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ABSTRACT 
 

The propagation of an intense laser beam in a preformed plasma channel is studied. Considering a 
propagating Gaussian laser pulse in a relativistic plasma channel which has a parabolic density profile, the 
evolution equation of the laser spot size is derived including the effects of ponderomotive self-channeling, 
preformed channel focusing and relativistic self focusing. Also, in order to investigate the conditions for the 
existence of electromagnetic solitary waves, solutions of the envelope equation are discussed in terms of a 
relativistic effective potential for the laser spot size. Furthermore, some solitary wave solutions are 
illustrated numerically. 
KEYWORD: Plasma Channel, Relativistic Solitons, Electromagnetic Solitary Waves, Preformed Channel 

Focusing.   
     

1- INTRODUCTION 
 
The nonlinear interaction of plasmas with high intensity lasers is of great current interest [1-5]. The 

possibility of reaching extreme power levels with such setups is one of the promising aspects of laser-
plasma systems [6], and also holds the potential of overcoming the laser intensity limit 225  10 cmW  

[7]. As the field strengths approaches the critical Schwinger field cmVE  1016
crit   [8], there is 

possibility of photon-photon scattering, even within a plasma [9], as the ponderomotive force due to the 
intense laser pulse gives rise to plasma channels [10]. 

In fact, the main nonlinear effects in the propagation of intense electromagnetic pulses through a 
plasma arise from the relativistic variation of electron mass (relativistic nonlinearity) and from the 
perturbation in the electron density which takes place because of the ponderomotive forces due to the 
radiation fields (strict nonlinearity). Both these effects change the effective dielectric constant of the plasma 
medium for the propagation of the electromagnetic wave and lead to a coupling between the transverse 
electromagnetic wave and the longitudinal waves of the plasma medium. 
The study of formation and propagation of relativistic electromagnetic solitary waves and their effects on 
the plasma due to highly nonlinear processes of strong electromagnetic wave coupling with the plasma 
wave is important to understand many aspects of laser-plasma interaction such as fast ignition scheme, 
laser wake field acceleration and laser overdense penetration [11-14].  

It is well known that the characteristic distance for propagation of a directed radiation beam in 
vacuum is the Rayleigh range, RZ . On the other hand, although a laser pulse in a uniform plasma can guide 
itself by the effect of relativistic self-focusing and ponderomotive self-channeling, the diffraction would 
dominate over these effects when the laser power is smaller than the critical power 

   GWP 2
p0c 17   where p  is the plasma frequency and 0  is the laser frequency. It has been 

shown that a preformed plasma channel can prevent diffraction and allow the propagation of an intense 
laser pulse through many Rayleigh lengths without disruption. 

The aim of this paper is to investigate the existence of the relativistic solitary waves of a Gaussian 
laser pulse in a preformed plasma channel with a parabolic density profile. The organization of this paper is 
as follows: In Sec. 2, considering the appropriate equations, we obtain the differential equation describing 
the evolution of the laser spot size. The governing equation presents the effects of ponderomotive self-
channeling, preformed channel focusing and self-focusing with relativistic corrections. In Sec. 3, we use 
this equation to discuss the solutions and some solitary wave solutions are illustrated numerically. Sec. 4 
summarizes the finding of this study.   
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2- EVOLUTION EQUATIONS 
 
The normalized vector potential with a slowly varying complex envelope for a circularly polarized laser 
pulse propagating in a plasma channel with a parabolic density profile of the form    2

ch
2

0 1 rrnrn   
can be written as [15] 

        c.ciexpˆˆ,,
2
1,, 00  tzkitzratzr yx eea                                                                     (1) 

Where 0n  is the initial axial electron density, chr  the effective channel radius and  tzra ,,  is the 

complex amplitude. Also, 0k   and 0  are the laser centre wave number and the frequency, respectively. In 

relativistic regime, using Coulomb gauge 0 a , the wave equation for the laser field can be written as 
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where ck pp   is the plasma wave number and   21221


 cVV  is the ‘effective relativistic 
factor’ associated with the velocity of the wave and should not be confused with the relativistic factor, 

  21221 
 cu  related to the fluid velocity of the plasma. Also, cu , cVv   and the 

subscript 0  represent quantities at infinity. It is necessary to mention that, in deriving equation (2), the 

long pulse limit, i.e., 1Lp  is used [   21
0

2
0 4 menp    and L  are the plasma frequency and 

the laser pulse duration, respectively]. It is worth to note that in the weakly relativistic limit, equation (2) 
reduces to its counterpart in [15]. Substituting Eq. (1) into Eq. (2) and assuming that the complex amplitude 
of the vector potential has a solution with the Gaussian transverse profile as 
         )()(expexp, 222 zrzbizrrzazra sr                                                                         (3) 

the relativistic equation describing the evolution of the laser spot size is given as 
 
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where      zbzrza sr ,,  and  z  are the real amplitude, spot size, spatial chirp parameter and phase 

shift of the laser pulse respectively. Also, 162
0

2
0

2 rakp p  is the normalized laser power, 
24

0
22

0 4 chpc rrkN   is a parameter related to the effect of reformed channel focusing and the 

dimensionless variables zZz R    and ss rrr 0 where 22
0

2
0 rkZ R   is the Rayleigh length, are 

used. Now, considering a collimated incident laser pulse, i.e.,   000  zs zrb  and the initial 

condition 1sr  at 0z  and integrating Eq. (4) once gives 
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in which 
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We note that for 00  , equations (4)-(7) obviously reduce to the expressions for the non relativistic 
limits. 
 

3- SOLUTION AND RESULTS 
 

The evolution equation, Eq. (5), can be used to study the variation of the spot size of the laser beam. 
The roots of the relativistic effective potential function can be easily found using the solutions of a cubic 
equation. Solving   0srV   gives three solutions as 

11 sr                                                                                                                                                            (8) 

   21
2
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2
2 816 ccpps NaNNNr                                                                                                   (9) 
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three cases can be considered: 

(a) if 41 2
0

2
0 aNap c   , where 
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 , the equation has three real roots: 11 sr  

and  12032  css Narr  .  

(b) if 21 2
0

2aNp c  ,   0srV  has three distinct real roots 1123  sss rrr ;  

(c) if 4121 2
0

2
0

2
0

2 aNapaN cc   , three kinds of cases can be considered: 

(c1) if  cc NN , where the critical channel parameter 42
0

2aN c  ,   0srV  has three real roots: 

twofold root 121  ss rr  and 13 sr . 

(c2) if  cc NN , three types can be discussed as follows: 

(c2.1) if 41 2
0

2
0 aNap c   ,   0srV  has only one real root, i.e., 11 sr ; 

(c2.2) if 4121 2
0

2
0

2
0

2 aNapaN cc   ,   0srV  has three real roots: twofold 

root 312 sss rrr  ; 

(c2.3) if 21 2
0

2aNp c  , then    0srV  has three unequal rael roots: 231 1 sss rrr  ;  

(c3) if   cc NN , the following results are given: 

(c3.1) if 41 2
0

2
0 aNap c   ,   0srV  has triple root, i.e.,  1321  sss rrr  

(c3.2) if  4121 2
0

2
0

2
0

2 aNapaN cc   ,   0srV  has only one real root, i.e., 

11 sr ; 

(c3.3) if 21 2
0

2aNp c  ,   0srV  has three real roots: twofold roots: 11 sr  and 

12032  css Narr  ; 

Figures (1-9) show the variations of the potential,V for various values of p  and cN  corresponding to the 

cases (a)-(c3.3) respectively. In all cases, fix parameters, 8.0,4.0  v  and 3.00 a  are considered.  
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        Figure 1. Potential  srV  as a function of spot          Figure 2. Potential  srV  as a function of spot  

        size sr  for 85.0,3.0  pN c .                              size sr  for 15.0,3.0  pN c . 

 
      Figure 3. Potential  srV  as a function of spot              Figure 4. Potential  srV  as a function of spot  

       size sr  for 95.0,04.0  pN c .                                size sr  for 75.0,4.0  pN c . 
 

 
       Figure 5. Potential  srV  as a function of spot              Figure 6. Potential  srV  as a function of spot 

       size sr  for 9.0,45.0  pN c .                                 size sr  for 65.0,45.0  pN c . 
 
In figure (3), the position  1sr   is stable. In this case, (c1), the particle will be at rest. This case could be 
related to a constant spot size. 
In figures (1, 4, 5, 8, 9), the position 1sr  is unstable. These cases correspond to the catastrophic 

focusing. In fact, in this position, the particle will move to the position 1sr  for the certain parameters 
introduce in these cases. 
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        Figure 7. Potential  srV  as a function of spot           Figure 8. Potential  srV  as a function of spot                                                                           

size sr  for 01.1,02.0  pN c .                               size sr  for 02.1,02.0  pN c . 
 

 
Figure 9. Potential  srV  as a function of spot size sr  for 1,02.0  pN c . 

 
Also, as is clear from figures (2, 6), the particle will move periodically between 1sr   and 2sr  in cases (b) 
and (c2.3) which shows the characteristic feature of periodic solutions. Finally, in the case of (c3.1), figure 
(7), the particle is in critical state.  
 

4- SUMMARIES 
 
In this paper, assuming a circularly polarized Gaussian laser pulse propagating in a plasma channel 

with a parabolic density profile, we obtained a relativistic effective potential and its governing equation. 
Then, by analyzing the differential equation of the pulse spot size, we investigated the conditions for the 
existence of electromagnetic solitary waves. Finally, we illustrated some solitary wave solutions 
numerically. 
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