New Results in $S Q$-Inner Product

Farooq Ahmad ${ }^{1}$, Sifat Hussain ${ }^{2}$, M. Z. Sarikaya ${ }^{3}$, N. A. Mir ${ }^{4}$, Erhan Set ${ }^{5}$
${ }^{1}$ Mathematics Department, Majmaah University, College of Science, Alzulfi, KSA
${ }^{2}$ Mathematics Department, Islamia University, Bahawalpur, Pakistan
${ }^{3}$ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
${ }^{4}$ Mathematics Department, Rapha University, Islamabad, Pakistan
${ }^{5}$ Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey

Received: March 2, 2015
Accepted: May 9, 2015

Abstract

In this paper, we establish some new results in $(S Q)$ - inner product. These are different from the results published in the book of S. S. Dragomir titled "Semi- Inner Products and Application".

KEYWORDS: Inner product, Complex inner product, SQ-inner product,

PRELIMINARIES

Dragomir (see, [2] and [3]) introduced some generalization of inner product in a real or complex linear space. The following definitions are used by Dragomir in [2].

Definition A mapping $(., ., ., .)_{s q}: X^{4} \rightarrow \mathbb{k}(\mathbb{k}=\mathbb{R}, \mathbb{C})$ is said to be a sesqui- quaternary-inner product, or $(S Q)$ - inner product, for short, if the following conditions are satisfied:
(i) $\quad\left(\alpha x_{1}+\beta x_{2}, x_{3}, x_{4}, x_{5}\right)_{s q}=\alpha\left(x_{1}, x_{3}, x_{4}, x_{5}\right)_{s q}+\beta\left(x_{2}, x_{3}, x_{4}, x_{5}\right)_{s q} \quad$ where $\quad \alpha, \beta \in \mathbb{k} \quad$ and $x_{i} \in X(i=\overline{1,5})$,
(ii) $\overline{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)_{s q}}=\left(x_{2}, x_{1}, x_{4}, x_{3}\right)_{s q}$,
(iii) $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)_{s q}=\left(x_{3}, x_{4}, x_{1}, x_{2}\right)_{s q}$,
(iv) $\left(x_{1}, x_{1}, x_{1}, x_{1}\right)_{s q}>0 \quad$ if $\quad x_{1} \in X, x_{1} \neq 0$,
(v) One has the following Schwartz type inequality

$$
\begin{equation*}
\left|\left(x_{1}, x_{2}, x_{3}, x_{4}\right)_{s q}\right|^{4} \leq \prod_{i=1}^{4}\left(x_{i}, x_{i}, x_{i}, x_{i}\right)_{s q} \tag{1.1}
\end{equation*}
$$

for all $x_{i} \in X,(i=\overline{1,4})$.
By the definition of $(S Q)$ - inner product, it is easy to see that $(., ., .,,)_{s q}$ is linear in the third variable and antilinear in the second and fourth variables and the number $\left(x_{1}, x_{1}, x_{2}, x_{2}\right)_{s q}$ is real for every $x_{1}, x_{2} \in X$.

Note that (Q) - inner product space is a $(S Q)$ - inner product.
Dragomir [2] also pointed out the following propositions that followed by the definition of $S Q$ - inner product (see definition 01 given above) using two vectors.

Proposition Let $\left(X,\| \| \|_{q}\right)$ be a $S Q$ - normed space. Then for all $x_{1}, x_{2} \in X$, we have

$$
\begin{aligned}
\left\|x_{1}+x_{2}\right\|_{s q}^{4}+\left\|x_{1}-x_{2}\right\|_{s q}^{4}= & 2\left(\left\|x_{1}\right\|_{s q}^{4}+\left\|x_{2}\right\|_{s q}^{4}\right)+4\left(x_{1}, x_{1}, x_{2}, x_{2}\right)_{s q} \\
& +4 \operatorname{Re}\left(x_{1}, x_{2}, x_{1}, x_{2}\right)_{s q}+4 \operatorname{Re}\left(x_{1}, x_{2}, x_{2}, x_{1}\right)_{s q}
\end{aligned}
$$

and

$$
\left\|x_{1}+x_{2}\right\|_{s q}^{4}+\left\|x_{1}-x_{2}\right\|_{s q}^{4} \leq 2\left(\left\|x_{1}\right\|_{s q}^{4}+\left\|x_{2}\right\|_{s q}^{4}\right)+12\left\|x_{1}\right\|_{s q}^{2}\left\|x_{2}\right\|_{s q}^{2} .
$$

MAIN RESULTS

Using the theories given in ([1]-[6]), here our ma $-1 \cdot \cdots$ s to extend the idea of Dragomir [2] given in equation (1.2) and inequality (1.3) from two vectors to four vect

Proposition Let $\left(X,(., ., .,)_{s q}\right)$ be a $(S Q)$-inuer proviuct space. Then the mapping

$$
\|\cdot\|_{s q}: X \rightarrow \mathrm{R},\|x\|_{s q}=(x, x, x, x)_{s q}^{\frac{1}{4}},
$$

is a norm on X.
Proof Using definition 1 of inner product, we can easily calculate

$$
\begin{aligned}
\left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{s q}^{4}= & \sum_{i=1}^{4}\left\|x_{i}\right\|_{s q}^{4}+4 \sum_{i \neq j=1}^{4} \operatorname{Re}\left(x_{i}, x_{i}, x_{i}, x_{j}\right)_{s q} \\
& +2 \sum_{i \neq j=1}^{4}\left(x_{i}, x_{i}, x_{j}, x_{j}\right)_{s q}+2 \sum_{i \neq j=1}^{4} \operatorname{Re}\left(x_{j}, x_{i}, x_{j}, x_{i}\right)_{s q} \\
& +2 \sum_{i \neq j=1}^{4} \operatorname{Re}\left(x_{i}, x_{j}, x_{j}, x_{i}\right)_{s q}+2 \sum_{i \neq j \neq k=1}^{4} \operatorname{Re}\left(x_{i}, x_{i}, x_{j}, x_{k}\right)_{s q} \\
& +2 \sum_{i \neq j \neq k=1}^{4} \operatorname{Re}\left(x_{i}, x_{j}, x_{k}, x_{i}\right)_{s q}+\sum_{i \neq j \neq k=1}^{4} \operatorname{Re}\left(x_{j}, x_{i}, x_{k}, x_{i}\right)_{s q} \\
& +4 \operatorname{Re}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)_{s q}+4 \operatorname{Re}\left(x_{1}, x_{2}, x_{4}, x_{3}\right)_{s q} \\
& +4 \operatorname{Re}\left(x_{1}, x_{3}, x_{2}, x_{4}\right)_{s q}+4 \operatorname{Re}\left(x_{4}, x_{2}, x_{1}, x_{3}\right)_{s q} \\
& +4 \operatorname{Re}\left(x_{2}, x_{3}, x_{1}, x_{4}\right)_{s q}+4 \operatorname{Re}\left(x_{3}, x_{2}, x_{1}, x_{4}\right)_{s q}
\end{aligned}
$$

$\forall x_{1}, x_{2}, x_{3}, x_{4} \in X$.
Using the inequality (1.1), we have

$$
\begin{align*}
& \operatorname{Re}\left(x_{i}, x_{i}, x_{i}, x_{j}\right)_{s q} \leq\left\|x_{i}\right\|_{s q}^{3}\left\|x_{j}\right\|_{s q} \tag{2.2}\\
& \operatorname{Re}\left(x_{i}, x_{i}, x_{j}, x_{j}\right)_{s q} \leq\left\|x_{i}\right\|_{s q}^{2}\left\|x_{j}\right\|_{s q}^{2} \tag{2.3}\\
& \operatorname{Re}\left(x_{i}, x_{i}, x_{j}, x_{k}\right)_{s q} \leq\left\|x_{i}\right\|_{s q}^{2}\left\|x_{j}\right\|_{s q}\left\|x_{k}\right\|_{s q} . \tag{2.4}
\end{align*}
$$

Equation.(1.1) becomes

$$
\begin{align*}
\left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{s q}^{4} \leq & \sum_{i=1}^{4}\left\|x_{i}\right\|_{s q}+4 \sum_{i \neq j=1}^{4}\left(\left\|x_{i}\right\|_{s q}^{3}\left\|x_{j}\right\|_{s q}\right) \\
& +6 \sum_{i \neq j=1}^{4}\left(\left\|x_{i}\right\|_{s q}^{2}\left\|x_{j}\right\|_{s q}^{2}\right) \tag{2.5}\\
& +12 \sum_{i \neq j \neq k=1}^{4}\left(\left\|x_{i}\right\|_{s q}^{2}\left\|x_{j}\right\|_{s q}\left\|x_{k}\right\|_{s q}\right) \\
& +\sum_{i \neq j \neq k \neq l=1}^{4}\left(\left\|x_{i}\right\|_{s q}\left\|x_{j}\right\|_{s q}\left\|x_{k}\right\|_{s q}\left\|x_{l}\right\|_{s q}\right)
\end{align*}
$$

implies

$$
\left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{s q}^{4} \leq\left(\sum_{i=1}^{4}\left\|x_{i}\right\|_{s q}\right)^{4}
$$

which produces the inequality

$$
\left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{s q} \leq \sum_{i=1}^{4}\left\|x_{i}\right\|_{s q},
$$

on the other hand, we have

$$
\left\|x_{i}\right\|_{s q} \geq 0 \forall x_{i}, i=\overline{1,4} \in X
$$

and

$$
\left\|x_{i}\right\|_{s q}=0 \Rightarrow x_{i}=0
$$

and finally, we also have :

$$
\left\|\alpha x_{i}\right\|_{s q}=|\alpha|\left\|x_{i}\right\|_{s q}, \text { where } \alpha \in \mathrm{R} \text { and } x_{i} \in X
$$

Consequently $\|\cdot\|_{s q}$ is a norm and the proposition 03 is proved.
Proposition: Let $\left(X,(., \ldots, .,)_{s q}\right)$ be a $S Q$ normed space. Then for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$, we have:

$$
\left.\begin{array}{l}
\left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{s q}^{4}+\left\|x_{1}+x_{2}-x_{3}-x_{4}\right\|_{s q}^{4} \\
\quad+\left\|x_{1}-x_{2}+x_{3}-x_{4}\right\|_{s q}^{4}+\left\|x_{1}-x_{2}-x_{3}+x_{4}\right\|_{s q}^{4} \\
\quad+\left\|x_{1}+x_{2}+x_{3}-x_{4}\right\|_{s q}^{4}+\left\|x_{1}+x_{2}-x_{3}+x_{4}\right\|_{s q}^{4} \\
\quad \quad+\left\|x_{1}-x_{2}+x_{3}+x_{4}\right\|_{s q}^{4}+\left\|x_{4}+x_{2}+x_{3}-x_{1}\right\|_{s q}^{4} \tag{2.6}\\
=8 \sum_{i=1}^{4}\left\|x_{i}\right\|_{s q}^{4}
\end{array} \quad+16 \sum_{i \neq j=1}^{4}\left(x_{i}, x_{i}, x_{j}, x_{j}\right)_{s q}\right) .
$$

Proof : We know that

$$
\begin{align*}
& \left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{s q}^{4} \\
& =\sum_{i=1}^{4}\left\|x_{i}\right\|_{s q}^{4}+4 \sum_{i \neq j=1}^{4} \operatorname{Re}\left(x_{i}, x_{i}, x_{i}, x_{j}\right)_{s q} \\
& +2 \sum_{i \neq j=1}^{4}\left(x_{i}, x_{i}, x_{j}, x_{j}\right)_{s q}+2 \sum_{i \neq j=1}^{4} \operatorname{Re}\left(x_{j}, x_{i}, x_{j}, x_{i}\right)_{s q} \tag{2.7}\\
& +2 \sum_{i \neq j=1}^{4} \operatorname{Re}\left(x_{i}, x_{j}, x_{j}, x_{i}\right)_{s q}+2 \sum_{i \neq j \neq k=1}^{4} \operatorname{Re}\left(x_{i}, x_{i}, x_{j}, x_{k}\right)_{s q} \\
& +2 \sum_{i \neq j \neq k=1}^{4} \operatorname{Re}\left(x_{i}, x_{j}, x_{k}, x_{i}\right)_{s q}+\sum_{i \neq j \neq k=1}^{4} \operatorname{Re}\left(x_{j}, x_{i}, x_{k}, x_{i}\right)_{s q} \\
& +4 \operatorname{Re}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)_{s q}+4 \operatorname{Re}\left(x_{1}, x_{2}, x_{4}, x_{3}\right)_{s q} \\
& \quad+4 \operatorname{Re}\left(x_{1}, x_{3}, x_{2}, x_{4}\right)_{s q}+4 \operatorname{Re}\left(x_{4}, x_{2}, x_{1}, x_{3}\right)_{s q} \\
& \quad+4 \operatorname{Re}\left(x_{2}, x_{3}, x_{1}, x_{4}\right)_{s q}+4 \operatorname{Re}\left(x_{3}, x_{2}, x_{1}, x_{4}\right)_{s q} .
\end{align*}
$$

Computing other terms of the type $\left\|x_{1} \pm x_{2} \pm x_{3} \pm x_{4}\right\|_{s q}^{4}$ adding and simplifying the results, we obtain the required result (2.6).

Proposition: Let $\left(X,(., ., .,)_{s q}\right)$ be a $S Q-$ normed space. Then for all $x_{1}, x_{2}, x_{3}, x_{4} \in X$ we have:

$$
\begin{align*}
& \left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{s q}^{4}+\left\|x_{1}+x_{2}-x_{3}-x_{4}\right\|_{s q}^{4} \\
& \quad+\left\|x_{1}-x_{2}+x_{3}-x_{4}\right\|_{s q}+\left\|x_{1}-x_{2}-x_{3}+x_{4}\right\|_{s q}^{4} \\
& \quad+\left\|x_{1}+x_{2}+x_{3}-x_{4}\right\|_{s q}^{4}+\left\|x_{1}+x_{2}-x_{3}+x_{4}\right\|_{s q}^{4} \tag{2.8}\\
& \quad+\left\|x_{1}-x_{2}+x_{3}+x_{4}\right\|_{s q}^{4}+\left\|x_{4}+x_{2}+x_{3}-x_{1}\right\|_{s q}^{4} \\
& \leq 8 \sum_{i=1}^{4}\left\|x_{i}\right\|_{s q}^{4}+48 \sum_{i \neq j=1}^{4}\left\|x_{i}\right\|_{s q}^{2}\left\|x_{j}\right\|_{s q}^{2}
\end{align*}
$$

Proof : From proposition 4 and using the inequalities

$$
\begin{aligned}
& \operatorname{Re}\left(x_{i}, x_{i}, x_{j}, x_{j}\right)_{s q} \leq\left\|x_{i}\right\|_{s q}^{2}\left\|x_{j}\right\|_{s q}^{2} \\
& \operatorname{Re}\left(x_{j}, x_{i}, x_{j}, x_{i}\right)_{s q} \leq\left\|x_{j}\right\|_{s q}^{2}\left\|x_{i}\right\|_{s q}^{2} \\
& \operatorname{Re}\left(x_{i}, x_{j}, x_{j}, x_{i}\right)_{s q} \leq\left\|x_{i}\right\|_{s q}^{2}\left\|x_{j}\right\|_{s q}^{2}
\end{aligned}
$$

we obtain the required inequality (2.8).

REFERENCES

[1] M. Crasmareanu and S. S. Dragomir, 2k-inner products and 2k-Riemannian Metrics, RGMIA Res. Rep. Coll. 18 (2000).
[2] S. S Dragomir, Semi- Inner Products and Application, School of Computer Science and Mathematics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.
[3] S. S Dragomir, Representation of continuous linear functional on complete SQ-inner-product spaces, Anal. Univ. Timisoara, Sci. Math., 30 (1992), 241-250.
[4] S. S. Dragomir, Smooth normed spaces of (BD)-type, J. Fac. Sci. Univ. Tokyo, 39 (1992), 1-15.
[5] S. S. Kim and M. Crasmareanu, Best approximations and orthogonalities in 2 k -inner product spaces, Bull. Korean Math. Soc. 43 (2) (2006), 377-387.
[6] A. Misiak and A. Ryz, n-inner product spaces and projections, Mathematica Bohemica, 125 (2000), 87-97.

