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ABSTRACT 
 

Elasticity is one of the most important concepts in neoclassical economic theory. In this study a new slack- 
based elasticity measure is proposed and linear programs are provided to calculate it. In fact, we investigate the 
optimal scale size of efficient units from the mean of outputs points of view. One important property of this 
measure is applicable not only in variable technology but also in constant technology. 
KEYWORDS: DEA, Elasticity, Returns to Scale (RTS), Technology Set, Environmental Efficiency.    

 
1. INTRODUCTION 

 
     Data Envelopment Analysis (DEA) has been long serving as a methodology to evaluate the performance of 
various organizations in public and private sectors. Also, Environmental assessment recently becomes a major 
policy issue all over the world. In order to see the relationship between them, and some applications can be seen 
[6, 8, 9, 13, 14]. In data envelopment analysis, returns to scale (RTS) were first addressed by Banker [1] and 
Banker et al. [2]. Elasticity is one of the most important concepts in neoclassical economic theory. The elasticity 
measure, in the one input and one output case, is defined as the ratio of the marginal productivity to the average 
productivity at an efficient unit. In the multiple inputs and outputs case, Banker and Therall [3] defined the 
right-hand and left-hand elasticities as the minimum and maximum slopes of tangential lines to a plane section 
of the efficient frontier at a specific point on the frontier. According to the RTS definition, all points on the VRS 
technology can be partitioned into increasing returns to scale (IRS), decreasing returns to scale (DRS) and 
constant returns to scale (CRS) classes. 
     Hadjicostas and Soteriou [7] presented a theoretical framework that integrated existing economics and 
management science literature on RTS, and provided a solid foundation for research work in this area, defining 
the right-hand and left-hand elasticities as the one- sided derivatives of a convex and linear piecewise function 
and indicating that both definitions are equivalent. 
     The output response function is an optimal value function which assigns the maximum proportion of the 
output vector possible in a production possibility set, T, to a proportion of the input vector. The scale elasticity 
is defined as the ratio of its marginal productivity of the output response function (where it exists) to its average 
productivity [12]. 
    The right-hand and left-hand elasticities are used to overcome the non-differentiability problem of the output 
response function. By replacing the output response function with another appropriate function, various scale 
elasticity measures have been obtained. As an example, if you consider the output response function as the 
maximum proportion of a specific single output possible in T, to a proportion of the input vector or a specific 
single input, you will be able to calculate the marginal rates of the corresponding output to the input vector or 
the corresponding input, respectively. See [12] for more details. Podinovski et al. [12] and Podinovski and 
Forsund [11] invoked the theorem of the directional derivative of the optimal value function and showed how 
this can be used to define and calculate the required elasticities without any simplifying assumptions. In fact, 
they found a mathematical framework to define and to calculate the different scale elasticity measures. Here, we 
are going to introduce the mean outputs response function which assigns the maximum of the mean of 
proportions of outputs possible in T to a proportion of the input vector. The main motivation behind this effort is 
to evaluate the scale of the boundary points from the mean of outputs point of view. Following Podinovski et al. 
[11] we also propose a new elasticity measure and subsequently a RTS definition based on this function in 
different technologies. It will be observed that a major part of DMUs are IRS in each technology according to 
the proposed RTS definition. 

2. BACKGROUND 
  
    Let 푇   and 푇  denote the CRS (Constant Returns to Scale} and VRS (Variable Returns to Scale) production 
technologies were defined, respectively, by observed units 푋 ,푌 , 푗 = 1,2, …,n where  푋 ∈  푅 ,푌 ∈ 푅  and 
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both of them are nonzero and nonnegative vectors. Let 푋 = 푥 ∈ 푅 ×  and 푌 = 푦 ∈ 푅 ×  are input and 
output matrixes, respectively. 
     In general, scale elasticity is studied in input and output orientation separately.  In this paper ,we focus only 
on  the output orientation. 
Definition 1. (푥, 푦) ∈ 푇  is called Pareto efficient if there is no  point (푥̅,푦) ∈ 푇 such that 푥 ≤ 푥, 푦 ≥ and 
(푥,푦) ≠ (푥̅, 푦). 
Definition 2. (Cooper et al. 2006) The output-oriented CCR and BCC efficiency measures are defined as 
follows, respectively: 

Φ = 푀푎푥 {Φ ∶ (푥 ,Φ푦 ) ∈ 푇 } 
휑 = 푀푎푥 {휑 ∶ (푥 ,휑푦 ) ∈ 푇 } 

Where 
푇 = {(푥, 푦) ∶  푋λ ≤ x, Yλ ≥ y, λ ≥ 0} 

푇 = {(푥, 푦) ∶  푋λ ≤ x, Yλ ≥ y, eλ = 1, λ ≥ 0} 
Consider the following optimal value function: 

푓(푏) = 푀푎푥 푐푥 
푠. 푡.퐴푥 = 푏                                                                (2.1) 

     푥 ≥ 0 
Where 퐴 ∈ 푅 ×  ,푏 ∈ 푅 . We have from linear programming that 푓: 푑표푚(푓)  → 푅 is a piecewise linear 
convex function such that  푑표푚(푓) = {푏 ∈ 푅 ∶ 푡ℎ푒 푚표푑푒푙 푖푠 푓푒푎푠푖푏푙푒} (Theorem 8.9 of [10]). 
Definition 3. ([4]) Let 퐸 ⊆  푅  and 푓: 퐸 →  푅 is a convex function. We say that a vector 휉 ∈  푅  is a 
subgradient of 푓 at point 푥 ∈  퐸 if 
푓(푧) ≥  푓(푥) + (푧 − 푥) 푑,∀푧 ∈ 푇.   
The set of all subgradient vector of 푓 at 푥 ∈ 푅  is called the sub-differential set of 푓 at 푥 and is denoted by 
휕푓(푥). 
Theorem 4. For 푏 ∈  푑표푚(푓),  휕  푓(푥) = { 휋:휋 푖푠 푎푛 푑푢푎푙 표푝푡푖푚푎푙 푠표푙푢푡푖표푛 표푓 (2.1) }. 
 Recall from convex analysis that  푓 is differentiable at 푏 if and only if  휕 푓(푥) is singleton. 
It said to vector 푑 ∈  푅  is a feasible direction at point 푥 ∈ 푑표푚(푓) if there is a 훿 > 0 푠푢푐ℎ 푡ℎ푎푡 푥+ 훾 푑 ∈
 푑표푚(푓) ∀ 0 ≤ 훾 ≤  훿 . 
Definition 5. Let vector 푑 ∈ 푅    is a feasible direction at point 푥 ∈  푑표푚(푓). The directional derivative of 푓 
at 푥  in the direction 푑 is defined by 

  푓′ (푥 ,푑) = 푙푖푚{ → }
푓(푥 + 훿 푑)  −  푓(푥_0)

훿  
Proposition 6. ([4]) For any 푏 ∈  푑표푚(푓) and feasible direction 푑,we have: 

푓′(푏, 푑) = 푚푎푥{ ∈  ( )} 휉 .푑                                                                        (2.2) 
 Assume (푥 ,푦 ) ∈  푇 and   훽 ≥  0. Define   Δ =  {훼:∃ 훽 ∈  푅 ∶  (훼푥 ,훽푦 ) ∈  푇}. It is easy to see that 
Δ = [훼 , +∞).  For  훼 ∈ Δ, the output response function is defined as follows: 

훽 (훼) = 푚푎푥 { 훽: (훼푥 ,훽푥 ) ∈  푇 }                                                 (2.3) 
Now suppose that 

ℎ(푏) = 푚푎푥 { 훽 ∶  푋휆 ≤  푏 ;  푌휆− 훽푦 ≥  0  ;푒휆 = 1; 휆 ≥  0 }                                  (2.4) 
Where 푏 ∈  푅 , 0 ∈  푅  and  푏 = (푏 , 0,1).  
Let 푏 = (푥 , 0,1) and 훼 = 1 + 훿 where 훿 ≥  0. With respect to the definition of the output response function, 
it follows that 
훽(1) = ℎ(푏 ) and  훽(훼) = ℎ(푏 + 훿 푑);  푑 =  (푥 , 0,0). 
Note that 훽 ∶ Δ →  푅 is a piecewise linear convex function of the parameter 훼  (Theorem 8.4 of Murty 1983). 
By substituting the above equalities in the right-hand derivative rule of 훽 at 1, we obtain  

훽 (1) = ℎ′( 푏 ;푑), 푑 = (푥 , 0,1) 
훽 (1) = −ℎ′( 푏 ;푑), 푑 = −(푥 , 0,1)                                                               (2.5) 

From the Theorem (4), we have 휕 ℎ(푏) is a nonempty, convex and compact set. So, ℎ′ (푏,푑) always exists and 
is finite. 
Corollary 7. The 훽 (1) always exists and finite however  훽 (1) exists and finite only if that 푑 = −(푥 , 0,1) is 
a feasible direction. 
Definition 8. ([12]) The scale elasticity 휀 (푥,푦) at any point (푥,푦) =  (훼푥 ,훽 (훼)푦 ) is defined as follows: 

휀 (푥, 푦) = 훽 (훼)
훼

훽(훼) 

provided that 훽 (훼) exists and be finite. In particular, at the efficient unit (푥 ,푦 ), we have 휀(푥 ,푦 ) = 훽 (1). 
Definition 9. (Banker and Thrall 1992) Suppose that 훽(1) = 1 and 1 ∈  푖푛푡(Δ) . We define output-oriented 
RTS as follows: 

 IRS prevail at (푥 ,푦 ) if 휀 (푥 ,푦 ) ≥ 휀  (푥 ,푦 ) >  1 . 
 DRS prevail at (푥 ,푦 ) if 1 > 휀  (푥 , 푦 ) ≥ 휀  (푥 ,푦 ) . 
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 CRS prevail at (푥 ,푦 )if 휀  (푥 ,푦 ) ≥  1 ≥ 휀  (푥 ,푦 ) . 
 

3. A slack- based RTS 
    
        The main goal is to estimate the response of each outputs to the proportion change of the input vector.  We 
attempt to calculate the response of the mean of outputs.  Suppose that (푥 ,푦 ) ∈ 푇. Define Δ =  훼:∃ ,훽 ∈
 푅 ,푎푛푑,훽 ≥  ퟏ, 푠. 푡.  훼푥 ,훽 ⊗ 푦 ∈  푇 , where 훽   is the response of the 푟  output, 훽 = (훽 ,훽 , … ,훽 ), 
1 = (1,1, … ,1) ∈  푅  and 훽 ⊗푦 =  (훽  푦 ,훽 푦 , … ,훽 푦 ). 
It is easy to see that Δ = [훼, +∞) that contains 1 too. Let 훽 = 1 + 푠  where 푠 ≥  0 for 푟 ∈  푂. Then 

   훽  푦 = 푦 + 푠 푦 = 1 + 푠       ,푓표푟  푟 ∈  푂 
  Where  푠 = 푠 푦  and    ∑ 훽  =  1 + ∑   . 
Following that, we investigate the elasticity of this slack- based measure in CRS and VRS technologies. 
 
3.1 CRS Technology 
       Suppose that (푥 ,푦 ) ∈  푇 .We define Δ =   {훼:∃ ∈  푅  푠. 푡. (훼푥 ,푦 − 푠) ∈  푇 }, the output response 
function can be determined as the optimum value of the following linear program for 훼 ∈ Δ : 

훾 (훼) =  1 + 푚푎푥
1
푠  푠 /푦  

푠. 푡. 휆 푥 ≤ 훼푥 ,   푖 ∈ 퐼 

휆 푦 − 푠 = 푦 ,   푟 ∈ 푂 

휆 ≥ 0, 푠 ≥ 0, ∀푗, 푟                                                        (3.1) 
In the above program ,vector s is  the variable used for optimization, and 훼  is a parameter kept constant while 
the optimization is performed. The corresponding dual problem for 훼 = 1 is as follows: 

훾 (1) =  1 + 푀푖푛 ( 푣 푥   − 푢 푦 ) 

푠. 푡.    푣 푥  −  푢 푦  ≥  0, 푗 ∈  퐽  

푢 ≥  
1

푠푦
, 푟 ∈  푂 

푣 ≥  0,     푖 ∈  퐼                                                               (3.2) 
Let Ω  to be the optimal solution set of the model for  훼 = 1, corresponding to the unit (푥 ,푦 ). 
 By applying Theorem (4) and Proposition (6), one-sided derivatives 훾 (1) and  훾 (1)  can be determined as 
follows, provided that 훾  (1) = 1 and 1 ∈ Δ : 
 

훾 (1) =  푀푖푛 푉푋  
푠. 푡.  (푈,푉) ∈   Ω                                                      (3.3) 

And 
훾 (1) =  푀푎푥 푉푋  

푠. 푡.  (푈,푉) ∈   Ω                                                       (3.4) 
Obviously,  훾  (1) exists and is finite if and only if  훾 (1) =   훾 (1). 
Definition 10. Let (푥 , 푦 ) ∈  푇  and 훾 (1) = 1. If 훾 ′ (1) exists and be finite, the mean scale elasticity 
휀  (푥 ,푦 )  is defined as follows: 

휀 (푥 ,푦 ) = 훾 ′ (1)                                                                 (3.5) 
 Definition 11. Let (푥 ,푦 ) ∈  푇  and 훾 (1) = 1. If 훾′ (1) is not exist, the one sided mean scale elasticities 
휀  (푥 ,푦 ) and 휀  (푥 ,푦 )   are defined as follows: 

휀  (푥 ,푦 ) =   훾 (1) 
휀  (푥 , 푦 ) =   훾 (1), 푖푓 1 ∈ 푖푛푡(Δ ) .                                  (3.6) 

Definition 11. (Output-Oriented Mean RTS (MRTS)) Suppose that 훾(1) = 1 and 1 ∈  푖푛푡Δ ) . We define 
Output-Oriented Mean RTS (MRTS) as follows: 

 Increasing MRTS prevail at (푥 ,푦 ) if 휀  (푥 ,푦 ) ≥ 휀  (푥 ,푦 ) >  1 . 
 Decreasing MRTS prevail at (푥 , 푦 ) if 1 > 휀  (푥 ,푦 ) ≥ 휀  (푥 ,푦 ) .  
 Constant MRTS prevail at (푥 ,푦 ) if 휀  (푥 ,푦 ) ≥ 1 ≥  휀  (푥 , 푦 ) . 
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Notice that if 1 is a boundary point of Δ , we define MRTS only based on  휀   (푥 ,푦 )  similarly. 
Proposition 12. Let (푥 ,푦 ) ∈  푇  and 훾 (1) = 1. We always have 휀  (푥 ,푦 ) ≥ 1. 
Proof: Let (푢,푣) ∈ Ω  . The constraint set  푢 ≥  , 푟 ∈  푂 in Ω  would guarantee that ∑ 푢 푦 ≥ 1. By 
the hypotheses훾 (1) = 1, we have   푣푥 ≥ 1. Hence 훾 = 푀푖푛 푣푥 ≥ 1 and this complete the proof. 
Corollary 12. Let (푥 ,푦 ) 푇  and 훾 (1) = 1. It is not possible that decreasing MRTS prevail at (푥 ,푦 ). 
Consider the following model which has obtained by deleting the  non-negativity constraints of 푠 , 푟 ∈ 푂 in the 
model(3.2). 

훾 (1) =  1 + 푀푖푛 ( 푣 푥   − 푢 푦 ) 

푠. 푡.    푣 푥  −  푢 푦  ≥  0, 푗 ∈  퐽  

푢 =  
1

푠푦
, 푟 ∈  푂 

푣 ≥  0,     푖 ∈  퐼                                                           (3.7) 
Proposition 13. If  훾̅ = 1 푓표푟 (푥 ,푦 ), then constant MRTS prevail at ( 푥 ,푦 ). 
Proof: It is easy to see that  훾̅ ≥ 훾(1) and so 훾(1) = 1. On the other hand, if (푢, 푣̅) is an optimal solution of the 
model (3.7), then (푢, 푣̅) ∈ Ω  where 푉푋 = 푈푌 = 1. Due to 푣푥 ≥  1 over the  Ω , then 휀 (푥 ,푦 ) = 1. 
According to the corollary (7), we are able to identify the MRTS nature of each boundary point of 푇  only by 
solving the model (3.7). 
Example 1: In this example, we consider 5 units with one input and two outputs in CRS technology. The data 
set are displayed in Table 1. 

 

Table 1. Input and Output date for DMUs in the Example1 
DMUs               Input                  Output1               Outpu2              CCR efficiency  
A  1    1      4   0.80  
B  1    1.5      4   1      
C  1    3      3.5   1      
D  1    4      2   1      
E  1    4      1   0.66 

 
Table 2 shows the obtained results of applying the models (SBM efficiency in output-oriente [5]), (3.3), (3.4) 
(right-hand and left-hand elasticities, respectively) and (3.7). 

 

Table 2. The results obtained by the proposed models for units  in the Example 1 
퐃퐌퐔퐬                        후(ퟏ)                        후(ퟏ)                       후퐜 (ퟏ)                         후퐜 (ퟏ)                    퐌퐑 퐓퐒 
A   1.25              -            -   -                         
B   1.00  1.58       1.58  1.58         IMRTS 
C   1.00  1.00       1.00  1.00          CMRTS 
D   1.00  1.25      1.25  1.68        IMRTS 
E   1.50   - -   -                                                  

 
As you can see, the units B, C and D are efficient. Regarding Proposition (6) and Definition MRTS, Unit B is 
CMRTS and C and D are IMRTS. With regard to the output values and Figure 1, this result was expected. 

 
Figure 1.  Farrell frontier for data set of DMUs in the Example 1 
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3.2 VRS Technology 
     In this section, we investigate the slack- based elasticity measure over the 푇 . Suppose that (푥 ,푦 ) ∈ 푇 . 
Define Δ =  { 훼:∃ 푠 ∈  푅  푠. 푡.  (훼푥 ,푦 − 푠) ∈ 푇 } for 훼 ∈ Δ },  consider the following optimal value 
function: 

훾 (훼) =  1 + 푚푎푥
1
푠  푠 /푦  

푠. 푡. 휆 푥 ≤ 훼푥 ,   푖 ∈ 퐼 

 휆 푦 − 푠 = 푦 ,   푟 ∈ 푂 

휆 ≥ 0, 푠 ≥ 0, ∀푗, 푟                                                  (3.8) 
The corresponding dual problem is as follows: 

훾 (1) =  1 + 푀푖푛 ( 푣 푥   − 푢 푦 + σ) 

푠. 푡.    푣 푥  −  푢 푦 + 휎  ≥  0, 푗 ∈  퐽  

푢 ≥  
1

푠푦 , 푟 ∈  푂 

푣 ≥  0,     푖 ∈  퐼                                                            (3.9) 
Let Ω  to be the optimal solution set of the model for 훼 = 1, corresponding to the unit (푥 ,푦 ). 
Similarly, one-sided derivatives 훾 (1) and  훾 (1)  can be determined as follows, provided that 훾  (1) = 1 and 
1 ∈ Δ : 

훾 (1) =  푀푖푛 푉푋  
푠. 푡.  (푈,푉) ∈   Ω                                                          (3.10) 

And 
훾 (1) =  푀푎푥 푉푋  
푠. 푡.  (푈,푉) ∈   Ω                                                          (3.11) 

 
Obviously,  훾  (1) exists and is finite if and only if  훾 (1) =   훾 (1). 
Definition 14. Let (푥 ,푦 ) ∈  푇  and 훾 (1) = 1. If 훾 ′ (1) exists and be finite, the mean scale elasticity 
휀  (푥 ,푦 )  is defined as follows: 

휀 (푥 ,푦 ) = 훾 ′ (1)                                                        (3.12) 
 Definition 15. Let (푥 ,푦 ) ∈  푇  and 훾 (1) = 1. If 훾′ (1) is not exist, the one sided mean scale elasticities 
휀  (푥 ,푦 ) and 휀  (푥 ,푦 )   are defined as follows: 

휀  (푥 ,푦 ) =   훾 (1) 
휀  (푥 ,푦 ) =   훾 (1), 푖푓 1 ∈ 푖푛푡(Δ ) .                                    (3.13) 

Definition 11. (Output-Oriented Mean RTS (MRTS)) Suppose that 훾(1) = 1 and 1 ∈  푖푛푡Δ ) . We define 
Output-Oriented Mean RTS (MRTS) as follows: 

 Increasing MRTS prevail at (푥 ,푦 ) if 휀  (푥 ,푦 ) ≥ 휀  (푥 ,푦 ) >  1 . 
 Decreasing MRTS prevail at (푥 , 푦 ) if 1 > 휀  (푥 ,푦 ) ≥ 휀  (푥 ,푦 ) .  
 Constant MRTS prevail at (푥 ,푦 ) if 휀  (푥 ,푦 ) ≥ 1 ≥  휀  (푥 , 푦 ). 

Notice that if 1 is a boundary point of Δ , we define MRTS only based on  휀   (푥 ,푦 )  similarly. 
Proposition 12. Let (푥 ,푦 ) ∈  푇  and 훾 (1) = 1. We always have 휀  (푥 ,푦 ) ≥ 1. 
Proof: Let (푢, 푣̅, 휎) ∈ Ω .  It is easy to verify that ( ,  , )  is an optimal solution for the multiplier form 
of the output-oriented BBC model.  Now if 휀  (푥 ,푦 ) ≥  1, then 휎 < 0 by the Theorem 5.2 of [5]. Hence, 

푣̅푥 = 푢푦 − 휎 
> 푢푦  
≥ 1 

and finally,  훾 (1) =  푀푖푛 푣푥 ≥ 1 and this complete the proof. 
 
Example 2: In this example, we consider 4 units A,B,C and D with one input and two outputs in VRS 
technology. The data set are displayed in Table 3.  Also, Table 4 shows the obtained results of applying the 
proposed models and the resulting technology is represented in  Figure2. 
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Table 3. Input and Output date for DMUs in the Example 2 
DMUs                 Input                 Output1             Outpu2          BBC efficiency                RTS 
A  1.00    3.00      2.00   1                  CRS 
B  1.25    3.00      4.00   1                  CRS 
C  1.50    4.50      3.00   1                  CRS 
D  1.75    1.87      4.50   1                  DRS 

 
Table 4. The results obtained by the proposed model for units in the Example 2 

퐃퐌퐔퐬                               후(ퟏ)                            후퐜 (ퟏ)                               후퐜 (ퟏ)                             퐌퐑퐓퐒 
A   1.00            2.00  2.00                       IMRTS 
B   1.00 0.00  1.55         CMRTS 
C   1.00 0.00  2.00          CMRTS 
D   1.00 0.00  0.00        DMRTS 

 
The CCR efficient frontier is the triangle ABC, which includes the three original units, and the unit D is BCC 
efficient. Using the results in Table 2, we can improve unites A and D by increasing and deceasing their scale 
size, respectively. Figure 2 confirms this as well. 
The CCR efficient frontier is the triangle ABC, which includes the three original units, and the unit D is BCC 
efficient. Using the results in Table 2, we can improve unites A and D by increasing and deceasing their scale 
size, respectively. Figure 2 confirms this as well. 

 
 

Figure 2. Production Possibility Set (푇 ) for data set of Example 2 
 
Results obtained using the propose definition to unit D is quite consistent with the results of classic definition of 
RTS. But, as for unit A, our approach reveals some shortage in unit A to achieve proper size (CMRTS).  
 

4. CONCLUSION 
      

 In this study, we proposed a new elasticity measure in CRS and VRS production technologies and 
provided linear program models for the calculation of elasticity measures. In addition, a new RTS definition has 
also been proposed. It is observed that the CRS points themselves are classified as DRS, CRS or IRS according 
to the proposed RTS definition. However, we implied the elasticity measure in CRS and VRS production 
technologies, it can be applied to NIRS and NDRS production technologies as well. 
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