algorithm always selected one minimized route ride. A red polyline in the screen shot stands for the 

original route of the ride. Blue points represent the request pickup and drop off points respectively. 

 

 
 

FIGURE 6. Screen Shot of Simulation 

 

7. EXPERIMENTAL EVALUATION AND RESULTS 

 

To measure the number of requests generated for a ride on different roads of Lahore. We scanned our collected 

real world GPS Lahore trajectory dataset and analyze it by mapping each ride route on Google maps, through which 

we conclude that most visited roads of Lahore are: 

1) Mall Road. 

2) Raiwind Road. 

3) Ferozpur Road. 

4) Maulana Shaukat Ali Road. 

Figure 7 shows the fluctuation of requests generated during different time periods of a day on four busiest roads of 

Lahore. 
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FIGURE 7. Request Generated During Time of a Day 

 

    It can be concluded from the above figure that: highest request rate is during (3:00 pm to 5:00 pm) on Raiwind 

road Lahore. 

 Furthermore, we analyze our simulation results on the basis of distance and computation cost to optimize the 

dynamic ride sharing system such that total travel distance gets minimized and computation cost of the ride sharing 

system becomes low. To measure the effectiveness of our findings we compare our proposed system with T-Share 

system [10].T_SHARE system uses two matching algorithms, single side  and dual side searching algorithms where 

single side searching  algorithm searches spatially closed ride  either  at source or  destination side and found a ride 

that satisfies its temporal bounds, although dual side algorithm finds spatially and temporally closed ride common at 

both source and destination side as described in related work section II. 

   We conduct experiments on ten passenger requests. To measure the Computation cost of our proposed system in 

comparison with most popular T_share system, we carry out experiments based upon above proposed setting as 

mentioned in section VI on the following parameters: 

• Number of road nodes accessed per query. 

• Number of rides accessed per query. 

• Vacant seat availability constraint during algorithm execution. 
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Since MRB algorithm always proposes a minimized route ride. Therefore, according to the Figure 8, we can 

determine that MRB accesses one or maximum two rides at each request even if large numbers of rides are available 

near to request pickup and drop off points as depicted in the case of request 4. However as dual side algorithm finds 

common rides at both source and destination side therefore it accesses relatively more rides than MRB, single side 

algorithm accesses a large number of rides due to finding the spatially and temporally closed rides near to request 

pickup and drop off points . 

   

 
 

FIGURE 9. Number of Rides Accessed 
 

By analyzing the result shown in Figure 9 we observe that MRB traverses less number of road nodes since it 

accesses less number of rides, hence perform less computations. 

 

 
FIGURE 10.  Running Time of Algorithms Using Seat Availability Constraint 

 

We compute execution time of the matching algorithms using seat availability constraint during and after algorithm 

execution. Since in contrast to single and dual side algorithms, MRB  integrates seat availability check during 

algorithm execution, hence we observe from the result shown in Figure 10 that computation cost of the MRB 

algorithm is significantly lesser than the other two algorithms. 

      To verify the optimality of our proposed service, we compare the travel distance of the proposed service using 

MRB algorithm with the single and dual side searching algorithms. Since single and dual side algorithms provide a 

ride that can pickup and drop off passenger with minimum increase in travel distance, however our system provides 

the ride with minimum total travel distance of passengers while fulfilling the request .To  measure the increase in 

travel distance  of the ride giver and total travel distance of passenger we are using two parameters: 

• Deviation. 

• Minimize route. 
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FIGURE 11.  Increase in Travel Distance of the Ride Giver 

 

Evaluated results demonstrated that by applying deviation constraint, proposed system saves increase in travel 

distance as compared to T_share searching mechanisms that allowed deviation at any distance, however, number of 

missed passenger by applying this constraint is one out of ten passengers. Since, in contrast to T_SHARE service 

aim of our proposed service is not maximizing the passengers. So we will neglect this effect.      

        
FIGURE 12.  Total Travel Distance of the Passenger 

 

Evaluated results demonstrated that by applying minimized route constraint, proposed service significantly reduces 

the travel distance as compared to the T_Share system. 

      By summing up all results on computation cost and distance, we can describe our findings in the following table: 
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Table 2:Results 

 Percentage saved by MRB Algorithm over Single 

Side Algorithm 

Percentage saved by MRB algorithm over Dual Side 

Algorithm 

Computation Cost No of Road 

Nodes Accessed  

No of Rides 

Accessed 

Total 

Execution 

Time 

No of Road Nodes 

Accessed  

No of Rides 

Accessed 

 

Total 

Execution 

Time 

 79% 82% 71% 60% 66% 47% 

 Percentage saved by MRB Algorithm over Single 

Side Algorithm 

Percentage saved by MRB algorithm over Dual Side 

Algorithm 

Distance Increase in Travel 

Distance of the Ride 

Giver 

Total Travel Distance of 

the Passenger 

 

Increase in Travel 

Distance of the Ride Giver 

Total Travel Distance of 

the Passenger 

 6% 15% 16%   26% 

 

    Therefore, we can state that our system is efficient and provides an optimal solution for finding an efficient ride 

match. 

8. CONCLUSION AND FUTURE WORK 

 

This article was dedicated to propose a more optimal searching mechanism by incorporating many participant 

constraints to reduce the total travel distance of the ride partners (i.e. ride taker and ride giver).  

      In operational aspect, we develop MRB algorithm by modifying dual side algorithm to solve the specific 

case of the problem (i.e. optimization). In feasibility aspect, we provide ride matches by satisfying many rider and 

driver constraints (i.e. time, vacant seat available, deviation set by ride giver, minimized route). 

The effectiveness and efficiency of our proposed mechanisms are carefully investigated by a series of experiments 

on realistic Lahore city GPS trajectory dataset in different metrics. By analyzing experimental results that compare 

different methods, with the focus on reducing computations to minimize the total travel distance of the ride partners, we 

conclude that our mechanism provides an optimal solution. For instance, in case of ten requests, our service saved on 

average 26% travel distance and 47% computations as compared to dual side algorithm and 71% computations and 

15% travel distance as compared to single side algorithm. Suppose a ride consumes 2 liter gasoline per 25km and lets 

average distance a rideshare traveled in a day is 100 km, then our proposed system saves 62% gasoline per month. On 

average, our service can answer a request in 1.4ms, i.e., it can serve 2810k queries per hour. 

This study motivates a number of important directions for further research.  Our study proposes a dynamic 

ridesharing system by integrating four constraints (i.e. time bound, vacant seat availability check during algorithm 

execution, deviation constraint set by ride giver and minimized route ride).However a more robust solution can be 

acquired by incorporating more participant preferences i.e. safety preferences, gender preferences, window seat 

availability to obtain a more user friendly system.  

In future this work can be extended to accommodate multihop ridesharing (i.e. share a ride with multiple 

drivers). Advanced travel time estimation techniques to improve the prediction of ride travel time can be considered 

further. 
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