New Results in Q-Inner Product

Farooq Ahmad ${ }^{1}$, Sifat Hussain ${ }^{2}$, M. Z. Sarikaya ${ }^{3}$, N. A. Mir ${ }^{4}$, Erhan Set ${ }^{5}$
${ }^{1}$ Mathematics Department, Majmaah University, College of Science, Alzulfi, KSA
${ }^{2}$ Mathematics Department, Islamia University, Bahawalpur, Pakistan
${ }^{3}$ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
${ }^{4}$ Mathematics Department, Rapha University, Islamabad, Pakistan
${ }^{5}$ Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey

Received: March 6, 2015
Accepted: April 28, 2015

Abstract

In this paper, we establish some new results in (Q) - inner product. These are different from the results published in the book, "Semi-inner products and application" by S. S. Dragomir.

KEYWORDS: Inner product, Complex inner product, Q-inner product,

PRELIMINARIES

Dragomir (see, [1]-[4]) introduced some generalization of inner product in a real linear space that extends this concept in a different manner than the extension due to Lumer-Giles, Tapia or Miličićc (see, [1]).

The following definitions are used by Dragomir in [1].
Definition: A mapping $(.,,,, .,)_{q}: X^{4} \rightarrow \mathrm{R}$ will be called a quaternary-inner product, or $(Q)-$ inner product, for short, if the following conditions are satisfied:
(i) $\left(\alpha x_{1}+\beta x_{2}, x_{3}, x_{4}, x_{5}\right)_{q}=\alpha\left(x_{1}, x_{3}, x_{4}, x_{5}\right)_{q}+\beta\left(x_{2}, x_{3}, x_{4}, x_{5}\right)_{q} \quad$ where $\quad \alpha, \beta \in \mathrm{R} \quad$ and $x_{i} \in X(i=\overline{1,5})$.
(ii) $\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)}\right)_{q}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)_{q}$, for any σ a permutation of the indices $(1,2,3,4)$ and $x_{i} \in X(i=\overline{1,4})$,
(iii) One has the following Schwartz type inequality

$$
\begin{equation*}
\left|\left(x_{1}, x_{2}, x_{3}, x_{4}\right)_{q}\right|^{4} \leq \prod_{i=1}^{4}\left(x_{i}, x_{i}, x_{i}, x_{i}\right)_{q} \tag{1.1}
\end{equation*}
$$

for all $x_{i} \in X,(i=\overline{1,4})$ and $\left(x_{1}, x_{1}, x_{1}, x_{1}\right)_{q}>0$ if $x_{1} \neq 0$.
Definition A real linear space X endowed with a (Q)-inner product $(., ., ., .)_{q}$ on it will be called a (Q)-inner product space. Now by the definition of (Q)-inner product space, we can state the following simple properties:

$$
\left(0, x_{2}, x_{3}, x_{4}\right)_{q}=0
$$

and

$$
\left(\alpha x_{1}, \alpha x_{2}, \alpha x_{3}, \alpha x_{4}\right)_{q}=\alpha^{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)_{q}
$$

for any $\alpha \in \mathrm{R}$ and $\forall x_{1}, x_{2}, x_{3}, x_{4} \in X$.
Dragomir [1] also pointed out proposition that followed by the definition of Q - inner product (see definition (01)) using two vectors.

Proposition: Let $\left(X,\| \| \|_{q}\right)$ be a Q - normed space. Then for all $x_{1}, x_{2} \in X$, we have

[^0]\[

$$
\begin{equation*}
\left\|x_{1}+x_{2}\right\|_{q}^{4}+\left\|x_{1}-x_{2}\right\|_{q}^{4}=2\left(\left\|x_{1}\right\|_{q}^{4}+\left\|x_{2}\right\|_{q}^{4}\right)+12\left(x_{1}, x_{1}, x_{2}, x_{2}\right)_{q} \tag{1.2}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\left\|x_{1}+x_{2}\right\|_{q}^{4}+\left\|x_{1}-x_{2}\right\|_{q}^{4} \leq 2\left(\left\|x_{1}\right\|_{q}^{4}+\left\|x_{2}\right\|_{q}^{4}\right)+12\left\|x_{1}\right\|_{q}^{2}\left\|x_{2}\right\|_{q}^{2} . \tag{1.3}
\end{equation*}
$$

MAIN RESULTS

Main object of this paper is to extend the idea of Dragomir [Drag1] given in equation (1.2) and inequality (1.3) from two vectors to four vectors

Proposition Let $\left(X,(., ., .,)_{q}\right)$ be a (Q)-inner product space. Then the mapping

$$
\|\cdot\|_{q}: X \rightarrow \mathrm{R},\|x\|_{q}=(x, x, x, x)_{q}^{\frac{1}{4}}
$$

is a norm on X.
Proof: Using definitions 1 and 2 of inner product and by simple calculation

$$
\begin{align*}
\left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{q}^{4}= & \sum_{i=1}^{4}\left\|x_{i}\right\|_{q}^{4}+4 \sum_{i \neq j=1}^{4}\left(x_{i}, x_{i}, x_{i}, x_{j}\right)_{q} \\
& +6 \sum_{i \neq j=1}^{4}\left(x_{i}, x_{i}, x_{j}, x_{j}\right)_{q}+12 \sum_{i \neq j \neq k=1}^{4}\left(x_{i}, x_{i}, x_{j}, x_{k}\right)_{q} \tag{2.1}\\
& +\sum_{i \neq j \neq k \neq l=1}^{4}\left(x_{i}, x_{j}, x_{k}, x_{l}\right)_{q}
\end{align*}
$$

$\forall x_{1}, x_{2}, x_{3}, x_{4} \in X$.
From inequality (1.1), we have

$$
\begin{align*}
& \left(x_{i}, x_{i}, x_{i}, x_{j}\right)_{q} \leq\left\|x_{i}\right\|_{q}^{3}\left\|x_{j}\right\|_{q} \tag{2.2}\\
& \left(x_{i}, x_{i}, x_{j}, x_{j}\right)_{q} \leq\left\|x_{i}\right\|_{q}^{2}\left\|x_{j}\right\|_{q}^{2} \tag{2.3}\\
& \left(x_{i}, x_{i}, x_{j}, x_{k}\right)_{q} \leq\left\|x_{i}\right\|_{q}^{2}\left\|x_{j}\right\|_{q}\left\|x_{k}\right\|_{q} \tag{2.4}
\end{align*}
$$

Using the eq.(2.2)-(2.4), equation (2.1) becomes

$$
\begin{align*}
\left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{q}^{4} \leq & \sum_{i=1}^{4}\left\|x_{i}\right\|_{q}^{4}+4 \sum_{i \neq j=1}^{4}\left(\left\|x_{i}\right\|_{q}^{3}\left\|_{j} x_{j}\right\|_{q}\right) \\
& +6 \sum_{i \neq j=1}^{4}\left(\left\|x_{i}\right\|_{q}^{2}\left\|_{i} x_{j}\right\|_{q}^{2}\right) \\
& +12 \sum_{i \neq j \neq k=1}^{4}\left(\left\|x_{i}\right\|_{q}^{2}\left\|x_{j}\right\|_{q}\left\|x_{k}\right\|_{q}\right) \tag{2.5}\\
& +\sum_{i \neq j \neq k \neq l=1}^{4}\left(\left\|x_{i}\right\|_{q}\left\|x_{j}\right\|_{q}\left\|x_{k}\right\|_{q}\left\|x_{l}\right\|_{q}\right)
\end{align*}
$$

i.e

$$
\left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{q}^{4} \leq\left(\sum_{i=1}^{4}\left\|x_{i}\right\|_{q}\right)^{4},
$$

which produces the inequality

$$
\left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{q} \leq \sum_{i=1}^{4}\left\|x_{i}\right\|_{q} .
$$

on the other hand, we have

$$
\left\|x_{i}\right\|_{q} \geq 0 \forall x_{i}, i=\overline{1,4} \in X
$$

and

$$
\left\|x_{i}\right\|_{q}=0 \Rightarrow x_{i}=0
$$

and finally, we also have:

$$
\left\|\alpha x_{i}\right\|_{q}=|\alpha|\left\|x_{i}\right\|_{q}, \text { where } \alpha \in \mathrm{R} \text { and } x_{i} \in X .
$$

Consequently $\|\cdot\|_{q}$ is a norm and the proposition is proved.
Proposition Let $\left(X,(., .,,,)_{q}\right)$ be a Q - normed space. Then for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$, we have:

$$
\begin{align*}
& \left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{q}^{4}+\left\|x_{1}+x_{2}-x_{3}-x_{4}\right\|_{q}^{4}+\left\|x_{1}-x_{2}+x_{3}-x_{4}\right\|_{q}^{4} \\
& +\left\|x_{1}-x_{2}-x_{3}+x_{4}\right\|_{q}^{4}+\left\|x_{1}+x_{2}+x_{3}-x_{4}\right\|_{q}^{4}+\left\|x_{1}+x_{2}-x_{3}+x_{4}\right\|_{q}^{4} \\
& +\left\|x_{1}-x_{2}+x_{3}+x_{4}\right\|_{q}^{4}+\left\|x_{4}+x_{2}+x_{3}-x_{1}\right\|_{q}^{4} \tag{2.6}\\
= & 8 \sum_{i=1}^{4}\left\|x_{i}\right\|_{q}^{4}+48 \sum_{i \neq j=1}^{4}\left(x_{i}, x_{i}, x_{j}, x_{j}\right)_{q} .
\end{align*}
$$

Proof : We know from (2.1) that

$$
\begin{aligned}
& \left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{q}^{4}=\sum_{i=1}^{4}\left\|x_{i}\right\|_{q}^{4}+4 \sum_{i \neq j=1}^{4}\left(x_{i}, x_{i}, x_{i}, x_{j}\right)_{q} \\
& +6 \sum_{i \neq j=1}^{4}\left(x_{i}, x_{i}, x_{j}, x_{j}\right)_{q}+12 \sum_{i \neq j \neq k=1}^{4}\left(x_{i}, x_{i}, x_{j}, x_{k}\right)_{q} \\
& +\sum_{i \neq j \neq k \neq l=1}^{4}\left(x_{i}, x_{j}, x_{k}, x_{l}\right)_{q}
\end{aligned}
$$

Similarly computing other seven terms in (2.6) and adding we obtain the required result.
Proposition: Let $\left(X,(., ., .,)_{q}\right)$ be a Q - normed space. Then for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$, we have:

$$
\begin{align*}
& \left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{q}^{4}+\left\|x_{1}+x_{2}-x_{3}-x_{4}\right\|_{q}^{4}+\left\|x_{1}-x_{2}+x_{3}-x_{4}\right\|_{q}^{4} \\
& +\left\|x_{1}-x_{2}-x_{3}+x_{4}\right\|_{q}^{4}+\left\|x_{1}+x_{2}+x_{3}-x_{4}\right\|_{q}^{4}+\left\|x_{1}+x_{2}-x_{3}+x_{4}\right\|_{q}^{4} \\
& +\left\|x_{1}-x_{2}+x_{3}+x_{4}\right\|_{q}^{4}+\left\|x_{4}+x_{2}+x_{3}-x_{1}\right\|_{q}^{4} \tag{2.7}\\
& \leq 8 \sum_{i=1}^{4}\left\|x_{i}\right\|_{q}^{4}+48 \sum_{i \neq j=1}^{4}\left(\left\|x_{i}\right\|_{q}^{2}\left\|x_{j}\right\|_{q}^{2}\right)
\end{align*}
$$

Proof : From proposition 05 and using following inequalities

$$
\begin{aligned}
& \left(x_{1}, x_{1}, x_{2}, x_{2}\right)_{q} \leq\left\|x_{1}\right\|_{q}^{2}\left\|x_{2}\right\|_{q}^{2} \\
& \left(x_{1}, x_{1}, x_{3}, x_{3}\right)_{q} \leq\left\|x_{1}\right\|_{q}^{2}\left\|x_{3}\right\|_{q}^{2} \\
& \left(x_{1}, x_{1}, x_{4}, x_{4}\right)_{q} \leq\left\|x_{1}\right\|_{q}^{2}\left\|x_{4}\right\|_{q}^{2} \\
& \left(x_{2}, x_{2}, x_{3}, x_{3}\right)_{q} \leq\left\|x_{2}\right\|_{q}^{2}\left\|x_{3}\right\|_{q}^{2} \\
& \left(x_{2}, x_{2}, x_{4}, x_{4}\right)_{q} \leq\left\|x_{2}\right\|_{q}^{2}\left\|x_{4}\right\|_{q}^{2} \\
& \left(x_{3}, x_{3}, x_{4}, x_{4}\right)_{q} \leq\left\|x_{3}\right\|_{q}^{2}\left\|x_{4}\right\|_{q}^{2}
\end{aligned}
$$

we obtain the required (2.7).

REFRENCES

[1] S. S Dragomir, Semi- inner products and application, School of Computer Science and Mathematics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.
[2] S. S Dragomir, Real Q-Banach spaces, SLOHA, 2 (1986), Faculty of Mathematics, Timisoara University, 1986.
[3] S. S Dragomir, Q-normed linear spaces, proceedings of the Nat. Conf. in Geometry and Topology, TIRGOVISTE, 12-14, Bucharest, 1988, 69-72.
[4] S. S Dragomir, Representation of continuous linear functionals on complete SQ-inner-product spaces, Anal. Univ. Timisoara, Sci. Math., 30 (1992), 241-250.
[5] S. S. Kim and M. Crasmareanu, Best approximations and orthogonalities in 2k-inner product spaces, Bull. Korean Math. Soc. 43 (2) (2006), 377-387.
[6] A. Misiak and A. Ryz, n-inner product spaces and projections, Mathematica Bohemica, 125 (2000), 87-97.

[^0]: Corresponding Author: Farooq Ahmad, Punjab Higher Education Department, Principal, Government College Bhakkar, Pakistan. +923336842936 Presently at Department of Mathematics, College of Science, Majmaah University, Alzulfi, KSA,+966597626606 Email: farooqgujar@gmail.com \& f.ishaq@mu.edu.sa

