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ABSTRACT 
 

In this paper, the dynamic analysis of an infinite laminated composite beam located on a generalized Pasternak 
viscoelastic foundation based on the third order shear deformation theory is studied. By using the principle of total 
minimum potential energy, the governing equations of motion are obtained. The effects of stiffness, shear viscosity 
coefficients of foundation, velocity of the moving load, number of layers and various angles of layers over the beam 
response are studied. The results are validated with the known data in the literature. 
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INTRODUCTION 
 

The dynamic analysis of beam like structures under the moving load is one of the most interesting and practical 
subjects in the field of mechanical engineering. It has been a continuous effort by engineers for several years to elevate 
the daily speed of trains, specially the passenger types. Therefore, the dynamic analysis of beam under moving load has 
been considered very important. One of the new researches in this field is referred to the dynamic analysis of laminated 
composite beams under moving loads using finite element method [1]. In this paper, the dynamic analysis of cross-ply 
laminated composite beams on the generalized Pasternak viscoelastic foundation subjected to a concentrated moving 
load based on the third order shear deformation theory is carried out. In addition, deflection, bending moment and shear 
force distributions and stress, are analytically calculated along the beam span in terms of distance from the position of 
the moving load. Finally, the results are validated with the known data in the literature. 

 
Formulation 
 
The formulation that is presented here is based on third order shear deformation beam theory. Based on this theory, the 
displacement field can be written as [2]: 
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where U, V and W represent the beam displacement components and  txw ,  and  txx ,  are the beam deflection and 
beam slope due to bending, respectively. By assuming some linear springs, normal and rotational dampers for Pasternak 
viscoelastic foundation, the transferred forces and moments from foundation to the beam can be calculated as: 
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In which, ),( txq  and ),(~ txM  are the foundation stimulated force and moment per unit length of beam, k  and   are 

the foundation normal stiffness and damping coefficients, also k and  are the foundation rocking stiffness and 
damping coefficients and   is the foundation shear viscosity coefficient. By applying the Hamilton's principle, 
governing differential equations for the dynamic behavior of the composite beam on a Pasternak viscoelastic foundation 
under a transversal moving load are obtained as:  
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In which 2K , b , ),( txp , A , D , 0I  and 2I  represent the correction factor for the shear force, the beam width, 
transversal moving load, tensile stiffness matrix, bending stiffness matrix, zero and 2nd-order moment of inertia, 
respectively. In order to calculate the beam steady-state response, the parameter s  which represents the distance from 
the position of the moving load, is defined as: 
 

vtxs                                                                                                                                                                            (5) 
 
By using the Eq. (5) and utilizing the differentiation chain rule on Eqs.(3) and (4), the governing equations of composite 
beam on the viscoelastic foundation under moving load are obtained as: 
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By equating the shear viscosity coefficient, the foundation rocking stiffness and damping coefficients to zero in Eq. (6) 
and employing dimensional analysis and implementing the Fourier transform the following equations are obtained as: 
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The above equation has been reported by Bajer and Dyniewicz [3]. 
 

THE METHOD OF SOLUTION 
 
To solution of motion’s differential equations, the complex Fourier Transform and its inverse are used. After 
implementing the Fourier transform on Eq. (6) and calculating the inverse Fourier transforms, the following equations 
are obtained as: 
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where 

511 AAB  , 5212 6 AAAAB  , 532713 6 AAAAAAB   , 644 37281
2

AAAAAAAB   

73825 AAAAB  , 836 AAB   , 17 AB   , 28 AB   , 39 AB                                                                              (10) 
 
After applying residue theorem [4] on Eq. (9), w  and x  are calculated analytically in terms of distance from the 
moving load. By using linear strain-displacement relations for small deformations, strain components, stress 
components, bending moments and shear force can be obtained in terms of distance from the moving load.  
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RESULTS 
 
The dynamic analysis of an infinite laminated composite beam located on a generalized Pasternak viscoelastic 
foundation based on the third order shear deformation theory is analyzed. The geometrical data for composite layer are 

considered as: 4N , cmb 5 , ,
2

,0 3241


  cmh 10 . Also, the mechanical properties of composite 

material and viscoelastic foundation are considered as: GpaE 1321  , GpaE 8.102  , GpaG 65.512  , 

GpaGG 38.32313  , 24.012 v , 59.02313  vv , 31540
m

kg , MNk 8.13 , SN .5520 , 

SKN.100 , MPaK 69 , 2

.138
m

skN
 . The correction factor for shear force of the beam, the magnitude of 

the load and the load speed are chosen to be 
6

5K  , 
s

mv 40  and )(144600F(s) s , respectively. The effect of 

foundation normal stiffness on the beam deflection subjected to the moving concentrated load is shown in Fig.(1). It is 
seen that by increasing the value of foundation normal stiffness coefficient the deflection will decrease. Fig.(2) show 
the effect of foundation viscosity coefficient under a moving concentrated load. It is seen that by increasing the value of 
foundation viscosity coefficient, the maximum deflection decreases. Fig.(3) show the effect of load speed on the beam 
deflection due to the motion of the concentrated load. By increasing the load speed, the symmetry trend of the beam 
deflection gets distorted and also the maximum deflection of the beam decreases.  
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Fig (1): Deflection diagram of laminated composite beam under moving concentrated load,  
for different foundation normal stiffness coefficients  
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Fig (2): Deflection diagram of laminated composite beam under moving concentrated load,  
for different foundation viscosity coefficients  
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Fig (3): Deflection diagram of laminated composite beam under moving concentrated load,  
for different load speed  

 
Conclusions 
 
The dynamic analysis of an infinite laminated composite beam located on a generalized Pasternak viscoelastic 
foundation based on the third order shear deformation theory is studied. It is conclude that: 
1- By increasing the foundation normal stiffness coefficients, the magnitude of shear force and the beam deflection 
decreases.  
2- By increase the foundation viscosity coefficient the maximum deflection and shear force decreases along the beam.  
3- By increasing the load speed, the magnitude of deflection, shear force, bending moment and normal stress, decreases 
along the beam. 
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