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ABSTRACT 
 

A new rich class of generalized two-sided power (TSP) distributions, where their density functions are 
expressed in terms of the Gauss hypergeometric functions, is introduced and studied. In this class, the 
symmetric distributions are supported by finite intervals and have normal shape densities. Our study on 
TSP distributions also leads us to a new class of distributions. 
KEYWORDS: and Phrases: Randomly weighted averages, Two-sided power distribution. 
 

1 INTRODUCTION 
 
The paper of Nadarajah (1999) initiated research work on distribution functions supported by finite 
intervals, say (0,1), that assume different formulations on subintervals of their supports, say (0, θ), (θ, 1).  
Two-sided power distributions (TSP) are of this type and were introduced by van Dorp and Kotz (2002a) 
as underlying statistical distributions for certain monthly interest rates.The potential, flexibility and 
applicability of TSP distributions in applied fields have been examined and explored in a series of papers 
by van Dorp and Kotz, (2002a, 2002b, 2003), Nadarajah (2005) and Perez et al. (2005), among others. 
In this articles we show how a TSP random variables can be deduced from a bivariate Dirichlet random 
vector. Then we derive equivalent form for the kth moment of the TSP distributions about zero.  
According, a weighted average of the first and the last order statistics of a uniform [0,1] random sample 
has a TSP distribution. This naturally leads to a new generalization of TSP distribution (HTSP). Our 
HTSP distributions exhibit interesting features, and overcome some deficiencies of the TSP distributions. 
Our symmetric HTSP distribution form a rich class of symmetric distributions on finite intervals with 
normal shape densities. Also, we introduced other new family with named N-sided power distribution. 
 
2  Conditional distribution for random weighted averages 
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at ݔ evaluated at ݔଵ, … , ݖ is the largest positive integer such that ݎ ௡, whereݔ < ௥ݔ . 
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By using the Heaviside function 
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;ݖ)݇ ,ଵݔ …   ௡) is a big family of distribution that includes two-sided powerݔ,
(TSP) distributions and hyper two-sided power (HTSP) distributions. 
 
3  TSP Random Variables as weighted averages 
We recall from Van Dorp and Kotz (2002) that a TSP random variable    ܼ~ܶܵܲ(ܽ,݉, ܾ, ݊) is defined on 
an interval (ܽ,ܾ) in the real line with the probability density function (p.d.f.)  ݂(ݖ|ܽ,݉,ܾ,݊) given by 
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A TSP random variable with ܽ = 0, ܾ = 1 is called standard and is denoted by ܺ~ܵܶܵܲ(ߠ,݊), the 
parameter m in this case is denoted by ߠ. It can be readily verified that ܼ = (ܾ − ܽ)ܺ + ܽ. 
Theorem 3.1. Assume that (ܹ,ܸ)  is a bivariate standard Dirichlet random vector with parameters 
∝= 1, ߚ = ݊ − 1, ߛ = 1; 		݊ > 1, ݅. ݁.		(ܹ,ܸ)  possesses the joint density function 
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Then for every ߠ, 0 < ߠ < 1,			ܺ = ܹ +  .݊,ߠ is a STSP random variable with parameters ܸߠ
Proof. The joint density function of ܺ = ܹ +  and ܹ is given by ܸߠ
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Remark 3.1. It follow from Theorem 3.1 that ܺ is for an integer ݊ ≥ 1,  if (݊,ߠ)ܲܵܶܵ~ܺ
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Proof. By using Theorem 3.1, we obtain that 
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The result will follow from Theorem 3.1. 
 
4    GTSP random variables 
According, a weighted average of the first and the last order statistics of a uniform [0, 1] random sample 
has a TSP distribution (Remark 2.1.). This naturally leads to a new generalization of TSP distribution 
(HTSP). 
 
Definition 4.1. A random variable ܺ = ܹ + ܹ) where ,ܸߠ ,ܸ) possesses the joint p.d.f. given in 
equation (4.1) called standard generalized TSP random variable with parameters ߠ,݊,݇ଵ, ݇ଶ; 
,ߠ)ܲܵܶܵ~ܺ ݊, ݇ଵ,݇ଶ). Note that 0 < ߠ < 1,݊,݇ଵ,݇ଶ are real numbers subject to 0 < ݇ଵ < ݇ଶ < ݊ + 1. 
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The p.d.f of  ܺ can be expressed in terms of certain Gauss hypergeometric function. Indeed the joint p.d.f. 
of  (ܹ,ܺ)  is given by 
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The density function ݂(ݔ) can be expressed in terms of the Gauss hypergeometric function ܨ(ܽ,ܾ, ܿ;  ,(ݖ
which is a well-known special function. Indeed according to the Euler’s formula, the Gauss hyper-
geometric function assumes the integral representation 
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where ܽ, ܾ, ܿ are parameters subject to −∞ < ܽ < +∞, ܿ > ܾ > 0,  whenever they are real and z is the 
variable. By using the Euler’s formula, the density function in equation (4.3) can be expressed as follows. 
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The density ݂ at ߠ exits if  ݇ଶ < ݊ + ݇ଵ only. Indeed, 
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If ݇ଵ = 1, ݇ଶ = ݊, then 0,1)ܨ,݊, (ݖ = 1, and the density function ݂(ݔ) givin by Equation (4.4) and (4.5) 
readily reduces to the STSP density function given in section 2. 
 
Remark 4.1.  For the case that ݇ଵ,݇ଶ, and ݊ are integers, a HTSP random variable can be expressed as 
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Where ݉ = (ܾ − ߠ(ܽ + ܽ, and (ܷଵ), … ,ܷ(௡) is the order statistic of ݊ i.i.d uniform (0,1) random 
variables. Note equation (4.7) for the case that ݇ଵ = 1, ݇ଶ = ݊  gives a TSP random variable. 
 
Remark 4.2 As we stated in Remark 4.1, a TSP random variable ܼ, for integer ݊, is the random weighted 
average of ܾ,݉, and ܽ, [ܾ > ݉ > ܽ], with random variables 1− (ܷଵ), (ܷ௡) − (ܷଵ) and 1 − (ܷ௡), 
respectively. The intermediate point m receives more mass than the ending points b,a that statistically 
receive equal masses. For large ݊, the intermediate point receives substantially larger weight than the 
ending points; and the density is too tall at (ߠ)݂ ,ߠ = ݊. The HTSP distribution overcome this illusion.  
By putting more random weights on the ending points, ݂(ߠ) will be of reasonable size, even for large n. 
Indeed it is evident from equation (4.2) that ݂(ߠ) → 0, as ݊ → ∞ for fixed ݇ଵ,݇ଶ. 
Let us record that if ܺ~ܵߠ)ܲܵܶܪ,݊, ݇ଵ,݇ଶ) , then 
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In the special case that ݇ଵ = 1,݇ଶ = ݊, it gives the variance for STPD derived by Van Dorp and Kotz 
(2002a). 
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Let us pay a special attention to the symmetric SHTSP distributions and random variables. Details are 
given in the following theorem. 
Theorem 4.1. Let ܺ~ܵߠ)ܲܵܶܪ, ݊,݇ଵ, ݇ଶ), 0 < ݇ଵ < ݇ଶ, ݇ଶ < min	{݊ + 1, ݊ + ݇ଵ}, then ܺଶ	is 
symmetric if and only if ߠ = ଵ

ଶ
 and  ݇ଶ = ݊ − ݇ଵ + 1. 

 
Proof. The “if” part is straight forward. For the “only if” part, we notice that for ݔ =  from equation ,ߠ
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If ܺ is a symmetric SHTSP random variable with parameters (݊, ݇)  then it follows from Theorem 4.1 
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Clearly ݂(ݔ) = ݂(1− ,(ݔ 0 < ݔ < 1, as expected. Let us also record from equation (4.8) that 
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5  N-Sided Power Distribution 
Let X be a random variable with cumulative distribution function given by 
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 ܺ will be said to follow a N-sided power distribution, ܰܵܲ(ߠଵ , … ଵߠ,(௡ߠ, > ଶߠ > ⋯ > ௡ߠ ,݊ > 0, where 
n is an integer. The density of (5.1) is unimodal with the mode at  . 
For ݊ = 3, .)ܨ ,ଵߠ| … ,  ௡) simplifies to a TSP distribution. Figure 1 provides examples of symmetricߠ
,ଵߠ)ܲܵܰ … , ௡) distributions i.e. ߠ =0.5, including triangular distribution. Figure 2 presents examples of 
positively and negatively skewed ܰܵܲ(ߠଵ , …  ௡) distributions, including examples of triangularߠ,
distributions. 
The density function of a ܰܵܲ(ߠଵ ଶߠ,  ଷ) distribution follows from expression (5.1) asߠ,
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The meaning of the parameters is as follows: ߠଵ  ௡ are the end points of the support, n is the shapeߠ,
parameter and ߠଶ, …  ௡ିଵ are the threshold parameters for a change in the form of the probability densityߠ,
function. 
In the following section, more classical estimation procedure for the NSP (ߠଵ, ,ଶߠ  ଷ) distribution areߠ
discussed using data. 
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