

J. Appl. Environ. Biol. Sci., 5(5) 321-329, 2015 © 2015, TextRoad Publication

Ideal μ - Weak Structure Space with Some Applications

M. M. Khalf¹, F. Ahmad^{2,*}, S. Hussain³

1,2,3 Mathematics Department, Majmaah University, College of Science, Alzulfi, KSA

Received: March 3, 2015 Accepted: April 19, 2015

ABSTRACT

A. Császár, [13] introduced generalized structures on a nonempty set *X* called a generalized topology. Also, A. Császár, [2] introduced and studied more generalized topology and generalized continuity between generalized spaces. The purpose of this paper is to define $i_{\tau_{\mu}}^{*}$ and $c_{\tau_{\mu}}^{*}$ under more general conditions and to show that the important properties of these operations remain valid under these conditions, Also we define and study weaker form of τ_{μ} - open sets, τ_{μ} - continuity and an ideal *- μ - weak structure space and μ -weak local function with some applications on a set *X* are defined and their properties are discussed.

KEYWORDS: ideal *- μ - weak structure space, μ -weak local function,

1. INTRODUCTION

A. Császár, [3] has introduced a new notion of structures called weak structure. Every generalized topology is a weak structure. In [3], A. Császár, defined some structures and operators under more general conditions. Let X be a nonempty set and $\tau \in P(X)$ where P(X) is the power set of X. Then τ is called a weak structure [3] on X if $\phi \in \tau$. A nonempty set X with a weak structure τ is denoted by the pair (X, τ) and is called simply a space (X, τ) . The elements of τ are called τ -open sets and the complements of τ -open sets are called τ -closed sets [14]. For a weak structure τ on X, the intersection of all τ -closed sets containing a subset λ of X is denoted by $c_{\tau}(\lambda)$ and the union of all τ -open sets contained in λ is denoted λ by $i_{\tau}(\lambda)$. A subfamily $\tau \subset P(X)$ is called a generalized topology [2] if $\phi \in \tau$ and τ is closed under arbitrary union. A generalized topology on X is said to be a quasitopology [14] if τ is closed under finite intersection. The concept of ideals in topological spaces is treated in the classic text by Kuratowski [5] and Vaidyanathaswamy [11]. Jankovic and Ha- Mlett [4] investigated further properties of ideal spaces. An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which Satisfies the following properties: (1) $A \in I$ and $B \subseteq A$ implies $B \in I$; (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space (or an ideal space) is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I) . For a subset $A \subseteq X$, $A^*(I, \tau) = \{x \in X : A \cap U \notin I \text{ for every } U \in \tau(X, x)\}$ is called the local function of A with respect to I and τ (see [5]). We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator $Cl^*(.)$ or a topology $\tau^*(I,\tau)$ called the *- topology, finer than τ , is defined by $Cl^*(A) =$ $A \cup A^*$ (see [11]). Also, throughout the paper The family $\tau_{\mu} = \{\mu \cap \lambda : \lambda \in \tau\}$ is the τ structure induced over $\mu \subset X$ by τ is called τ_{μ} - weak structure [15] (by short $\tau_{\mu}S$). The elements of τ_{μ} are called τ_{μ} -open set; a set v is a τ_{μ} -closed set if $\mu - v \in \tau_{\mu}$. We note τ_{μ}^{c} the family of all τ_{μ} -closed set. Let $v \in \tau_{\mu}$ structure we define the τ_{μ} interior (by short $i_{\tau_{\mu}}$ of τ as the finest τ_{μ} - pen sets contained in v that is, $i_{\tau_{\mu}}(v) = \bigcup_{\xi \in \tau_{\mu}} \{\xi : \xi \subseteq v\}$. Let $v \in \tau_{\mu}$ structure we define the τ_{μ} -closure (by short $c_{\tau_{\mu}}$) of τ as the smallest τ_{μ} - closed sets which contained in v that is, $c_{\tau_{\mu}}(v) = \bigcap_{\xi \in \tau_{\mu}} \{\mu - \xi : v \subseteq \mu - \xi\}. \text{ A subset } \lambda \text{ of } X \text{ is said to be } \tau_{\mu} \text{-sso}(\lambda) \text{ (resp. } \tau_{\mu} \text{-so}(\lambda) \text{ , } \tau_{\mu} \text{-spo}(\lambda) \text{ , } \tau_{\mu} \text{-spo}(\lambda) \text{)}$ $\text{if } \lambda \subset i_{\tau_{\mu}}\left(c_{\tau_{\mu}}(\lambda)\right) \text{ (resp. } \lambda \subset c_{\tau_{\mu}}\left(i_{\tau_{\mu}}(\lambda)\right), \ \lambda \subset i_{\tau_{\mu}}\left(c_{\tau_{\mu}}(\lambda)\right), \ \lambda \subset c_{\tau_{\mu}}(i_{\tau_{\mu}}(c_{\tau_{\mu}}(\lambda))) \text{ . We will denote}$ the family of all τ_{μ} - sso (resp. τ_{μ} -so, τ_{μ} -po, τ_{μ} -spo) sets in a space (X, τ), $\mu \subseteq X$ by τ_{μ} - sso(X) (resp. τ_{μ} so(X), τ_{μ} -po(X), τ_{μ} -spo(X)). The complement of the elements of τ_{μ} -sso(X) (resp. τ_{μ} -so(X), τ_{μ} -po(X), τ_{μ} spo(X)) as called τ_{μ} - ssc(X) (resp. τ_{μ} - sc(X), τ_{μ} - spc(X), sets. Let τ_{μ} be a $\tau_{\mu}S$, Let A and B be subsets of $\tau_{\mu}S$. If either A or B is τ_{μ} -so(X), then $i_{\tau_{\mu}}(c_{\tau_{\mu}}(A \cap B)) = i_{\tau_{\mu}}(c_{\tau_{\mu}}(A)) \cap i_{\tau_{\mu}}(c_{\tau_{\mu}}(B))$. For more details about weaker forms of τ_{μ} -open set see [15]. **Definition 1.1.** let (X, τ) be a , weak structure of $X, \lambda \subseteq X$ is called

(1) $\eta_{\tau_{\mu}}$ -set if $\lambda = U \cup B$ where $U \in \tau_{\mu}$ and B is $\tau_{\mu}ssc$ -set

^a Corresponding Author: Farooq Ahmad, Punjab Higher Education Department, Government College Bhakkar, Pakistan. +923336842936 Presently at Department of Mathematics, College of Science, Majmaah University, Alzulfi, KSA, +966597626606 Email: farooqgujar@gmail.com & f.ishaq@mu.edu.sa

(2) $\beta_{\tau_{\mu}}$ -set if $\lambda = U \cup B$ where $U \in \tau_{\mu}$ and B is $\tau_{\mu}sc$ -set

We denote the family of all $\eta_{\tau_{\mu}}$ -set (resp. $\beta_{\tau_{\mu}}$ -set) by $\eta_{\tau_{\mu}}(X)$ (resp. $\beta_{\tau_{\mu}}(X)$) **Remark 1.1.** (1) Since X is τ_{μ} -closed, as well as τ_{μ} -semiclosed. and so every τ_{μ} -open set is $\eta_{\tau_{\mu}}$ -sets, as well as $\beta_{\tau_{\mu}}$ -set

(2) If $X \in \tau_{\mu}$ every $\tau_{\mu}ssc$ -set is an $\eta_{\tau_{\mu}}$ -set. And every $\tau_{\mu}sc$ -set, is $\beta_{\tau_{\mu}}$ -set

(3) $\eta_{\tau_{\mu}}(X) \subset \beta_{\tau_{\mu}}(X)$

Example 1.1. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{c\}\}$. and $\mu = \{a, b, c\}$, then $\tau_{\mu} = \{\phi, \{a\}, \{b\}, \{c\}\}$. If $\lambda = \{a\}$, then $i_{\tau_{\mu}}(\lambda) = \{a\}$, then $i_{\tau_{\mu}}(\lambda) = \{a\} \subset \lambda$, and so λ is τ_{μ} -sc. Since $\lambda = \lambda \cap \{a\}, \{a\} \in \tau_{\mu}$. then $\lambda \in \eta_{\tau_{\mu}}(X)$.

Theorem 1.1. Let (X, τ) be a *, weak structure of X* and $A, \mu \in X$. , then the following stamens are equivalent: (1) λ is an $\eta_{\tau_{\mu}}$ -set

(2) $\lambda = U \cap c_{\tau_{\mu}}(\tau_{\mu} - sso(\lambda) \text{ for some } \tau_{\mu}\text{-open set } U \text{ and } \tau_{\mu}sso(X) \text{ is generalized topology on } X$

Proof

(1) \Rightarrow (2). Suppose λ is an η_{μ} -set. Then $\lambda = U \cap F$ where $U \in \tau_{\mu}$ and F is $\tau_{\mu}ssc$ -set. Now $\lambda \subseteq F$ implies that $c_{\tau_{\mu}}(\tau_{\mu} - sso(\lambda)) \subseteq F$, since $\tau_{\mu} - sso$ is a generalized space by Lemma 1.1 and so $\lambda \subseteq U \cap c_{\tau_{\mu}}(\tau_{\mu} - sso(\lambda)) \subseteq U \cap F = \lambda$ which implies that $\lambda = U \cap c_{\tau_{\mu}}(\tau_{\mu} - sso(\lambda))$.

(2) \Rightarrow (3). By Lemma 1.1, since $\tau_{\mu} - sso(\lambda)$ is a generalized space and so $c_{\tau_{\mu}}(\lambda)$ is $\tau_{\mu} - ssc$. Hence $\lambda \in \eta_{\tau_{\mu}}(X)$

Theorem 1.2. Let (X, τ) be a weak structure of X, $\lambda, \mu \subset X$, then the following stamens are equivalent:

(a)
$$\lambda \text{ is an } \eta_{\tau_{\mu}} \text{-set}$$

(b) $c_{\tau_{\mu}} \left(\tau_{\mu} - sso(\lambda) \right) \text{ is } \tau_{\mu} - ssc$

(c)
$$\lambda \cup \left(X - (\tau_{\mu} - sso(\lambda))\right)$$
 is $\tau_{\mu} - sso-set$

(d)
$$\lambda \subseteq i_{\tau_{\mu}}(\lambda \cup (X - c_{\tau_{\mu}}(\tau_{\mu} - sso(\lambda))))$$

Then $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d)$ **Proof**

 $(a) \Rightarrow (b). \text{ If } \lambda \text{ is an } \eta_{\tau_{\mu}} \text{-set }, \text{ by Theorem 1.1 }, \lambda = U \cap c_{\tau_{\mu}} (\tau_{\mu} - sso(\lambda)), \text{ for some } \tau_{\mu-} \text{ open set } U. \text{ Now } c_{\tau_{\mu}} (\tau_{\mu} - sso(\lambda)) - \lambda = c_{\tau_{\mu}} (\tau_{\mu} - sso(\lambda)) - (U \cap c_{\tau_{\mu}} (\tau_{\mu} - sso(\lambda))) = c_{\tau_{\mu}} (\tau_{\mu} - sso(\lambda)) \cap ((X - U) \cup (X - c_{\tau_{\mu}} (\tau_{\mu} - sso(\lambda)))) = c_{\tau_{\mu}} (\tau_{\mu} - sso(\lambda)) \cap ((X - U) \text{ and so } c_{\tau_{\mu}} (\tau_{\mu} - sso(\lambda)) - \lambda \text{ is } \tau_{\mu} - ssc$

(b) \Rightarrow (c) $c_{\tau_{\mu}}(\tau_{\mu} - sso(\lambda)) - \lambda$ is $\tau_{\mu} - ssc$, implies that $X - (c_{\tau_{\mu}}(\tau_{\mu} - sso(\lambda)) - \lambda)$ is $\tau_{\mu} - sso$, and so $\lambda \cup (X - c_{\tau_{\mu}}(\tau_{\mu} - sso(\lambda)))$ is $\tau_{\mu} - sso$.

(c) \Rightarrow (d). Since $\lambda \subseteq \lambda \cup (X - c_{\tau_{\mu}}(\tau_{\mu} - sso(\lambda)))$, by (c), $\lambda \subseteq i_{\tau_{\mu}}(\lambda \cup (X - c_{\tau_{\mu}}(\tau_{\mu} - sso(\lambda))))$. **Example 1.2** Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{c\}\}$, $\lambda = \mu = \{a, b, c\}$, and $\tau_{\mu} = \{\phi, \{a\}, \{b\}, \{c\}\}$. If $\lambda = \{a, b, c\}$, then $c_{\tau_{\mu}}(\tau_{\mu} - sso(\lambda)) - \lambda = \{d\}$ is $\tau_{\mu} - ssc(\lambda)$, and $\lambda \cup (X - c_{\tau_{\mu}}(\tau_{\mu} - sso(\lambda))) = \{a, b, c\} \cup \{X - X\} = \{a, b, c\} \cup \emptyset = \{a, b, c\} = \lambda$ is $\tau_{\mu} - sso$ -set but λ is not an $\eta_{\tau_{\mu}}$ -set **Definition 1.2** Let (X, τ) be a *weak structure of* X, $\lambda, \mu \subseteq X$. Then λ is said :- τ_{μ} -locally closed if $\lambda = G \cap F$ where G is τ_{μ} -open and F is τ_{μ} -closed

Remark 1.2 Since X is τ_{μ} -closed, every τ_{μ} -open set is τ_{μ} -locally closed. The following theorem is gives some properties of τ_{μ} -locally closed sets.

Theorem 1.3 Let (X, τ) be a *weak structure* space and $\lambda, \mu \subset X$. Then the following hold :

(a) If λ is τ_{μ} -locally closed, then $\lambda = U \cap c_{\tau_{\mu}}(\lambda)$ for some τ_{μ} -open set U

(b) If τ is a generalized topology and $\lambda = U \cap c_{\tau_{\mu}}(\lambda)$ for some τ_{μ} -open set U,

then λ is τ_{μ} -locally closed.

proof

(a) \Rightarrow (b). Suppose λ is a τ_{μ} -locally closed set. Then $\lambda = U \cap F$ where

 $U \in \tau_{\mu}$ and *F* is τ_{μ} -closed. Now $\lambda \subseteq F$ implies that $c_{\tau_{\mu}}(\lambda) \subset F$, by Lemma and so $\lambda \subset U \cap c_{\tau_{\mu}}(\lambda) \subset U \cap F = \lambda$ which implies that $\lambda = U \cap c_{\tau_{\mu}}(\lambda)$.

(b) \Rightarrow (a). If τ is a generalized topology, then $c_{\tau_{\mu}}(\lambda)$ is τ_{μ} -closed and so λ is

 τ_{μ} -locally closed.

Corollary 1.1 ([12], *Theorem* 2.8). Let (X, τ) be a generalized space and $\lambda, \mu \subset X$.

Then the following are equivalent.

(a) λ is τ_{μ} -locally closed.

(b) $\lambda = U \cap c_{\tau_{\mu}}(\lambda)$ for some τ_{μ} -open set U.

Theorem 1.4. Let (X,τ) be a WS space and $\lambda, \mu \subseteq X$. If λ is τ_{μ} -open, then λ

is an τ_{μ} – sso-set and an $\eta_{\tau_{\mu}}$ -set

Proof. If λ is τ_{μ} -open, then clearly, λ is τ_{μ} - sso-set and an $\eta_{\tau_{\mu}}$ -set.

Theorem 1.5. Let (X,τ) be a generalized space and $\lambda, \mu \subset X$. Consider the following statements.

(a) λ is τ_{μ} -open.

- (b) $\lambda \text{ is } \tau_{\mu} \text{sso-set and an } \eta_{\tau_{\mu}} \text{-set.}$
- (c) λ is τ_{μ} -open and τ_{μ} -locally closed.
- (d) λ is τ_{μ} -preopen and τ_{μ} -locally closed.
- (e) λ is τ_{μ} -preopen and an $\eta_{\tau_{\mu}}$ -set.
- (f) λ is τ_{μ} -preopen and a τ_{μ} spo-set.

Then $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (f)$. If τ_{μ} is a quasi-topology, then $(f) \Rightarrow (a)$. **proof**

(a) \Rightarrow (b). The proof follows from Theorem 1.3

(b) \Rightarrow (c). Since λ is an $\eta_{\tau_{\mu}} \tau$ -set, $\lambda = U \cap c_{\tau_{\mu}} ((\tau_{\mu} - sso(X)(\lambda))$ for some τ_{μ} -open set U. Since λ is $\tau_{\mu} - spo$ set, $c_{\tau_{\mu}} (c_{\tau_{\mu}} (\tau_{\mu} - sso(X)(\lambda)) = c_{\tau_{\mu}} (\lambda \cup c_{\tau_{\mu}} (i_{\tau_{\mu}} (c_{\tau_{\mu}} (\lambda))))$ by Lemma 2.2 of [3] and so $= c_{\tau_{\mu}} (c_{\tau_{\mu}} (i_{\tau_{\mu}} c_{\tau_{\mu}} (\lambda))) = c_{\tau_{\mu}} (i_{\tau_{\mu}} (c_{\tau_{\mu}} (\lambda))) = c_{\tau_{\mu}} (\tau_{\mu} - sso(X))(\lambda)$ which implies that $c_{\tau_{\mu}} (\tau_{\mu} - sso(X))(\lambda)$ is τ_{μ} -closed. Hence λ is τ_{μ} -locolly closed

The proofs of (c) \Rightarrow (d), (d) \Rightarrow (e) and (e) \Rightarrow (f) are clear.

(f) \Rightarrow (a). Conversely, suppose λ is both a τ_{μ} -preopen set and a $\tau_{\mu} - sso$ - set. Then $\lambda = U \cap F$ where U is τ_{μ} -open and $i_{\tau_{\mu}}(c_{\tau_{\mu}}(F)) = i_{\tau_{\mu}}(F)$. Since λ is τ_{μ} -preopen, $\lambda \subset i_{\tau_{\mu}}(c_{\tau_{\mu}}(\lambda)) = i_{\tau_{\mu}}(c_{\tau_{\mu}}(U \cap F)) \subset i_{\tau_{\mu}}(c_{\tau_{\mu}}(U)) \cap i_{\tau_{\mu}}(F) = i_{\tau_{\mu}}(c_{\tau_{\mu}}(U)) \cap i_{\tau_{\mu}}$. Hence $\lambda = \lambda \cap U \subset i_{\mu}c_{\tau_{\mu}}(U) \cap i_{\tau_{\mu}}(F) \cap U = U \cap i_{\tau_{\mu}}(F) \subset U \cap F = \lambda$. Therefore, $\lambda = U \cap i_{\tau_{\mu}}(F)$. Since τ_{μ} is a quasi-topology, λ is τ_{μ} -open

Definition 1.3. Let (X, τ) and (Y, γ) be a weak structures, $\mu \subset X$, $\mu' \subset Y$. A function $f: X \to Y$ is said to be $(\tau_{\mu}$ -continuous [2]) (resp., $(\eta_{\tau_{\mu}}$ -continuous, $\beta_{\tau_{\mu}}$ -Continuous, $\tau_{\mu}s$ -continuous, $\tau_{\mu}s$ -continuous, $\tau_{\mu}p$ -continuous, $\tau_{\mu}c$ -contin

Theorem 1.6. Let (X, τ) and (Y, γ) be a weak structure spaces and $\mu \subset X$, $\mu' \subset Y$ where (X, τ) is a quasi topological space, and let $f : X \to Y$

- be a function. Then the following are equivalent
 - (a) f is τ_{μ} -continuous.
 - (b) f is $\eta_{\tau_{\mu}}$ continuous and $\tau_{\mu}s$ continuous
 - (c) f is $\tau_{\mu}lc$ continuous and $\tau_{\mu}ss$ -continuous
 - (d) f is $\tau_{\mu}lc$ -continuous and $\tau_{\mu}p$ -continuous.
 - (e) f is $\eta_{\tau_{\mu}}$ continuous and $\tau_{\mu}p$ continuous

(f) f is $\beta_{\tau_{\mu}}$ - continuous and $\tau_{\mu}p$ - continuous

Theorem 1.7. Let (X, τ) and (Y, γ) be $\tau S's, \mu \subset X$, and $f: X \to Y$. Then f is

 τ_{μ} - continuous if for each $v \in \gamma_{f(\mu)}$, we have $\mu \cap f^{-1}(v) \in \tau_{\mu}$

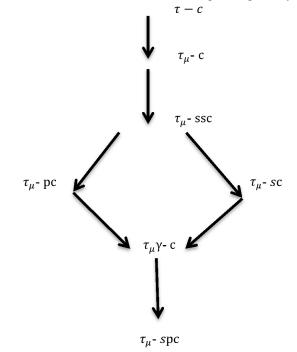
Definition 1.4 Let $f: (X, \tau) \to (Y, \gamma)$ be a mapping from a weak structure (X, τ) to another (Y, γ) , and $\mu \subset X$. Then f is called:

(i) an τ_{μ} -semicontinuous (briefly, $\tau_{\mu}sc$) mapping if for each $v \in \gamma_{f(\mu)}$, we have $\mu \cap f^{-1}(v) \in \tau_{\mu} - so$;

(ii) an τ_{μ} -precontinuous (briefly, $\tau_{\mu}pc$) mapping if for each $v \in \gamma_{f(\mu)}$, we have $\mu \cap f^{-1}(v) \in \tau_{\mu} - po$; (iii) an τ_{μ} -strongly semi continuous (briefly, $\tau_{\mu}ssc$) mapping if for each $v \in \gamma_{f(\mu)}$, We have $\mu \cap f^{-1}(v) \in \tau_{\mu} - sso$;

(iv) an τ_{μ} – semi precontinuous (briefly, $\tau_{\mu}spc$) mapping if for each $v \in \gamma_{f(\mu)}$, we have $\mu \cap f^{-1}(v) \in \tau_{\mu} - spo$;

Remark 1.3. The implications between these different concepts are given by the following diagram:



Examples 1.3. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}\}, \mu = \{b, c\}, \tau_{\mu} = \{\phi, \{b\}\}, Y = \{x, y\}, \gamma = \{\phi, \{x\}\}, f : X \to Y, \text{ and } f(a) = f(b) = x, f(c) = y, \text{ then } f(\mu) = \{x, y\}, \text{ then } \gamma_{f(\mu)} = \{\emptyset, \{x\}\}, \text{ since: } f^{-1}(\emptyset) = \emptyset \cap \mu = \emptyset \in \delta_{\mu}, \text{ then } f^{-1}(x) = \{a, b\} \cap \mu = \{b\} \in \delta_{\mu}, \text{ then } \tau \text{ is continuous } and f^{-1}(a) = \emptyset, f^{-1}(x) = \{a, b\} \notin \tau, \text{ then } f \text{ is not } \tau \text{-continuous mapping}$

2. IDEAL *- µ- WEAK STRUCTURE SPACE AND µ-WEAK LOCAL FUNCTION

For a subset $\mu \subseteq X$. Let τ_{μ} and I a μ - weak structure space and an ideal μ - weak structure space (denoted by $(\tau_{\mu})_{I}$ on a set X

Let τ_{μ} is a μ – weak structure space and $\mathfrak{A}\tau_{\mu}(x) = \{U : x \in U, U \in \tau_{\mu}\}$ be the family of τ_{μ} -open sets which contain a point $x \in X$.

Definition 2.1. An ideal I on a μ - weak structure space (X, τ_{μ}) is a non-empty collection of subsets of X which Satisfies the following properties: (1) $A \in I$ and $B \subseteq A$ implies $B \in I$; (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$

Definition 2.2. Let $(X, (\tau_{\mu})_I)$ be an ideal μ - weak structure space. For a subset $A, \mu \subseteq X, A^*_{\tau_{\mu}}$ $(I, \tau_{\mu}) = \{x \in X : U \cap A \notin I \text{ for every } U \in \mathfrak{A}\tau_{\mu}(x)\}$ is called the μ -weak local function of A with respect to I and τ_{μ} . We will simply write $A^*_{\tau_{\mu}}$ for $A^*_{\tau_{\mu}}(\tau_{\mu}, I)$

Theorem 2.1. Let $(\tau_{\mu} \text{ be a } \mu \text{-} \text{ weak structure on a set } X, I, \mathcal{J} \text{ ideals on } X \text{ and } A, B, \mu \text{ be subsets of } X.$ The following properties hold:

1. If $A \subseteq B$, then $A^*_{\tau_{\mu}} \subseteq B^*_{\tau_{\mu}}$

2. If $I \subseteq \mathcal{J}$, then $A^*_{\tau_{\mu}}(\mathcal{J}) \subseteq A^*_{\tau_{\mu}}(I)$

3. $A^*_{\tau_{\mu}} = c_{\tau_{\mu}}(A^*_{\tau_{\mu}}) \subseteq c_{\tau_{\mu}}(A)$

- 4. $A^*_{\tau_{\mu}} \cup B^*_{\tau_{\mu}} \subseteq (A \cup B)^*_{\tau_{\mu}}$
- $5. \left(A_{\tau_{\mu}}^{*} \right)_{\tau_{\mu}}^{*} \subseteq A_{\tau_{\mu}}^{*}$

6. If $A \in I$, then $A^*_{\tau_{\mu}} = \emptyset$

Proof. (1) Let $A \subseteq B$. let $x \notin B^*_{\tau_{\mu}}$ implies that $U \cap B \in I$ for some $U \in \mathfrak{A}\tau_{\mu}(x)$. Since $U \cap A \subseteq U \cap B$ and $U \cap B \in I$. Then $U \cap A \in I$ from the definition of ideals. Thus, we have $x \notin A^*_{\tau_{\mu}}$. Hence we have $A^*_{\tau_{\mu}} \subseteq B^*_{\tau_{\mu}}$.

(2) Let $I \subseteq \mathcal{J}$ and $x \in A^*_{\tau_{\mu}}(\mathcal{J})$. Then $U \cap A \notin \mathcal{J}$ for every $U \in \mathfrak{A}_{\tau_{\mu}}(x)$. By hypothesis, $U \cap A \notin I$. So $x \in A^*_{\tau_{\mu}}(I)$.

(3) Since $A_{\tau_{\mu}}^{*} \subseteq c_{\tau}(A_{\tau_{\mu}}^{*})$. Let $x \in c_{\tau_{\mu}}(A_{\tau_{\mu}}^{*})$. Then $A_{\tau_{\mu}}^{*} \cap U \neq \emptyset$ for every $U \in \mathfrak{A}_{\tau_{\mu}}(x)$. Therefore, there exists some $y \in A_{\tau_{\mu}}^{*} \cap U$ and $U \in \mathfrak{A}_{\tau_{\mu}}(y)$. Since $y \in A_{\tau_{\mu}}^{*}$, $A \cap U \notin I$ and hence $x \in A_{\tau_{\mu}}^{*}$. Hence $c_{\tau_{\mu}}(A_{\tau_{\mu}}^{*}) \subseteq A_{\tau_{\mu}}^{*}$ and $c_{\tau_{\mu}}(A_{\tau_{\mu}}^{*}) = A_{\tau_{\mu}}^{*}$. Again, let $x \in c_{\tau_{\mu}}(A_{\tau_{\mu}}^{*}) = A_{\tau_{\mu}}^{*}$, then $A \cap U \notin I$ for every $U \in \mathfrak{A}_{\tau_{\mu}}(x)$. This implies $A \cap U \neq \emptyset$ for every $U \in \mathfrak{A}_{\tau_{\mu}}(x)$. Therefore, $x \in c_{\tau_{\mu}}(A)$. This proves $A_{\tau_{\mu}}^{*} = c_{\tau_{\mu}}(A_{\tau_{\mu}}^{*}) \subseteq c_{\tau_{\mu}}(A)$.

(4) This follows from (1).

(5) Let $x \in (A^*_{\tau_{\mu}})^*_{\tau_{\mu}}$. Then, for every $U \in \mathfrak{A}_{\tau_{\mu}}(x)$, $U \cap A^*_{\tau_{\mu}} \notin I$ and hence $U \cap A^*_{\tau_{\mu}} \neq \emptyset$. Let $y \in U \cap A^*_{\tau_{\mu}}$. Then $U \in \mathfrak{A}_{\tau_{\mu}}(y)$ and $y \in A^*_{\tau_{\mu}}$. Hence we have $U \cap A \notin I$ and $x \in A^*_{\tau_{\mu}}$. This shows that $(A^*_{\tau_{\mu}})^*_{\tau_{\mu}} \subseteq A^*_{\tau_{\mu}}$.

(6) Suppose that $x \in A^*_{\tau_{\mu}}$. Then for any $U \in \mathfrak{A}\tau_{\mu}(x)$, $U \cap A \notin I$. But, since $A \in I$, $U \cap A \in I$. This is a contradiction. Hence $A^*_{\tau_{\mu}} = \emptyset$

The converses of Theorem 2.1 need not be true as seen in the following examples

Example 2.1. Let $X = \{a, b, c, d\}$, $\mu = \{a, b, c\}$ and $\tau_{\mu} = \tau = \{\emptyset, \{a\}, \{b\}, \{a, b, c\}, \{b, c\}, \{a, c\}\}$ be a μ -weak structure on the set X with $I = \{\emptyset, \{a\}\}$. For $A = \{a, c\}$ and $B = \{b, c\}$, we have $A^*_{\tau_{\mu}} = \{c, d\} \subseteq B^*_{\tau_{\mu}} = \{b, c, d\}$ but $A \nsubseteq B$.

Example 2.2. Let $X = \{a, b, c, d\}, \mu = \{a, b, c\}$ and $\tau_{\mu} = \tau = \{\emptyset, \{a\}, \{b\}, \{a, b, c\}, \{b, c\}, \{a, c\}\}$ be a μ -weak structure on the set X with $I = \{\emptyset, \{b\}\}$ and $\mathcal{J} = \{\emptyset, \{a\}\}$. It is easily seen that $I \not\subseteq \mathcal{J}$ but for $A = \{a, c\}$ we have $A_{\tau_{\mu}}^{*}(\mathcal{J}) = \{c, d\} \subseteq A_{\tau_{\mu}}^{*}(l) = \{a, c, d\}.$

Example 2.3. Let $X = \{a, b, c\}$, $\mu = \{a, c\}$ and $\tau_{\mu} = \tau = \{\emptyset, \{a\}, \{c\}\}\$ be a μ - weak structure on the set X with $I = \{\emptyset, \{a\}\}. \text{ For } A = \{a, c\}, \text{ we have } c_{\tau_{\mu}}(A) = X \neq A^*_{\tau_{\mu}}(I) = \{b, c\} = c_{\tau_{\mu}}(A^*_{\tau_{\mu}}(I)).$

Example 2.4. Let $X = \{a, b, c\}, \mu = \{a, b, c\}$ and $\tau_{\mu} = \tau = \{\emptyset, \{a, b\}, \{b, c\}\}$ be a μ - weak structure on the set X with $I = \{\emptyset, \{b\}\}$. For $A = \{a\}$ and $B = \{c\}$ we have $A^*_{\tau_u}(I) = \{a\}$, $B^*_{\tau_u}(I) = \{c\}$ and $(A \cup B)_{\tau_{\mu}}^{*}(I) = X$. Hence, we have $(A \cup B)_{\tau_{\mu}}^{*} \neq A_{\tau_{\mu}}^{*} \cup B_{\tau_{\mu}}^{*}$.

Definition 2.3. Let $(X, (\tau_{\mu})_{I})$ be an ideal μ - weak structure space. The set operator $c_{\tau_{\mu}}^{*}$ is called a μ - weak structure *-closure and is defined as follows: $c^*_{\tau_{\mu}}(A) = A \cup A^*_{\tau_{\mu}}$ for $A, \mu \subseteq X$. We will denote by $\tau^*_{\mu}(\tau_I)$ the μ -weak structure determined by $c^*_{\tau_{\mu}}$, that is, $\tau^*_{\mu}(\tau_I) = \{U \subseteq X : c^*_{\tau_{\mu}}(\mu - U) = \mu - U\} = \{U \subseteq U \subseteq X : c^*_{\tau_{\mu}}(\mu - U) = \mu - U\}$ $X: i_{\tau_{\mu}}^{*}(U) = U$. $\tau_{\mu}^{*}(\tau_{I})$ is called an *- μ - weak structure which is finer than τ_{μ} . The elements of $\tau_{\mu}^{*}(\tau_{I})$ are said to be $\tau^*_{\mu}(I)$ -open and the complement of a $\tau^*_{\mu}(I)$ -open set is said to be $\tau^*_{\mu}(I)$ -closed

Throughout the paper we simply write $\tau^*_{\mu}(I)$ for $\tau^*_{\mu}(\tau_I)$. If I is an ideal on X, then (X, τ^*_I) is called an ideal *- μ - weak structure space.

Proposition 2.1. The set operator $c^*_{\tau_u}$ satisfies the following conditions:

1. $A \subseteq c^*_{\tau_{\mu}}$ (A) * (\mathfrak{A}) = \mathfrak{A} and $c^*_{\tau_{\mu}}$ (X) = X

2.
$$c_{\tau_{\mu}}$$
 (\emptyset) = \emptyset and $c_{\tau_{\mu}}$ (X) = X

3. If $A \subseteq B$, then $c^*_{\tau_u}(A) \subseteq c^*_{\tau_u}(B)$

- 4. $c^*_{\tau_{\mu}}$ (A) $\cup c^*_{\tau_{\mu}}$ (B) $\subseteq c^*_{\tau_{\mu}}$ (A \cup B)
- 5. $c^*_{\tau_{\mu}}$ $(A \cap B) \subseteq c^*_{\tau_{\mu}}$ $(A) \cap c^*_{\tau_{\mu}}$ (B)

Proof. The proofs are clear from Theorem 2.1 and the definition of $c_{\tau_{\mu}}^{*}$

3. IDEAL μ -WEAK STRUCTURE SPACE

In this section let a μ -weak structure τ_{μ} have the property any finite intersection of τ_{μ} -open sets is τ_{μ} -open and (X, τ_I) is called an ideal μ -weak structure space with this property

Proposition 3.1. Let (X, τ_I) be an ideal μ - weak structure space and $A, \mu \subseteq X$, then $U \cap A^*_{\tau_I} = U \cap$ $(\mathbf{U} \cap \mathbf{A})_{\tau_{\mu}}^{*} \subseteq (\mathbf{U} \cap \mathbf{A})_{\tau_{\mu}}^{*}$ for every $U \in \tau_{\mu}$

Proof. Suppose that $U \in \tau_{\mu}$ and $x \in U \cap A^*_{\tau_{\mu}}$. Then $x \in U$ and $x \in A^*_{\tau_{\mu}}$. Let $V \in \mathfrak{A}_{\tau_{\mu}}(x)$. Then $V \cap \mathcal{A}_{\tau_{\mu}}(x)$. $U \in \mathfrak{A}_{\tau_{\mu}}(x)$ and $V \cap (U \cap A) = (V \cap U) \cap A \notin I$. This shows that $x \in (U \cap A)^*_{\tau_{\mu}}$ and hence we obtain $U \cap A^*_{\tau_{\mu}} \subseteq (U \cap A)^*_{\tau_{\mu}}$. Moreover, $U \cap A^*_{\tau_{\mu}} \subseteq U \cap (U \cap A)^*_{\tau_{\mu}}$ and by Theorem 2.3 (1) $(U \cap A)^*_{\tau_{\mu}} \subseteq A^*_{\tau_{\mu}}$ and $U \cap (U \cap A)^*_{\tau_{\mu}} \subseteq U \cap A^*_{\tau_{\mu}}$. Therefore, $U \cap A^*_{\tau_{\mu}} = U \cap (U \cap A)^*_{\tau_{\mu}}$

Theorem 3.2. Let (X, τ_I) be an ideal μ - weak structure space $A, B, \mu \subseteq X$. Then $A^*_{\tau_{\mu}} \cup B^*_{\tau_{\mu}} = (A \cup B)^*_{\tau_{\mu}}$

Proof. It follows from Theorem 2.1 that $A_{\tau_{\mu}}^* \cup B_{\tau_{\mu}}^* \subseteq (A \cup B)_{\tau_{\mu}}^*$. To prove the reverse inclusion, let $x \notin$ $A_{\tau_{\mu}}^* \cup B_{\tau_{\mu}}^*$. Then x belongs neither to $A_{\tau_{\mu}}^*$ nor to $B_{\tau_{\mu}}^*$. Therefore there exist $U, V \in \mathfrak{A}_{\tau_{\mu}}(x)$ such that $U \cap A \in I$ and $V \cap B \in I$. Since I is additive, $(U \cap A) \cup (V \cap B) \in I$. Moreover, since I is hereditary and

 $(U \cap A) \cup (V \cap B) = [(U \cap A) \cup V] \cap [(U \cap A) \cup B]$

$$= (U \cup V) \cap (A \cup V) \cap (U \cup B) \cap (A \cup B)$$

 $\supseteq (U \cap V) \cap (A \cup B),$ $(U \cap V) \cap (A \cup B) \in I$. Since $(U \cap V) \in \mathfrak{A}_{\tau_{\mu}}(x), x \notin (A \cup B)_{\tau_{\mu}}^*$. Hence $(A \cup B)_{\tau_{\mu}}^* \subseteq A_{\tau_{\mu}}^* \cup B_{\tau_{\mu}}^*$.

Hence we obtain $A^*_{\tau_{\mu}} \cup B^*_{\tau_{\mu}} = (A \cup B)^*_{\tau_{\mu}}$.

Theorem 3.3. Let (X, τ_I) be an ideal μ - weak structure space and $A, B, \mu \subseteq X$. Then the following properties hold:

- 1. $c^*_{\tau_{\mu}}(A \cup B) = c^*_{\tau_{\mu}}(A) \cup c^*_{\tau_{\mu}}(B)$
- 2. $c^*_{\tau_u}(A) = c^*_{\tau_u}(c^*_{\tau_u}(A))$

Proof. By Theorem 3.2, we obtain

$$(1) \quad c_{\tau_{\mu}}^{*}(A \cup B) = (A \cup B)_{\tau_{\mu}}^{*} \cup (A \cup B) = (A_{\tau_{\mu}}^{*} \cup B_{\tau_{\mu}}^{*}) \cup (A \cup B) = c_{\tau_{\mu}}^{*}(A) \cup c_{\tau_{\mu}}^{*}(B)$$

$$(2) \quad c_{\tau_{\mu}}^{*}\left(c_{\tau_{\mu}}^{*}(A)\right) = c_{\tau_{\mu}}^{*}\left(A_{\tau_{\mu}}^{*} \cup A\right) = (A_{\tau_{\mu}}^{*} \cup A)_{\tau_{\mu}}^{*} \cup \left(A_{\tau_{\mu}}^{*} \cup A\right) = ((A_{\tau_{\mu}}^{*})_{\tau_{\mu}}^{*} \cup A_{\tau_{\mu}}^{*}) \cup \left(A_{\tau_{\mu}}^{*} \cup A\right) = A_{\tau_{\mu}}^{*} \cup A = c_{\tau_{\mu}}^{*}(A)$$

Corollary 3.1. Let (X, τ_I) be an ideal μ - weak structure space, $A, \mu \subseteq X$ and $c^*_{\tau_{\mu}}(A) = A \cup A^*_{\tau_{\mu}}$. Then $\gamma^*_{\tau_{\mu}} = \{U \subseteq X : c^*_{\tau_{\mu}}(\mu - U) = \mu - U\}$ is a topology for X

Proof. By Proposition 2.1 and Theorem 3.3, $c^*_{\tau_{\mu}}(A) = A \cup A^*_{\tau_{\mu}}$ is a Kuratowski closure operator. Therefore, $\gamma^*_{\tau_{\mu}}$ a topology for *X*.

Lemma 3.1. Let (X, τ_I) be an ideal μ - weak structure space and $A, B, \mu \subseteq X$. Then $A_{\tau_{\mu}}^* - B_{\tau_{\mu}}^* = (A - B)_{\tau_{\mu}}^* - B_{\tau_{\mu}}^*$

Proof. By Theorem 3.2, $A_{\tau\mu}^* = [(A - B) \cup (A \cap B)]_{\tau\mu}^* = (A - B)_{\tau\mu}^* \cup (A \cap B)_{\tau\mu}^* \subseteq (A - B)_{\tau\mu}^* \cup B_{\tau\mu}^*$. Thus $A_{\tau\mu}^* - B_{\tau\mu}^* \subseteq (A - B)_{\tau\mu}^* - B_{\tau\mu}^*$. By Theorem 2.3, $(A - B)_{\tau\mu}^* \subseteq A_{\tau\mu}^*$ and hence $(A - B)_{\tau\mu}^* - B_{\tau\mu}^* \subseteq A_{\tau\mu}^* - B_{\tau\mu}^*$.

Corollary 3.2. Let (X, τ_I) be an ideal μ - weak structure space and $A, B, \mu \subseteq X$ with $B \in I$. Then $(A \cup B)^*_{\tau_{\mu}} = A^*_{\tau_{\mu}} = (A - B)^*_{\tau_{\mu}}$

Proof. Since $B \in I$, by Theorem 2.1, $B_{\tau_{\mu}}^* = \emptyset$. By Lemma $3.1, A_{\tau_{\mu}}^* = (A - B)_{\tau_{\mu}}^*$ and by Theorem 3.2 $(A \cup B)_{\tau_{\mu}}^* = A_{\tau_{\mu}}^* \cup B_{\tau_{\mu}}^* = A_{\tau_{\mu}}^*$

Theorem 3.7. Let (X, τ_I) be an ideal μ - weak structure space Then $\beta(\tau_I) = \{V - l : V \in \tau_{\mu}, l \in I\}$ is a basis for $(\gamma)^*_{\tau_{\mu}}$

Proof. Let (X, τ_l) be an ideal μ - weak structure space, $\mu \subseteq X$. It is obvious that A is $(\gamma)_{\tau_{\mu}}^*$ -closed if and only if $A_{\tau_{\mu}}^* \subseteq A$. Now we have $U \in (\gamma)_{\tau_{\mu}}^*$ if and only if $(\mu - U)_{\tau_{\mu}}^* \subseteq \mu - U$ if and only if $U \subseteq \mu - (\mu - U)_{\tau_{\mu}}^*$. Therefore $x \in U \in (\gamma)_{\tau_{\mu}}^*$ implies that $x \notin (\mu - U)_{\tau_{\mu}}^*$. This implies that there exists $V \in \mathfrak{A}\tau_{\mu}(x)$ such that $V \cap (\mu - U) \in I$. Now let $l = V \cap (\mu - U)$ and we have $x \in V - l \subseteq U$, where $V \in \mathfrak{A}\tau_{\mu}(x)$ and $l \in I$. Now we need only show that β is μ -closed under finite Intersection. Let $A, B \in \beta$, then A = H - l and B = K - j, where $H, K \in \tau_{\mu}$ and $l, j \in I$. Now, we have $(H - l) \cap (K - j) = [H \cap (X - l)] \cap [K \cap (\mu - j)]$

$$\begin{array}{l} -l \cap (K-j) = [H \cap (X-l)] \cap [K \cap (\mu-j)] \\ = [H \cap K] \cap [\mu-l) \cap (\mu-j)] \\ = [H \cap K] \cap [\mu-(l \cup j)] \\ = [H \cap K] - (l \cup j). \end{array}$$

Since $(l \cup j) \in I$ and $[H \cap K] \in \tau_{\mu}$, $A \cap B \in \beta$. Therefore β is μ -closed under finite intersection. Thus $\beta = \{V - l : V \in \tau_{\mu}, l \in I\}$ is a basis for $(\gamma)^*_{\tau_{\mu}}$.

4. APPLICATIONS

Definition 4.1. Let (X, τ_{μ}) be μ -weak structure, $A, \mu \subseteq X$. A point $x \in X$ is called accumulation points of a subset A iff for every τ_{μ} -open sets λ containing $x, (X - \lambda) \cap A \neq \emptyset$.

Remark 4.1. The set of all τ_{μ} -accumulation points of a subset A of a μ -weak structure (X, τ_{μ}) is $A^{\tau_{\mu}} = \{x \in X : U \cap A \text{ is infinite for every } U \in \mathcal{N}(x)\}$ where \mathcal{N} is the ideal of all nowhere dense sets.

Definition 4.2. Let (X, τ_{μ}) be μ -weak structure, $A, \mu \subseteq X$. A point $x \in X$ is called condensation points of A iff for every $U \in \mathcal{N}(x)$, $U \cap A$ is uncountable

The set of all condensation points of A is $A^k = \{x \in X : U \cap A \text{ is uncountable for every } U \in \mathcal{N}(x)\}$. It is interesting to note that $A^*_{\tau_{\mu}}(I)$ is a generalization of closure points, τ_{μ} -accumulation points and condensation points We call a class $\Omega \subseteq P(X)$ a generalized topology [2] (briefly, GT) if $\phi \in \Omega$ and the arbitrary union of elements of Ω belongs to Ω .

A set X with a GT Ω on it is called a generalized topological space (briefly, GT S) and is denoted by (X, Ω) .

The proofs of the following theorem is clear.

Theorem 4.1. For a μ -weak structure space $(X, \tau_{\mu}), \mu \subseteq X$. the following properties are equivalent:

1. $\tau_{\mu} = \Omega$ i.e. τ is a generalized topology in the sense of Császár.

2. $i_{\tau_{\mu}}(A)$ is τ_{μ} -open for every subset A of X

3. $c_{\tau_{\mu}}(A)$ is τ_{μ} -closed for every subset A of X

Remark 4.2. For a μ -weak structure space $(X, \tau_{\mu}), \mu \subseteq X$, and

 $\tau_{\mu}^{*} = \{A \subset X : A = i_{\tau_{\mu}}(A)\}.$ Then:

1. τ_{μ}^{*} is a *GT* containing τ_{μ}

2. $\tau_{\mu} \subseteq \tau_{\mu}^* \subseteq \tau_{\mu}^*$ (1)

Theorem 4.2. Let (X, τ_I) be an ideal μ - weak structure space. Then,

 $\tau_{\mu}^{*}(I)$ is a GT containing τ_{μ}^{*}

Proof. If $A \in \tau_{\mu}^*$, $A = i_{\tau_{\mu}}(A) \subseteq i_{\tau_{\mu}}^*(A)$ and hence $A \in \tau_{\mu}^*(I)$. Therefore, $\tau_{\mu}^*(I)$ contains τ_{μ}^* . Let $A_{\alpha} \in \tau_{\mu}^*(I)$. for each $\alpha \in \Delta$. Then $A_{\alpha} = i_{\tau_{\mu}}^*(A_{\alpha}) \subseteq i_{\tau_{\mu}}^*(\cup A\alpha)$ for each $\alpha \in \Delta$. Hence $\cup A\alpha \subseteq i_{\tau_{\mu}}^*(\cup A\alpha)$ and $\cup A\alpha = i_{\tau_{\mu}}^*(\cup A\alpha)$. Therefore, $\cup A\alpha \in \tau_{\mu}^*(I)$. And $\tau_{\mu}^*(I)$ is a GT

Definition 4.3. Let (X, τ_I) be an ideal μ - weak structure space and $A, \mu \subseteq X$. Then

- 1. $A \in \tau_{\mu} \operatorname{sso}(\tau_{I})$ if $A \subseteq i_{\tau_{\mu}}(c^{*}_{\tau_{\mu}}(i_{\tau_{\mu}}(A)))$
- 2. $A \in \tau_{\mu} \operatorname{so}(\tau_{I})$ if $A \subseteq c^{*}_{\tau_{\mu}}(i_{\tau_{\mu}}(A))$
- 3. $A \in \tau_{\mu}$ -po (τ_I) if $A \subseteq i_{\tau_{\mu}}(c^*_{\tau_{\mu}}(A))$

4. $A \in \tau_{\mu}$ -spo (τ_{I}) if $A \subseteq c^{*}_{\tau_{\mu}}(i_{\tau_{\mu}}(c^{*}_{\tau_{\mu}}(A)))$

Lemma 4.5. Let (X, τ_I) be an ideal μ - weak structure space, we have the following

1. $\tau_{\mu} \subseteq \tau_{\mu} - \operatorname{sso}(\tau_{I}) \subseteq \tau_{\mu} - \operatorname{so}(\tau_{I}) \subseteq \tau_{\mu} \operatorname{-spo}(\tau_{I})$

2. $\tau_{\mu} \subseteq \tau_{\mu} - \operatorname{sso}(\tau_{I}) \subseteq \tau_{\mu} \operatorname{-po}(\tau_{I}) \subseteq \tau_{\mu} \operatorname{-spo}(\tau_{I})$

Definition 4.4 Let (X, τ_I) be an ideal μ - weak structure space. The ideal μ - weak structure space is said to be τ_{μ} extermally disconnected if $c^*_{\tau_{\mu}}(A) \in \tau_{\mu}$ for $A, \mu \subseteq X$ and $A \in \tau_{\mu}$

Theorem 4.3. Let (X, τ_I) be an ideal μ - weak structure space. Then the implications $(1) \Rightarrow (2), (3) \Rightarrow (4)$ and $(5) \Rightarrow (6) \Rightarrow (7)$ hold. If $\tau_{\mu} = \tau_{\mu}^{*}$ then the following statements are equivalent:

- 1. (*X*, τ_I) is τ_{μ} -externally disconnected.
- 2. $i^*_{\tau_{\mu}}(A)$ is τ_{μ} -closed for each τ_{μ} -closed set $A, \mu \subseteq X$
- 3. $c^*_{\tau_{\mathfrak{u}}}(i_{\tau_{\mathfrak{u}}}(A)) \subseteq i_{\tau_{\mathfrak{u}}}(c^*_{\tau_{\mathfrak{u}}}(A))$ for each $A, \mu \subseteq X$
- 4. $A \in \tau_{\mu}$ -po (τ_I) for each $A \in \tau_{\mu} so(\tau_I)$
- 5. $c^*_{\tau_{\mu}}(A) \in \tau_{\mu}$ for each $A \in \tau_{\mu}$ -spo (τ_I)
- 6. $A \in \tau_{\mu}$ -po(τ_I) for each $A \in \tau_{\mu}$ -spo(I)
- 7. $A \in \tau_u sso(\tau_l)$ if and only if $A \in \tau_u so(\tau_l)$

Proof. (1) \Rightarrow (2). Let A be a τ_{μ} -closed set. Then $\mu - A$ is τ_{μ} -open. By using (1), $c^*_{\tau_{\mu}}(\mu - A) = \mu - i^*_{\tau_{\mu}}(A) \in \tau_{\mu}$. Thus $i^*_{\tau_{\mu}}(A)$ is τ_{μ} -closed

(2) \Rightarrow (3). Let μ , $A \subseteq X$. Then $\mu - i_{\tau}(A)$ is τ -closed and by (2) $i_{\tau_{\mu}}^{*}(\mu - i_{\tau_{\mu}}(A))$ is τ_{μ} -closed. Therefore, $c_{\tau_{\mu}}^{*}(i_{\tau_{\mu}}(A))$ is τ_{μ} -open and hence $c_{\tau_{\mu}}^{*}(i_{\tau_{\mu}}(A)) \subseteq i_{\tau_{\mu}}(c_{\tau_{\mu}}^{*}(A))$

(3) \Rightarrow (4). Let $A \in \tau_{\mu} - \operatorname{so}(\tau_{I})$. By (3), we have $A \subseteq c_{\tau_{\mu}}^{*}(i_{\tau_{\mu}}(A)) \subseteq i_{\tau_{\mu}}(c_{\tau_{\mu}}^{*}(A))$. Thus, $A \in \tau_{\mu} - \operatorname{po}(\tau_{I})$

(4) \Rightarrow (5). Let $A \in \tau_{\mu}$ -spo (τ_{I}) Then $c_{\tau_{\mu}}^{*}(A) = c_{\tau_{\mu}}^{*}(i_{\tau_{\mu}}(c_{\tau_{\mu}}^{*}(A)))$ and $c_{\tau_{\mu}}^{*}(A) \in \tau_{\mu} - so(\tau_{I})$. By (4), $c_{\tau_{\mu}}^{*}(A) \in \tau_{\mu}$ -po (τ_{I}) . Thus $c_{\tau_{\mu}}^{*}(A) \subseteq i_{\tau_{\mu}}(c_{\tau_{\mu}}^{*}(A))$ and hence $c_{\tau_{\mu}}^{*}(A)$ is τ_{μ} -open

(5) \Rightarrow (6). Let $A \in \tau_{\mu}$ -spo (τ_I) . By (5), $c_{\tau_{\mu}}^*(A) = i_{\tau_{\mu}} \left(c_{\tau_{\mu}}^*(A) \right)$. Thus, $A \subseteq c_{\tau_{\mu}}^*(A) \subseteq i_{\tau_{\mu}}(c_{\tau_{\mu}}^*(A))$ and hence $A \in \tau_{\mu}$ -po (τ_I)

(6) \Rightarrow (7). Let $A \in \tau_{\mu} - so(\tau_{I})$ then $A \in \tau_{\mu} - spo(\tau_{I})$. Then by (6), $A \in \tau_{\mu} - po(\tau_{I})$. Since $A \in \tau_{\mu} - so(\tau_{I})$ and $A \in \tau_{\mu} - po(I)$ then $A \in \tau_{\mu} - sso(\tau_{I})$

(7) \Rightarrow (1). Let A be a τ_{μ} -open set. Then $c^*_{\tau_{\mu}}((A) \in \tau_{\mu} - \operatorname{so}(\tau_I)$ and by using (7) $c^*_{\tau_{\mu}}(A) \in \tau_{\mu} - \operatorname{sso}(\tau_I)$ Therefore, $c^*_{\tau_{\mu}}((A) \subseteq i_{\tau_{\mu}}(c^*_{\tau_{\mu}}((i_{\tau_{\mu}}(c^*_{\tau_{\mu}}((A)))) = i_{\tau_{\mu}}(c^*_{\tau_{\mu}}((A)))$ and hence

 $c_{\tau_{\mu}}^{*}(A) = i_{\tau_{\mu}}(c_{\tau_{\mu}}^{*}(A))$. Hence $c_{\tau_{\mu}}^{*}(A)$ is τ_{μ} -open and (X, τ_{I}) is τ_{μ} -externally disconnected

5. RESULTS AND DISCUSSION

The purpose of this paper is to define $i_{\tau_{\mu}}^{*}$ and $c_{\tau_{\mu}}^{*}$ under more general conditions and to show that the important properties of these operations remain valid under these conditions, Also we define and study weaker form of τ_{μ} -open sets, τ_{μ} - continuity and an ideal *- μ - weak structure space and μ -weak local function with some applications on a set X are defined and their properties are discussed.

6. CONCLUSION

We can add many applications in ideal μ - weak structure space like if (X, τ_1) be an ideal μ - weak structure space. If $\tau_{\mu} = \tau_{\mu}^* (I)$. Then if (X, τ_I) is τ_{μ} -externally disconnected then $c_{\tau_{\mu}}^*(A) \cap c_{\tau_{\mu}}(B) \subseteq c_{\tau_{\mu}}(A \cap B)$ for each $A \in \tau_{\mu}$, $B \in \tau_{\mu}^*$ and $c_{\tau_{\mu}}^*(A) \cap c_{\tau_{\mu}}(B) = \emptyset$ for each $A \in \tau_{\mu}$, $B \in \tau_{\mu}^*$ with $A \cap B = \emptyset$.

REFERENCES

- 1. And rijevic, D. some properties of the topology of α -sets, Mat. Vesnik, 38 (1984), 1-10
- 2. Császár, Á. Generalized topology, generalized continuity, Acta Math. Hunger., 96 (2002), 351. 357.
- 3. Császár, Á Weak structures, Acta Math. Hunger., 131 (2011), 193 195.
- Jankovic, D.; HAMLETT, T.R. New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295 310.
- 5. Kuratowski, K. Topology I, Academic Press, New York, 1966.
- LEVINE, N. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- Maki, H.; Umehara, J.; Noiri, T. Every topological space is pre-T_{1/2}, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 17 (1996), 33-42.
- 8. NJÅSTAD, O. On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- 9. Noiri, T. On α-continuous functions, Časopis Pěst. Mat., 109 (1984), 118-126.
- 10. Ozeakir, O.B.; Yildirim, E.D. On some closed sets in ideal minimal spaces, Acta Math . Hungar., 125 (2009), 227-235.
- 11. Vaidyanathaswamy, R. -Set Topology, 2nd ed. Chelsea Publishing Co., New -York, 1960.
- 12. Renukadevi .V and D. Sivaraj, On δ -open sets in γ -spaces, Filomat, 22(2008), 97-106.
- 13. Császár, A. Generalized open sets. Acta Math. Hungar 75 (1997), 65-87
- 14. Császár, A. Generalized open sets in generalized topologies. Acta Math. Hungar 106 (2005), 53-66.
- 15. Mohammed. Khalaf and Ahmed Elmasry , τ_{μ} -weak structure , Indian journal of applied mathematics, Volume 4, Issue:1 Jan 2014