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ABSTRACT 
 

The effective properties of composite materials are closely related to the shape and arrangement of its constituent 
phases. In the quasi-static limit, we use the finite element method as a numerical tool to evaluate the effective 
permittivity of loss-less random composite materials with small grains and short fibers as fillers. The effect of 
the inclusion shapes as a function of surface fraction is highlighted. The numerical tool used to extract the exact 
value of the effective permittivity takes into account all internal multipolar interactions which contribute to the 
polarization of the material medium. The Maxwell-Garnett theory fails to predict the effective permittivity of the 
studied hetero structures for high permittivity contrast, but, Looyenga and Böttcher mixing rules predict more 
accurately the short fiber and granular fillers of the composite materials respectively. 
KEYWORDS: Random Composite Materials, Finite Element Method, Effective Permittivity, Mixing Rules. 
 

INTRODUCTION 
 

Modeling of composite materials by the empirical mixturerules allowsa universal analysis with saving time 
and cost, which is of immense importance of viewpoints scientifically and industrial.But the inability of these 
mixing rules to describe completely the macroscopic behavior of heterogeneous structures which depend 
strongly on the components parameters makes their application more limited.Numerous fast and efficient 
numerical methods have been developed. Numerical modeling of composite materials, the computation of their 
effective permittivity, the accuracy of these methods, time and memory required for calculations are the topics 
discussed in many works [1-3]. The success of compositematerials is derived from the ability to obtain wide 
range properties (e. g. electrical, thermal and mechanical) depending on the intrinsic properties of the constituent 
phases. The macroscopic or effective permittivity is an average property binding the internal topology of the 
shape and the spatial arrangement of the fillers and their volume or surface fraction. But, the classical mixture 
rules are unable to predict accurately the dielectric behavior of heterogeneous systems, especially for high 
contrast permittivity between different phases and for complex shape of inclusions. In contrast, different 
computational approaches are used to study the dielectric composite materials with complex topology. The 
Finite-Difference Time-Domain [4-5], Boundary Integral [6-7] and the Finite Element [8-9] are the popular 
methods employed to analyse random and periodic filler arrangements in heterogeneous structures. 
Classical mixing rules, like as Maxwell Garnet, Bruggmann, Böttcher and Looyenga are widely used to evaluate 
the effective permittivity of such mixtures. These formulae work very well when the contrast between the 
permittivities of the various phases of the inhomogeneous media is not very large. However, in the case of 
applications of material engineering, sometimes the composite needs to be constructed with an extremely large 
electrical contrast and the choice of the mixing theory is problematic. In addition, the inclusion shape is another 
parameter which has a considerable effect on the effective permittivity. 
The aim of this study is to highlight by numerical simulation the impact of the inclusion shape in random 
composite and to choose what mixture rule is suitable for the case of high contrast within dilute limit. The 
outline of the paper is as follows: in section I, a brief review of some properties of effective medium approaches 
and some empirical mixing formulas. Section II, describes the finite-element computational aspects. Section III, 
reports the results of simulations and comments the effect of filler shapes on the effective permittivity of 
composite materials and the simulation data are compared with Looyenga and Böttcher mixing rules. Closure is 
provided in section IV. 
 
I. EFFECTIVE PERMITTIVITY PROPERTY OF HETEROGENEOUS MEDIA 

 
One long-standing issue and rich area of research in the theory of composite materials is the determination 

of their effective transport coefficients. A principal question with these materials is how the effective 
permittivity can be evaluated as a function of inclusion shape, their arrangement from the external electric field, 
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their volume fraction and the contrast between the permittivities of different phases. Abundant theoretical and 
computational descriptions of the effective permittivity of two component random or periodic materials do exist. 
But, in the absence of detailed microstructure characterization, evaluating the effective permittivity is a difficult 
task with different descriptions, and consequently, to serious errors in interpreting experimental results. 

The mixture under study consists of 2D-two dielectric components, of which one is treated as host medium 
(continuous matrix), and the other inclusion phase with respective permittivities 1 and 2. The mixture rules and 
effective permittivity eff equations most widely used by practitioners for calculating the bulk permittivity eff of 
inhomogeneous materials are these of Maxwell Garnett [2] 
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derived based on the polarization induced by external applied, uniform electric field on isolated spherical 
inclusions located within a host material, Böttcher ( also called symmetric Bruggmann equation) [10] 

 0
)(

)(
)(

)(

2

22

1

11 








effeff

eff

effeff

eff

A
f

A
f







 (2) 

and Looyenga [11] 
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With f1 and f2 are the surface fractions of host media and inclusions respectively. A (0A1) is the 
polarization factor which depends on the shape of inclusions. It should also be noted that these formulas give 
poor approximations at high concentrations of inclusions and at high contrast permittivity. But, we can adjust 
each formula for grain and short fiber inclusion shapes, with the aim to help the practitioners to approximate the 
real effective permittivity more accurately. 
 
II. FINITE-ELEMENT COMPUTATIONAL APPROACH 

 
Here, we are interested of extracting ensemble-average (effective) permittivity of random composite 

materials using the Finite-Element FE numerical tool. The detailed description of the method for determining the 
effective permittivity in the quasi-static limit can be found elsewhere [9]. As both computing power and the 
efficiency of the FE computational method, it is becoming possible to investigate new composite materials 
through computer simulations before they have even been synthesized. FE tool is used to compute the solution of 
Laplace equation by determining the electric field and potential distribution from the physical properties of 
different phases of the composite material. Recent works have shown that the FE method could be successfully 
applied to compute the effective permittivity of periodic composite materials [12]. The basic scheme of the FE 
method is now briefly recalled. 

 
Figure 1: Illustration of the numerical computation of the effective permittivity of random inhomogeneous 

media. The black inclusions with permittivity 2 are immersed in  
the background host matrix with permittivity 1. 

We consider a parallel plate capacitor shown in figure1 formed by two metal plates of area S and separated 
by height h. The two plates are submitted to a potential difference V1-V2=1V. Solving the problem at hand means 
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finding the local potential distribution inside the computational domain by solving Laplace’s equation (first 
principal of electrostatic):  

 
 0))(( 0  Vr  (4) 
 
Where (r) and V are the local relative permittivity and the potential distribution inside the material domain 
respectively with zero charge density. 0=8.85.10-12F/m is the permittivity of the vacuum. The electrostatic 
energy W can be written in terms of potential derivatives by: 
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Periodic boundary conditions V/n=0 are enforced on the edges perpendicular to the parallel plates, thus, the 
edge fringing effects can be eliminated. The effective permittivity eff can be computed from the energy W stored 
in the capacitor as 
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In this equation S=dL stands for the surface of the plates (for the 2D domain structure considered below, d is set 
equal to 1 unit length). 
 
III. SIMULATION MODELS, RESULTS AND DISCUSSION 

 
A series of simulations were performed on random composites with granular and short fiberinclusions. 

Examples of simulated composites are shown in figure 2.The computational domain is a square of 1cm² surface, 
granular inclusions are represented by small squares which the side is equal to 0.1mm(figures 2a and 2b), and in 
figures 2c and 2d, inclusions of short fibers are modeled by rectangles (2x0.08) mm² surface each one. The upper 
and lower boundaries of the computational domain are subjected to a difference potential of 1V whichthe two-
dimensional distribution of the electric field is solved by the finite element method. During all simulations, we 
shall only consider the case where the different phasesof the studied composite materials are initially discharged 
and do not contain free charges. The relative permittivity of the fillers and the host medium are equal to 2=114 
and 1=3.7 respectively, where the permittivity contrast k=2/1=30.81. By increasing the number of inclusions, 
randomly dispersed into computational domain, the surface fraction increases too. For short fibers case, (figures 
2a and 2b), the orientation angle, a random parameter comprised between 0° and 180°, is added to the random 
position parameter. It should be noted that the inclusions can overlap. The materials being loss-less and their 
permittivities are real numbers. Two series of different numerical experiments were performed. The results of 
our simulations on the effective permittivity of dielectric mixtures are compared with the Maxwell Garnett, 
Looyenga and Böttcher analytical equations. The data obtained on the effect of filler shapes at high permittivity 
contrast (k=30.81) are given. 

To investigate the effect of mixture-components geometry on the effective permittivity, simulations with 
randomly oriented and dispersed inclusions of different shapes, such as small squares and rectangular wires 
(short fibers) were carried out. The results obtained by the FE method are presented in figure 3. 

It shows first that the effective permittivity curve of short fiber-filled composite is higher than the curve 
obtained for granular composite over the studied range [0-30%]. However, the polarizability of 2D- short fibers 
is greater than the squares or quasi-discoidal inclusions. Moreover, figure 3 exhibits a divergent prediction 
behavior between Maxwell Garnett, Looyenga and Böttcher models in the investigated range of surface fraction. 
The Maxwell Garnett model is inappropriate to predict the effective permittivity of random composite materials 
and its curve is too lower (figure 3); because its formulation is based on isolated spherical inclusions immersed 
in homogeneous host media. In random heterogeneous media, the multipolar interactions between fillers 
contribute to the polarization of the material medium. We can see that the Looyenga curve is more suitable to 
predict more accurately the effective permittivity of short fiber-filled composites for A=0.32 in the [0-15%] 
surface fraction range. Böttcher curve with A=0.5 is suitable to predict the granular composite only in the dilute 
limit less than 15% too. This limit increases when k decreases [13]. 
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 (a)  (b) 

   
 (c)  (d) 

Figure 2: The short fibers ((a) and (b)) and the small squares ((c) and (d)) inclusions of permittivity i=114 and 
surface fraction fare embedded randomlyintobackground media of permittivity e=3.7. Specimens of virtual 

composites with different surface fractions of inclusions:f=2.68% for (a), f=8.83% for (b), f=1.7% for (c), and 
f=15.6% for (d) are presented for examples. 

 

 
Figure 3: Simulations and analytical data of effective permittivity of the virtual composites shown in figure 2 as 

a function of the surface fraction. The numerical data predict more accurately the effective permittivity taking 
into count the shapes of the fillers and theremultipolar interactions. The dashed plots are the polynomial fitting 

of the numerical results. 
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Collectively, all of the presented numerical results assess the accuracy of the computed data of the effective 
permittivity for 2D loss-less heterogeneous materials which is of great importance in acceptance or rejection of 
specific mixing rule. Our computations confirm that the effective permittivity become progressively accurate 
than the empirical rules as more microstructure is incorporated. The methodology presented here is useful to 
investigate the dielectric condensed matter which is important in many technological applications, e. g., 
characterization of geophysical media, medical applications of microwaves and materials science. It can be 
generalized to multicomponent mixtures with arbitrary shapes of the fillers. By mathematical analogy, the results 
are also valid for magnetic composites materials. To keep the concept of effective permittivity valid, the spatial 
variation of the external field must be very large compared to the typical size of the inclusions. 
 
IV. CONCLUSION 

 
In conclusion, we have established a series of 2D-simulations by the finite element method of dielectric 

random composite materials. The inclusions are uniformly and randomly distributed into background host media. 
The numerical results are performed on loss-less heterogeneous media with granular and short fiber inclusions, 
and the effect of the filler shapes is highlighted. Maxwell Garnett model is inadequate to predict the effective 
permittivity of random composites, but Looyenga and Böttcher equations are suitable to anticipate the effective 
permittivity values of composite materials based on short-fiber and granular fillers respectively. This study, with 
the great simplicity and versatility, helps to compare the effective properties of different material combinations 
with changing the electrical properties of constituents and inclusion shapes, and can be extended to multiphase 
structures containing arbitrary shaped components. However, it is a very useful starting point for any material 
engineering application. 
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