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ABSTRACT 
 

In this paper, we establish some new results in  )(SQ  inner product. These are different from the results 

published in the book of S. S.  Dragomir titled "Semi- Inner Products and Application". 
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PRELIMINARIES 

 

Dragomir (see, [2] and [3])  introduced some generalization of inner product in a real or complex linear space. 
The following definitions are used by Dragomir in [2]. 

 Definition   A mapping . , . , . , .sq : X4    ,   is said to be a sesqui- quaternary-inner 

product, or  )(SQ  inner product, for short, if the following conditions are satisfied: 

 i    sqsqsq xxxxxxxxxxxxx ),,,(),,,(),,,( 5432543154321    where  ,    and  

),5,1(  iXxi   

 ,),,,(),,,()( 34124321 sqsq xxxxxxxxii    

 ,),,,(),,,)(( 21434321 sqsq xxxxxxxxiii    

 0),,,)(( 1111 sqxxxxiv    if    ,0, 11  xXx   

 v   One has the following Schwartz type inequality 

,),,,(),,,(
4

1

4

4321 sqiiii

i

sq xxxxxxxx 


       (1.1) 

for all  ).4,1(,  iXxi   

By the definition of  )(SQ  inner product, it is easy to see that  . , . , . , ,sq   is linear in the third variable and 

antilinear in the second and fourth variables and the number  x1 ,x1 ,x2 ,x2sq   is real for every  x1 ,x2  X.   

Note that  )(Q  inner product space is a  )(SQ  inner product. 

Dragomir [2] also pointed out the following propositions that followed by the definition of  SQ  inner product 

(see definition 01 given above) using two vectors. 

 Proposition  Let   ).,(
q

X   be a  SQ  normed space. Then for all  Xxx 21,   , we have 
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and  
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MAIN RESULTS 
 
Using the theories given in ([1] - [6]), here our main object is to extend the idea of Dragomir [2] given in equation 

(1.2) and inequality (1.3) from two vectors to four vectors. 

 Proposition  Let  )(.,.,.,.),( sqX   be a  )(SQ  -inner product space. Then the mapping  

,),,,( ,R:. 4
1

sqsqsq
xxxxxX   

is a norm on  X  . 
 Proof Using definition 1 of inner product, we can easily calculate  
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 .,,, 4321 Xxxxx    

Using the inequality (1.1), we have  

  ,,,,Re
3

sqjsqisqjiii xxxxxx          (2.2) 
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Equation.(1.1) becomes 
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which produces the inequality 

x 1  x 2  x 3  x 4sq


i1

4

x isq
,

 
on the other hand, we have  

Xixx isqi  4,1,  0  

and 

0 0  isqi xx  

and finally, we also have : 

Xxxx isqisqi   and R  where,   

Consequently  
sq

.   is a norm and the proposition 03 is proved. 

 Proposition:  Let  )(.,.,.,.),( sqX   be a  SQ   normed space. Then for all  Xxxxx 4321 ,,,   , we have:  
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 Proof : We know that  
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Computing other terms of the type  
4

4321 sq
xxxx    adding and simplifying the results, we obtain the 

required result (2.6). 

 Proposition: Let  )(.,.,.,.),( sqX   be a  SQ  normed space. Then for all  Xxxxx 4321 ,,,   we have:  
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    (2.8) 

 

 Proof : From proposition 4 and using the inequalities    
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 we obtain the required inequality (2.8). 
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