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ABSTRACT 

 
This paper illustrates the using of Hermite orthogonal polynomials to modify the Adomian decomposition 
method. This method can be successfully used for different types of ordinary and partial differential equations. 
The scheme is tested for some examples and the obtained results are compared with usual Adomian 
Decomposition Method. The results demonstrate that the Hermite polynomials provide the better estimation 
than usual Adomian Decomposition Method. 
KEYWORDS: Adomian decomposition Method, Hermite polynomials, Ordinary differential equations. 
 

1. INTRODUCTION 
 

In the 1980s, George Adomian (1923-1996) introduced a powerful method for solving linear and nonlinear 
differential equations. Since then, this method is known as the Adomian decomposition method (ADM) [1,2]. 
The technique is based on a decomposition of the solution of a nonlinear differential equation in a series of 
functions. Each term of the series is obtained from a polynomial generated by a power series expansion of an 
analytic function. 

A large variety of methods have been proposed for solving ordinary differential equations see for example 
[12]. Yucheng Liu employed Legendre polynomials to improve the Adomian decomposition method [3]. 
Hosseini [4] proposed the method of implementing ADM with Chebyshev polynomials, where the reliability 
and efficiency of the proposed scheme was verified to be applicable for both linear and nonlinear models. Yahya 
Qaid Hassan applied modified ADM to solve singular boundary value problems of higher-order ordinary 
differential equations [5]. D. J. Evans applied ADM for the approximate solution of delay differential equation 
[6]. M. Alabdullatif applied the ADM to find an analytic approximate solution for nonlinear reaction diffusion 
system of Lotka-Volterra type [7]. Awatif Hendi applied ADM to solve the linear and nonlinear differential 
equations to find the neutron energy density and flux, which can be used to calculate the neutron angular 
intensity through the Pomraning-Eddington approximation [8]. 

The goal of this paper is to introduce a new reliable modification of Adomian decomposition method with 
Hermit polynomials. There is a basic qualitative difference between ADM with Hermite polynomials and other 
methods that this method decreases the order of errors, especially when the computations volume arises. 

This paper focuses on the ADM using Hermite polynomials. The Hermite polynomials are a sequence of 
orthogonal polynomials considered by Askey and Wimp in[9], who analytically derived a number of results 
about these polynomials. Hermite differential equation is defined as  
y ′′ − 2xy ′ + 2ny = 0,																																																																											                                 (1) 
wherenis a real number. The Hermite polynomials H୬(x) can be expressed by Rodrigues’ formula 
H୬(x) = (−1)୬e୶మ ୢ౤

ୢ୶౤
൫eି୶మ൯,										n = 0,1,2, …                                                         (2) 

They also defined recursively by using the following recurrence relation 
H଴(x) = 1, 
Hଵ(x) = 2x, 
H୬ାଵ(x) = 2xH୬(x) − 2nH୬ିଵ(x),													n ≥ 1.                                                         (3) 
Hermitepolynomials H୬(x), form a complete orthogonal set on the interval −∞ < ݔ < ∞ with respect to the 
weight function eି୶మ. This paper applies Hermite polynomials [9-11] to modify the ADM and compares with 
ADM on the basis of Taylor series expansion. 

The remaining structure of this article is organized as follows: a brief introduction to the ADM and 
modified ADM is presented in section 2 and section 3, respectively. One example is documented in section 4. 
The last section includes our conclusion. 
 
2. Adomian Decomposition Method 

The Adomian decomposition method has been used in [1,2] to solve effectively, easily and accurately a 
large class of linear and nonlinear, ordinary, partial, deterministic or stochastic differential equations with 
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approximate solutions which converge rapidly to accurate solutions. In this part, the concept of Adomian 
decomposition method is introduced. Consider the differential equation 
Lu + Ru + Nu = g(x),(4) 
Lu = g(x) − Ru− Nu,                                                                                         (5) 
whereNis a nonlinear operator, Lis the highest-order derivative which is assumed to be invertible, Ris a linear 
operator of lower order than Landg is a given function. Applying the inverse operator to both sides of the (5), we 
get  
u = φ(x) + Lିଵ[g(x) − Ru− Nu],                                                                     (6) 
u = φ(x) + Lିଵg− Lିଵ(Ru) − Lିଵ(Nu),(7) 
whereφ(x) represents the given conditions and Lିଵ is the inversed operator of L. 
According to the decomposition method, we assume that a series solution of the unknown functions u are given 
by 
u = ∑ u୬∞

୬ୀ଴ .                                                                                                        (8) 
The nonlinear terms Nu can be decomposed into the in finite series of polynomials given as 
Nu = ∑ A୬

∞
୬ୀ଴ ,                                                                                                       (9) 

where the components u୬ will b determined recursively, and the A୬'s are the so called Adomain Polynomials. 
Specific algorithms were set in for calculating Adomian's polynomials for nonlinear term. 
A୬ = ଵ

୬!
ୢ౤

ୢλ౤
[N൫∑ λ୧୬

୧ୀ଴ u୧൯]λୀ଴		,																			n ≥ 0.                                                 (10) 
The components u୬ for n ≥ 0 are given by the following recursive relationships 
u଴ = Lିଵ(g) + φ(x), 
u୧ = −Lିଵ(Ru୧ିଵ)− Lିଵ(A୧ିଵ),										i ≥ 1.                                                            (11) 
Using the above recursive relationships, we construct the solution	u as 
u = lim୬→∞ ϑ୬,                                                                                                          (12) 
where 
ϑ୬ = ∑ u୧୬ିଵ

୧ୀ଴ 													n ≥ 1.                                                                                        (13) 
It is interesting to note that, we obtain the series solution by using the initial condition only. 
 
3. Modified Adomian decomposition method 
 
To solve differential equation by the Adomian decomposition method, for an arbitrary natural number m 
(expand at x = 0), g(x) can be expressed in the Taylor series or Hermite series, that is pointed by g୘,୫(x) and 
gୌ,୫(x) respectively, where 
g(x) ≈ g୘,୫(x) = ∑ ୥(౤)(଴)

୬!
x୬,୫

୬ୀ଴                                                                                 (14)  
g(x) ≈ gୌ,୫(x) = ∑ c୬H୬(x)୫

୬ୀ଴ ,                                                                                (15) 
where 
c୬ = ଵ

ଶ౤୬!√π
∫ eି୶మg(x)dx,																n = 0, 1, … .ା∞
ି∞                                                        (16) 

whereH୬(x) is the orthogonal Hermite polynomial and from (2) we can deduce that  
n																																							H୬(x) 
0 1 
1 2x 
2 4xଶ − 2 
3 8xଷ − 12x 
4                            16xସ − 48xଶ + 12 
⋯																																							⋯ 
Substitute (15) into (11) yields 
u଴ = Lିଵ൫c଴H଴(x) + cଵHଵ(x) + ⋯+ c୫H୫(x)൯ + φ(x), 
uଵ = −Lିଵ(Ru଴)− Lିଵ(Nu଴), 
uଶ = −Lିଵ(Ruଵ)− Lିଵ(Nuଵ),                                                                                       (17) 
⋮ 
Alternatively, Wazwaz [10] had written (17) as 
u଴ = Lିଵ൫c଴H଴(x)൯ + φ(x),                                                                                           (18) 
uଵ = Lିଵ൫cଵHଵ(x)൯ − Lିଵ(Ru଴)− Lିଵ(Nu଴), 
uଶ = Lିଵ൫cଶHଶ(x)൯ − Lିଵ(Ruଵ)− Lି ଵ(Nuଵ), 
⋮ 
Where g(x) (Eq.(15)) can be represented as a standard polynomial form as 

g(x) ≈෍ d୬

୫

୬ୀ଴

x୬ 

And  
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Therefore Eq. (18) can be converted to 
u଴ = Lିଵ(d଴) + φ(x),                                                                                                  (19) 
uଵ = Lିଵ(dଵ) − Lିଵ(Ru଴)− Lିଵ(Nu଴), 
uଶ = Lିଵ(dଶ) − Lିଵ(Ruଵ)− Lି ଵ(Nuଵ), 
⋮ 
Eqs.(17)-(19) are governing equations of modified ADM using Hermite polynomials. The approximate u(x) is 
obtained from these equations as u(x) = ∑ u୬୫

୬ୀ଴ , which can be very close to the Hermite expansion of the exact 
solution u(x) for appropriate m. 

4. NUMERICAL RESULTS 
 

In this section, we solve a differential equation of second order by ADM based on Hermite polynomials. In 
order to compare the precision of ADM on the basis of Taylor and Hermite, their absolute errors are drown in 
figure 1. 
We consider the following differential equation with the exact solution u(x) = eି୶మ . 
u′′ + u′ − uu′ = (−2 + 4xଶ − 2x)eି୶మ + 2xeିଶ୶మ ,											u(0) = 1,				u′(0) = 0                              (20) 
The operator from (20) respect to Lu = g(t) − R(u) − F(u), 0 ≤ x ≤ 2,is 

L(u) =
dଶu
dxଶ = u′′ , F(u) = Nu = −uu′, R(u) = u′, g(x) = (−2 + 4xଶ − 2x)eି୶మ + 2xeିଶ୶మ . 

Then the inverse operator Lିଵ can be regarded as the definite integral in the following form 
Lିଵ = ∫ ∫ (. )dxdx୶

଴
୶
଴ . 

 The Adomianpolynomials are 
A଴ = −u଴u଴′ ,  
Aଵ = −u଴uଵ′ − uଵu଴′ ,                                                                                                                            (21) 
Aଶ = −uଶu଴′ − u଴uଶ′ − 2uଵuଵ′ , 
⋮ 
In this work we expand g(x) with taylor series and Hermite polynomials (14), (15), then we obtain u୧ for 
i = 0,1,2, … by using (17)and u(x) = ∑ u୬୫

୬ୀ଴ . 
By Eq. (21),u୘(x), u୪(x) can be evaluated based on g(x), u୧ and Adomian polynomials A୬ as 
u଴ = Lିଵ൫g(x)൯ + ∅(x), (22) 
u୩ = Lିଵ ቀୢ୳ౡషభ

ୢ୶
ቁ − Lିଵ(A୩ିଵ),			k ≥ 1. 

Case (A): Let m=10, we first expand g(x) with Taylor series  
g୘,ଵ଴(x) ≈ −2 + 6xଶ − 2xଷ − 5xସ + 3xହ + ଻

ଷ
x଺ − ଻

ଷ
x଻ − ଷ

ସ
x଼ + ହ

ସ
xଽ + ଵଵ

଺଴
xଵ଴ + O(xଵଵ),(23) 

By using Eq. (22) we obtainedu୘(x) based on Eq. (23) as 

u୘,ଵ଴(x) = ෍ u୫ = 1− xଶ +
1
2

xସ −
1
6

x଺ +
1

24
x଼ −

1
120

xଵ଴ +
1

720
xଵଶ −

31
9360

xଵଷ + ⋯
ଵ଴

୫ୀ଴

 

Case (B): By setting  m = 10 and from recurrence relation (14) and Eqs. (15), (16) we can have 
gୌ,ଵ଴ ≈ −1.9308192 − 0.3438746x + 5.0148302xଶ − 0.2099379xଷ − 2.8829793xସ + 0.1673955xହ

+ 0.6541658x଺ − 0.0281526x଻ − 0.0621480x଼ + 0.0013264xଽ + 0.0020255xଵ଴. 
                                                                                                                                                        (24) 
Similarly, placing (24) in g(x) at (22), the approximate solution based on Hermite polynomials is  

uୌ,ଵ଴(x) = ෍ u୫ = 1− 0.9654096xଶ − 0.0573124
ଵ଴

୫ୀ଴

xଷ + 0.41794025xସ + 0.0827046xହ 

−0.08688776x଺ − 0.0534150x଻ − 0.0012928x଼ + ⋯. 
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Figure-1: Absolute errors of ADM by Taylor and Hermite polynomials. 
 
5. Conclusion 

 
In this paper, Hermite  polynomials is used to improve the Adomian decomposition method. Considering 

presented example and their figures, we conclude that solutions of Adomian decomposition method on the basis 
of orthogonal polynomials expansion (Hermite polynomials) is better than Taylor expansion, especially when 
the approximate interpolation is wider than [0,1] (we have considered [0,2]).  
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