
 

J. Appl. Environ. Biol. Sci., 5(5) 330-338, 2015 

© 2015, TextRoad Publication 

ISSN: 2090-4274 

Journal of Applied Environmental  

and Biological Sciences 

www.textroad.com 
 

Corresponding Author: Sajjad Hussain, Punjab Higher Education Department, Government College Layyah, Pakistan. 
+923336167923  Email: sajjadgut@gmail.com  

MHD Boundary Layer Flow and Heat Transfer for Micropolar Fluids over a 

Shrinking Sheet 
 

Sajjad Hussain1,a, Bagh Ali2 , Farooq Ahmad3 

 

 1Punjab Higher Education Department, Government College Layyah, Punjab, Pakistan 
2Department of Mathematics, Chenab College of Advanced Studies Faisal Abad, Pakistan 

3Mathematics Department, Majmaah University, College of Science, Alzulfi, KSA 
3Punjab Higher Education Department, Government College Bhakkar, Punjab, Pakistan 

  Received: March 31, 2015 
Accepted: May 9, 2015 

ABSTRACT 

 

The MHD boundary layer flow and heat transfer for micropolar fluids over a shrinking sheet is investigated 

numerically. The governing partial differential equations of motion have been transformed to ordinary differential 

form by using suitable similarity functions.  The resulting equations have been solved by using Runge-Kutta method 

with shooting technique. Numerical results have been obtained for several values of the parameters involved in the 

study namely, magnetic parameter M, suction parameter S, micropolar parameter D, Prandtl number Pr and Ekert 

number Ec. The effects of these parameters have been observed on velocity, microrotation and temperature functions. 

The results have been presented in graphical form. 
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1. INTRODUCTION 

 

Over the past few decades, fluid dynamics at micro and nano scales has been expanding research field. 

The effect of molecular spin is not considered in classical continuum, when the channel size is comparable to the 

molecular size. Such motions can be described with micro continuum theory developed by Eringen [1–4].  

Micropolar theory offered by Eringen [2] is a higher-order theory for fluid dynamics. Each material point is a finite 

size particle, which contains six degrees of freedom (Three translation and Three rotation). In Continuum 

Mechanics, each material point only has three DOF. The extra three rotational DOF can be used to describe the 

gyration not the vorticity. Hence, for solving gyration, the balance law of angular momentum is given to take into 

account the effect of molecular spin. Physically, micropolar fluids can be seen in ferrofluids, blood flows, bubbly 

liquids, liquid crystals, and so on, all of them containing intrinsic polarities. Excellent reviews about the applications 

of micropolar fluids have been presented by Airman et al. [5, 6]. A comprehensive review of the subject and 

applications of micropolar fluid mechanics was given by Khonsari and Brewe [7], Chamkha et al. [8], Bachok et al. 

[9] and Kim and Lee [10]. Moreover, Lukaszewicz [11] provided extensive surveys of literature of the theory of 

micro polar fluids. 

The flow induced by stretching boundaries is important for metal industries and extrusion processes in 

plastic. The stretching problem steady flow has been studied extremely in various topics; such as porous medium, 

MHD flows, heat transfer analysis and Non-Newtonian fluids. But the flow due to a shrinking surface is different 

from forward stretching flow, as first observed by Wang [12]. Goldstein [13] reported that the shrinking flow is 

essentially a backward flow. After few years, Miklavcic and Wang [14] established the existence and uniqueness of 

the similarity solution of the equation for the steady flow due to a shrinking sheet and they also reported that an 

adequate suction is necessary to maintain the steady flow. If the physical background of the flow is examined then it 

can be observed that the vorticity generated due to the shrinking of sheet is not confined within the boundary layer, 

and the steady flow exists only when adequate suction on the boundary is imposed. Later on, Hayat et al. [15-16] 

obtained analytic solutions of magnetohydrodynamic (MHD) rotating and non-rotating flows of a second grade fluid 

over a shrinking sheet using homotopy analysis method (HAM). Fang [17] reported an analytic solution of the 

boundary layer flow over a shrinking sheet with a power law surface velocity and wall mass transfer. Also, Fang and 

Zhang [18] found a closed-form analytic solution for two dimensional MHD flow over a porous shrinking sheet 

subjected to wall mass transfer. Further, Fang and his co-authors [19–20] discussed some other important aspects of 

shrinking flow. Bhattacharyya [21] studied the flow over an exponentially shrinking sheet. An analytic solution of 

steady two dimensional MHD rotating flow of a second grade over a porous shrinking surface was reported by Faraz 

and Khan [22] using homotopy perturbation method. Yacob and Ishak [23] and Bhattacharyya et al. [24] discussed 
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the micropolar fluid flow over a shrinking sheet with out and with thermal radiation, respectively. Sajjad et al.[25] 

considered MHD  boundary  layer  flow  of  micropolar  fluids  over  a  permeable  shrinking  sheet. Mishra and Jena 

[27] presented numerical solution of boundary layer MHD flow with viscous dissipation.  

This work examines MHD boundary layer flow and heat transfer for micropolar fluids over a shrinking 

sheet. The effects of the physical parameters of the study have been observed on fluid velocity, microrotation and 

temperature distribution. Comparison of the results for Newtonian fluids and micropolar fluids is presented. The 

effect of micropolar parameter D is particularly taken in to account. 

 

2. MATHEMATICAL ANALYSIS 

 

Consider viscous and electrically conducting fluid flow over a permeable shrinking sheet which coincides with the 

plane �=0and the flow is confined in the region�>0. The fluid flow is incompressible, steady and two dimensional. 

The �- and �-axes are taken along and perpendicular to the sheet, respectively. Two equal and opposite forces are 

applied along the�-axis so that the sheet is stretched keeping the origin fixed. A uniform magnetic field of strength �0 

is assumed to be applied normal to the sheet. The magnetic Reynolds number is taken to be small and therefore the 

induced magnetic field is neglected. All the fluid properties are assumed to be constant. The body couple is neglected.  

 

The governing equations of motion are given below: 
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where vu,  are velocity components along x and y directions and 
3

w  is microrotation component. � is the 

density, � is the coefficient of viscosity, κ   is the vortex density, γ  is the spin gradient viscosity coefficient, � is the 

electrical conductivity of the fluid, � is the temperature, 
∞

T  is the free stream temperature, 
0

κ  is the thermal 

conductivity of the fluid, 
p

c is the specific heat at constant pressure, and 
0

Q  is the volumetric rate of heat 

generation or absorption. 

The boundary conditions are 

ww
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where �>0, (0<�<1) is the shrinking constant, 

w

T  is temperature of the sheet, and 
w

v > 0) is a prescribed distribution of wall mass suction through the porous 

sheet. 

The stream function ψψ = (�, �) is such that    
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Using similarity transformations: 
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 Whereυ  is kinematic viscosity coefficient. The equation of continuity is identically satisfied and the equations 

(2) to (4) respectively yield: 
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3. RESULTS & DISCUSSION 

 

The ordinary differential equations (9) to (11) are solved subject to the boundary conditions (12). The 

numerical results have been computed for different values of the parameters namelyM , S,λ , D, Pr and Ec .The 

effects of these parameters have been studied on  velocity, microrotation, and heat transfer distributions. It is to know 

that the problem reduces to Newtonian fluids flow [27] when D and 
3

w vanish.  The comparison of the results for 

Newtonian fluids and micropolar fluids is shown in table 1 for skin friction coefficient )0(f ′′− . It is noted that the 

magnitude of )0(f ′′−  is lesser for micropolar fluids than for Newtonian fluids. Table 2 presents the effect of 

micropolar parameter D on skin friction coefficient and on couple stress )0(g′− . The magnitude of skin friction 

coefficient decreases while that of couple stress increases with increase in the values of D. 

The effect of magnetic parameterM on the horizontal velocity f ′  is presented in Fig.1. The magnetic field 

increases the horizontal flow of the fluid. The boundary layer thickness decreases with increase in the values of 

magnetic field.  Fig.2 illustrates the curves of f ′  due to suction parameter S. This component of velocity increases 

with increase in the values of S. The boundary layer thickness also decreases in this case. The magnetic field has 

small decreasing effect on the non dimensional temperature function θ  as shown in Fig.3. The suction parameter S 

has decreasing effect onθ  , it can be observed in the Fig. 4 that the effect of S is significant. 

 Fig.5 demonstrates the effect of magnetic field on the micro rotation g. The curve pattern shows that the 

microrotation decreases near the boundary and then increases. The effect of the suction parameter S, on microrotation 

is depicted in Fig.6. It is seen that the microrotation component curves have same pattern under S as in case of 

Magnetic parameter M.  
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 Fig.7 illustrates the temperature distribution curves under the effect of Prandtl number. The temperature function 

increases with increase in the values of Prandtl number. Fig.8 shows that temperature function θ   increases with 

increase in the magnitude ofλ . The Eckert number shows increasing effect on θ
  

as depicted in Fig.9. The effect of 

micropolar parameter D is observed on fluid velocity, microrotation and temperature functions.  Fig.10 indicates that 

the velocity component decreases with increase in the values of D. Fig.11 shows that microrotation component g 

increases with increase in the values of D. The temperature function increases with D, as demonstrated in fig.12. 

 

Table 1: Results for )0(f ′′− , when M=2 

S Results for micropolar 

fluids 

Present results for 

Newtonian fluids 

Mishra and Jena [27] 

2 1.72054 2.41358 2.414476 

3 2.29087 3.301724 3.302813 

4 2.89661 4.235123 4.236068 

5 3.52243 5.145362  

 

Table 2: Results for )0(f ′′− , and )0(g′− for various values of micropolar parameter D. 

D )0(f ′′−  )0(g′−  

0.5 1.72054 0.66256 

1.5 1.0001 1.52318 

3.0 0.79692 3.78869 

5.0 0.59003 5.10607 

 

 
 

Fig.1: graph of  f ′  for different values of M. 

 

 
 

Fig.2: Graph of  f ′  for different values of S. 
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Fig.3: Graph of  θ  for different values of M. 
 

 
 

Fig.4: Graph of  θ  for different values of S. 
 

 
 

Fig.5: Graph of g for different values of M. 
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Fig.6: Graph of g for different values of S. 
 

 
 

Fig.7: Graph of  θ  for different values of Pr. 

 

 
 

Fig.8: Graph of  θ  for different values of  λ  . 
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Fig.9: Graph of  θ  for different values of  Ec  . 

 

 
 

Fig.10: Graph of  f ′  for different values of D. 

 

 
 

Fig.11: Graph of g for different values of D. 
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Fig.12: Graph of  θ  for different values of D. 

 

4. CONCLUSION 

 

Numerical solution of MHD boundary layer flow and heat transfer for micropolar fluids over a shrinking 

sheet has been obtained to examine the effects of physical parameters involved in this study. The main findings of this 

work are as follows: 

• The magnitude of skin friction coefficient
 

)0(f ′′−  is lesser for micropolar fluids than for 

Newtonian fluids.  

• The micropolar parameter D decreases the magnitude of skin friction coefficient but it increases 

couple stress )0(g′− . 

• Both the magnetic parameter M  and suction parameter S increase f ′ and thus cause to decrease 

the boundary layer thickness. 

• Both the magnetic field and suction at the surface decrease the non dimensional temperature 

function θ but the effect of S is more prominent 

• The microrotation decreases near the boundary and then increases under the influence of S, as well 

as that of M . 

• The temperature function increases with increase in the values of Pr,λ and Ec. 

•  The micropolar parameter D decreases f ′  but increases microrotation and temperature 

distribution. 
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