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ABSTRACT 
 

In this paper, we establish some new results in  )(Q  inner product. These are different from the results 

published in the book, "Semi-inner products and application" by S. S. Dragomir. 
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PRELIMINARIES 
 

Dragomir ( see, [1]-[4] )  introduced some generalization of inner product in a real linear space that extends this 

concept in a different manner than the extension due to Lumer-Giles, Tapia or Miličić (see, [1]). 
The following definitions are used by Dragomir in [1]. 

 Definition:  A mapping R:(.,.,.,.) 4 Xq  will be called a quaternary-inner product, or  )(Q  inner 

product, for short, if the following conditions are satisfied: 

 )(i    qqq xxxxxxxxxxxxx ),,,(),,,(),,,( 5432543154321    where  R,    and  

).5,1(  iXxi   

 ,),,,(),,,()( 4321)4()3()2()1( qq xxxxxxxxii   for any     a permutation of the indices  )4,3,2,1(   

and  )4,1(  iXxi   , 

 iii  One has the following Schwartz type inequality 

,),,,(),,,(
4

1

4

4321 qiiii

i

q xxxxxxxx 


                                      (1.1) 

for all  )4,1(,  iXxi   and  0),,,( 1111 qxxxx   if  .01 x   

 Definition   A real linear space  X   endowed with a  )(Q  -inner product  q(.,.,.,.)   on it will be called a  

)(Q  -inner product space. Now by the definition of  Q  -inner product space, we can state the following simple 

properties: 

,0),,,0( 432 qxxx  

and 

,),,,(),,,( 4321

4

4321 qq xxxxxxxx    

for any  R   and  .,,, 4321 Xxxxx    

Dragomir [1] also pointed out proposition that followed by the definition of Q  inner product (see definition 

(01)) using two vectors. 

 Proposition:  Let   ).,(
q

X   be a  Q  normed space. Then for all  Xxx 21,   , we have 
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and  

.12)(2
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MAIN RESULTS 

 
Main object of this paper is to extend the idea of Dragomir [Drag1] given in equation (1.2) and inequality (1.3) 

from two vectors to four vectors 

 Proposition  Let  )(.,.,.,.),( qX   be a  )(Q  -inner product space. Then the mapping  

 ),,,( ,R:. 4
1

qqq
xxxxxX   

is a norm on  X  . 

 Proof: Using definitions 1 and 2 of inner product and by simple calculation  
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  (2.1) 

 .,,, 4321 Xxxxx    

From inequality (1.1) ,   we have  

  ,,,,
3

qjqiqjiii xxxxxx          (2.2) 
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qjqiqjjii xxxxxx         (2.3) 
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Using the eq.(2.2)-(2.4), equation (2.1) becomes 
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i.e 
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which produces the inequality 

x 1  x 2  x 3  x 4q


i1

4

x iq
.

 
on the other hand, we have  

,4,1,  0 Xixx iqi   

and 

x iq
 0  x i  0,

 
and finally, we also have: 

. and R  where, Xxxx iqiqi    

Consequently  
q

.   is a norm and the proposition is proved. 

 Proposition  Let  )(.,.,.,.),( qX   be a  Q   normed space. Then for all  Xxxxx 4321 ,,,  , we have:  
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 Proof : We know from (2.1) that 
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Similarly computing other seven terms in (2.6) and adding we obtain the required result. 

 Proposition:  Let  X,. , . , . , .q   be a  Q   normed space. Then for all  x1 ,x2 ,x3 ,x4  X,   we have:  
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 Proof : From proposition 05 and using following inequalities 
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we obtain the required (2.7). 
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