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ABSTRACT 
 

Choosing a portfolio of projects that meets an organization's objectives without exceeding available capital 
resources is recognized as a critical issue for which the decision maker takes several aspects into consideration. 
As most of these aspects may be conflicting, the problem can be considered as a multi-objective one. 
Correspondingly, in this study a special Multi-Objective Evolutionary Algorithm (MOEA) based on harmony 
search algorithm (HAS) is designed to solve the project selection problem. The original HAS often converges to 
local optima which is a disadvantage with this method. To avoid this shortcoming the HAS was combined with 
a Chaotic Local Search (CLS). In the proposed algorithm an external repository considered to save non-
dominated solutions found during the search process and a fuzzy clustering technique was used to control the 
size of the repository. The experiment results show the capability of the proposed multi-objective algorithm in 
project selection problem. 
 

 
1. INTRODUCTION 

 
Selection of right sets of projects is considerably critical for organizations to successfully achieve their 

competitive advantages and corporate strategies. Due to limited resources and dynamic changes in business 
environment, this kind of selection is quite challenging for organizations. Beside one hundred selection tools 
and techniques, academics and practitioners have studied and recommended complex selection methodologies to 
facilitate the selection of right projects. Some of these methodologies have limitations in various aspects. 
Among the available useful approaches, optimization techniques (i.e. goal programming, multi-criteria decision-
making, etc.) are the most fundamental quantitative tools for project portfolio selection which can address a high 
percentage of desired aspects. Doerner et al. [1] proposed a multi-objective Pareto Ant Colony Optimization 
which introduces Pareto Ant Colony Optimization as an especially effective meta-heuristic for solving the 
portfolio selection problem and considers the model introduced by Stummer and Heidenberger [2]. Badri, Davis, 
and Davis [3] introduced a comprehensive mixed 0–1 goal programming model for project selection in health 
service institutions. Mukherjee and Bera [4] provided an application of goal programming project selection 
decision with a case study from the Indian coal mining industry. They instituted a framework for incorporating 
ratings from experts to compute goal weights with normalization of deviational variables and stochastic 
demands. Santhanam and Kyparisis [5], proposed a multiple criteria decision model for information system 
project selection using a nonlinear 0–1 goal programming model that took advantage of hardware and software 
sharing for IS applications. Santhanam and Kyparisis [6], also discussed a nonlinear 0–1 decision model for 
interdependent information system project selection formulating benefit, resource, and technical 
interdependencies among candidate projects. Dey [7] proposed a project evaluation and selection by developing 
a decision support system. This DSS – applied in an Indian oil pipeline project-analysed project with respect to 
market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy 
process and a multiple-attribute decision-making technique. Gabriel, Kumar, Ordóñez, and Nasserian [8] 
proposed a unique multi-objective project selection model with probability distributions to describe costs and 
incorporating Monte Carlo simulation and AHP. Medaglia, Graves, and Ringuest [9] described an evolutionary 
approach for project selection problems with partially funded projects, multiple (stochastic) objectives, 
interdependencies in the objectives, and a linear structure for resource constraints. Mavrotas, Diakoulaki, and 
Kourentzis [10] proposed a two-phase method: (1) projects are ranked by a multi-criteria approach. (2) The pre-
order of projects is used in an integer programming model to derive the final selection. Carlsson, Fullér, 
Heikkilä, and Majlender [11] presented a fuzzy mixed-integer programming model for R&D portfolio selection 
problem. Huang [12] incorporated random fuzzy uncertainty into project selection by integrating genetic 
algorithm with random fuzzy simulation. 

According to the literature review, meta-heuristic approaches in solving project selection problems have a 
diminutive role in attracting researchers’ attention. In this study, our contribution is to propose a hybrid multi-
objective algorithm based on HSA and CLS. The harmony search algorithm was developed by Geem et al [13] 
and has successfully been applied to various combinatorial optimization problems [14-16]. It applies the musical 
process of searching for a perfect state of harmony. Musical harmony is analogous to the optimization solution 
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vector, and the musician's improvisations are analogous to local and global search schemes in optimization 
techniques. Original HAS often converges to local optima, which is a disadvantage with this method. To avoid 
this shortcoming the HAS was combined with a Chaotic Local Search (CLS) in this paper. The reminder of this 
paper is organized as follows: fundamental definitions of multi-objective optimization are presented in Section 
2. In Section 3, a description of project selection model is provided. Section 4 deals with the proposed multi-
objective algorithm. The computational results are provided in Section 5. Finally, a summary of conclusions is 
explained in Section 6.  
 
2. Multi-objective optimization 

In a multi-objective optimisation problem, the purpose is to optimise several conflicting objectives 
simultaneously while still meeting some constraints.  The project selection problem algorithm can be formulised 
as a multi-objective problem. The multi-objective problem can be described as follows [17][18]: 
min F = [fଵ(X), fଶ(X), … , f୬(X)]   

where f୧(X) is the ith objective function and X is the vector of the optimization variables, n is the number 
of objective functions. 

The solution to the multi-objective optimisation problem is a set of Pareto points. In the multi-objective 
optimisation problem, a solution X∗ ∈ Ω is a Pareto optimal if there is no solution (X) in Ω such that X 
dominates X*. Ω is the set of all feasible values of X. The solution X1 is said to dominate the solution X2 if 
∀ j ∈ {1, 2, … , n}, f୨(Xଵ) ≤ f୨(Xଶ) 
∃ k ∈ {1, 2, … , n}, f୩(Xଵ) ≤ f୩(Xଶ) 

 

Solutions which dominate others but not themselves, are called non-dominated solutions. 
 
3. Formulation of the project selection problem 

In this paper N projects with interdependencies are considered for selection. Three objectives have been 
considered for project selection: maximizing the total benefit, minimizing the total cost, and minimizing the 
total risk from the selected projects. That these objectives are contradictory is obvious (To increase benefit, one 
should attempt to decrease cost and risk). Interdependencies are considered in the benefit and cost objectives 
while calculating risk interdependencies is rather difficult and not very meaningful since risk is derived as an 
average of several dimensions. We assumed that implementing interdependent projects will cause a positive 
synergy (an additional benefit apart from what is gained from each project individually or a reduction in costs).  
 
3.1. Parameters 
N  Number of projects, i, j = 1, . . . , N 
T  Number of periods, t = 1, . . .,T 
bit  The derived benefit from implementing project i alone in period t 
bij  The additional benefit from implementing projects i and j together 
cit  The required cost by project i in period t 
cij  The shared cost by projects i and j 
rit  The risk of implementing project i in period t 
Sm  The set of mandatory projects 
Se  The eth set of exclusive projects 
Ai  The set of projects that the implementing of project i is contingent upon the implementation of all of 
them 
Qi  The set of projects that the implementing of project i is contingent upon the implementation of at least 
one of them 
 
3.2. Decision variable 

ܺ௜௧ ൜
1, ݐ ݀݋݅ݎ݁݌ ݊݅ ݀݁ݐ݈ܿ݁݁ݏ ݏ݅ ݅ ݐ݆ܿ݁݋ݎ݌ ݂݅
0,  ݁ݏ݅ݓݎℎ݁ݐ                                                  

 
3.3. Mathematical formulations 
Maximizing the total benefit 
Maximize  ∑ ∑ ܾ௜௧ܺ௜௧ +்

௧ୀଵ
ே
௜ୀଵ ∑ ∑ ܾ௜௝ ∑ ௜ܺ௧

்
௧ୀଵ ∙ ∑ ௝ܺ௧

்
௧ୀଵ

ே
௝ୀ௜ାଵ

ேିଵ
௜ୀଵ  (1) 

Minimizing the total cost 
Minimize  ∑ ∑ ܿ௜௧ܺ௜௧ +்

௧ୀଵ
ே
௜ୀଵ ∑ ∑ ܿ௜௝ ∑ ௜ܺ௧

்
௧ୀଵ ∙ ∑ ௝ܺ௧

்
௧ୀଵ

ே
௝ୀ௜ାଵ

ேିଵ
௜ୀଵ  (2) 

Minimizing the total risk 
Minimize ∑ ∑ ௜௧ܺ௜௧்ݎ

௧ୀଵ
ே
௜ୀଵ  (3) 

S.t: 
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෍ܺ௜௧ = 1          ∀݅ ∈ ܵ௠

்

௧ୀଵ

 
(4) 

 

෍ܺ௜௧ ≤ 1          ∀݅
்

௧ୀଵ

 
(5) 

 
 

෍෍≤ 1      ∀݁ = 1, … ܧ,
்

௧ୀଵ௜∈ௌ೐

 
(6) 

௜|෍ܣ| ௜ܺ௧ ≤ ෍෍ ௝ܺ௧

்

௧ୀଵ௝∈஺೔

்

௧ୀଵ

 
(7) 

෍ܺ௜௧ ≤ ෍෍ ௝ܺ௧

்

௧ୀଵ௝∈ொ೔

்

௧ୀଵ

 
(8) 

 
The objective function given in Eq. (1) represents the total benefit derived from the implemented projects. 

The first term is the total benefit derived from each implemented project individually. The second term is an 
additional benefit derived from implementing projects i and j together. The Eq. (2) represents the total cost 
objective function. The first term is the total cost required by each implemented project individually. The second 
term is the cost shared by implementing projects i and j together. The objective function given in Eq. (3) 
represents the total risk of the selected projects. The Eq. (4) ensures that each mandated project is done. 
Constraint (5) guarantees that each project will not be implemented more than one. Constraint (6) specifies that 
at most one project from every exclusive set is selected. Eq. (7) indicates the situation in which execution of a 
given project i is contingent upon the implementation of all of the projects in a specific set (Ai) where |ܣ௜| is the 
number of elements in the set Ai. Eq. (8) defines a condition where implementation of a given project i is 
contingent upon implementation of at least one of the projects in a specific set (Qi).  
 
4. Multi-objective Harmony Search Algorithm 
4.1. Original Harmony search algorithm 

The harmony search algorithm is a new algorithm that can be conceptualised from a musical performance 
(say, a jazz improvisation) that involves searching for a better harmony. Just like music improvisation seeks a 
best state (fantastic harmony) determined by aesthetic estimation, the improvisation process seeks the best state 
(global optimum) determined by an objective evaluation of the function. As an aesthetic estimation is 
determined by the set of pitches played by ensemble instruments, evaluating the function was determined by the 
set of values assigned to the decision variables, just as the aesthetic sound quality can be improved by constant 
practice, the value of the objective function can be improved iteration by iteration [13].  

Each musician  (saxophonist, double bassist, and guitarist) can correspond to each decision variable (x1, 
x2, and x3), and the range of each musical instrument (saxophone={Do, Re, Mi}; double bass={Mi, Fa, Sol}; 
and guitar={Sol, La, Si}) corresponds to the range of each variable value (x1={100, 200, 300}; x2={300, 400, 
500}; and x3= {500, 600, 700}). If the saxophonist toots the note Do, the double bassist plucks Mi, and the 
guitarist plucks Sol, their notes together make a new harmony (Do, Mi, Sol). If this New Harmony is better than 
the existing harmony, the New Harmony is kept. Likewise, the new solution vector (100, 300, 500) generated in 
the improvisation process is kept if it is better than the existing harmony in terms of the objective function 
value. Just as the quality of the harmony is enhanced practice after practice, the quality of the solution is 
enhanced iteration by iteration. 

According to the above algorithmic concept and the procedure for searching for harmony consists of the 
following steps [18]: 
Step 1. Initialise the problem and algorithm parameters. 
Step 2. Initialise the harmony memory. 
Step 3. Improvise a new harmony. 
Step 4. Update the harmony memory. 
Step 5. Check the stopping criterion. 
 
In the next section a description of the proposed multi-objective algorithm is given. 
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4.2. Proposed hybrid algorithm 
Previously in this work, the search capability of the HSA algorithm and CLS was specifically used to solve 

the project selection problem. The steps of the proposed hybrid algorithm (HSA-CLS) are as follows: 
 
Step 1: Initializing the problem and algorithm parameters 

The HS algorithm parameters are also specified in this step. These are the harmony memory size (HMS), 
or the number of solution vectors in the harmony memory, the harmony memory considering rate (HMCR), the 
pitch adjusting rate (PAR), and the number of improvisations (NI), or stopping criterion. The harmony memory 
(HM) is a memory location where all the solution vectors (sets of decision variables) are stored.  
 
Step 2: Initialise the harmony memory 

In this step the HM matrix is filled with as many randomly generated solution vectors as the HMS, by 
considering the range of values for each variable. Considering the possible range of values to improve the 
convergence of the method because the space of the possible solutions is restricted, we have: 

HM =

⎣
⎢
⎢
⎢
⎢
⎡ xଵଵ xଶଵ … x୒ିଵଵ x୒ଵ

xଵଶ
⋮

xଵୌ୑ୗିଵ

xଶଶ
⋮

xଶୌ୑ୗିଵ

…
⋱
…

x୒ିଵଵ

⋮
x୒ିଵୌ୑ୗିଵ

x୒ଵ
⋮

x୒ୌ୑ୗିଵ

xଵୌ୑ୗ xଶୌ୑ୗ … x୒ିଵୌ୑ୗ x୒ୌ୑ୗ ⎦
⎥
⎥
⎥
⎥
⎤

 

                                                                                  
(9) 
 

 
Step 3: Apply the CLS on the HM 

In order to make the algorithm perform better and to increase the ability to search, we incorporated the 
chaotic local search (CLS) into HSA. Chaos is characterised as ergodicity, randomicity and regularity. Because 
chaos queues can experience all the states in a specific area without repeat, chaotic search becomes a novel tool 
used as an optimiser [19]. 

The tent equation is a well known chaos system that can also be introduced to the chaotic local search 
process, which could be defined by the following equation: 
௜ݔܥ = ,௜ଵݔܿ] ௜ଶݔܿ , … , ௜௡]ଵ×௡ݔܿ ,        ݅ = 0, 1, 2, … ,ܰ௖௛௔௢௦ 

௜ାଵݔܿ
௝ = ቊ

௜ݔ2ܿ
௝ , 0 < ௜ݔܿ

௝ < 0.5
2(1 − ௜ݔܿ

௝) 0.5 < ௜ݔܿ
௝ < 1

   ݆ = 1, 2, … , ݊ 

௜ݔܿ
௝ ∈ ଴ݔܿ,[0,1]

௝{0.25, 0.5, 0.75} 
଴ݔܿ

௝ = .)݀݊ܽݎ ) 

                                                                                  
(10) 
 

where ܿݔ௜
௝  indicates the jth chaotic variable, Nchoas is the number of individuals for CLS and rand (∙) is a random 

number between [0,1]. 
At first, one of non-dominated solutions in the HM was considered as an initial population for CLS (ܺ௖௟௦଴ ) 

randomly. ܺ௖௟௦଴  was scaled into [0,1] according the following equation: 
ܺ௖௟௦଴ = ௖௟௦,଴ݔ]

ଵ ௖௟௦,଴ݔ,
ଶ , … , ௖௟௦,଴ݔ

௡ ]ଵ×௡ 
଴ݔܥ = ,଴ଵݔܿ] ,଴ଶݔܿ … , [଴௡ݔܿ  

଴ݔܿ
௝ =

௖௟௦,଴ݔ
௝ − ௠௜௡ݔ

௝

௠௔௫ݔ
௝ − ௠௜௡ݔ

௝ ,    ݆ = 1,2, … ,݊ 

                                                                                  
(11) 
 

where ݔ௠௜௡
௝  and ݔ௠௔௫

௝  are the minimum and maximum values of state variables vector. 

Then, the chaos population for CLS is generated as follows: 
ܺ௖௟௦௜ = ௖௟௦,௜ݔ]

ଵ ௖௟௦,௜ݔ,
ଶ , … , ௖௟௦,௜ݔ

௡ ]ଵ×௡ ,        ݅ = 1,2, … ,ܰ௖௛௔௢௦ 
௖௟௦,௜ݔ
௝ = ௜ିଵݔܿ

௝ × ൫ݔ௠௔௫
௝ − ௠௜௡ݔ

௝ ൯ + ௠௜௡ݔ
௝ ,         ݆ = 1,2, … , ݊ 

                                                                                  
(12) 
 

The objective functions for all the individuals of CLS were evaluated, and the non-dominated solution in 
CLS was selected and replaced with a dominated solution in the HM. 
Step 4: Store the non-dominated solutions into a repository and use fuzzy clustering to control the size of 
repository 

A fuzzy-based clustering procedure was normalized to control the size of the repository. In the procedure, 
a fuzzy membership function was used to normalize the best compromise solution. In other words, decision 
making was done when the repository was filled. For any individual in the repository, the membership function 
of each objective function is defined as follows: 
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(ࢄ)௙௜ߤ =

⎩
⎪
⎨

⎪
(ࢄ)௜݂ ݎ݋݂                                    1⎧ ≤ ௜݂

௠௜௡

(ࢄ)௜݂ ݎ݋݂                                   0 ≥ ௜݂
௠௔௫

௜݂
௠௔௫ − ௜݂(ࢄ)

௜݂
௠௔௫ − ௜݂

௠௜௡      ௜݂
௠௜௡ ≤ ௜݂(ࢄ) ≤ ௜݂

௠௔௫
 

                                                                                  
(13) 
 

where ௜݂
௠௜௡  and ௜݂

௠௔௫  are the upper and lower limits of each objective function, respectively. In the proposed 
algorithm, the values of fmin and fmax were evaluated using the results achieved by normalization of each 
objective function separately. For each individual in the repository, the5normalized membership value was 
evaluated using 

ఓܰ(݆) =
∑ ௞ݓ × ௡(௝ࢄ)௙௞ߤ
௞ୀଵ

∑ ∑ ௞ݓ ×௡
௞ୀଵ

௠
௝ୀଵ  (௝ࢄ)௙௞ߤ

                                                                                  
(14) 
 

where m is the number of non-dominated solutions, n the number of objective functions, and wk is the weight for 
the kth objective function. This membership function shows a type of decision making criterion that is adaptive 
and changes with the available decision options. 
 
Step 5: Improvise a new harmony 

A new harmony vector ݔ′ = ′ଵݔ) ′ଶݔ, , … , ′ேݔ ) was generated based on three rules: (1) memory consideration, 
(2) pitch adjustment, and (3) random selection. Generating a new harmony is called ‘improvisation’ [12]. 
In the memory consideration, the value of the first decision variable ݔଵ′  for the new vector was chosen from any 
of the values in the specified HM range (ݔଵଵ …  ଵுெௌ) HMS. The values of the other decision variables wereݔ
chosen in the same way.  The HMCR, which varied between 0 and 1, was the rate of choosing one value from 
the historical values stored in the HM, while (1-HMCR) was the rate of randomly selecting one value from the 
possible range of values. 

′௜ݔ ← ቊݔ௜
′ ∈ ௜ଵݔ} ,௜ଶݔ, … , {௜ுெௌݔ ܴܥܯܪ   ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ℎݐ݅ݓ

௜ଵݔ ∈ ܺ௜ (ܴܥܯܪ−1)   ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ℎݐ݅ݓ
 

                                                                                  
(15) 
 

For example, a HMCR of 0.85 indicates that the HS algorithm will choose the decision variable value from 
historically stored values in the HM with an 85% probability or from the entire possible range with a (100–85) 
% probability. Every component obtained by memory consideration was examined to determine whether it 
should be pitch-adjusted. This operation used the PAR parameter, which is the rate of pitch adjustment as 
follows: 
′௜ݔ ݎ݋݂ ݊݋݅ݏ݅ܿ݁݀ ݃݊݅ݐݏݑ݆݀ܽ ℎܿݐ݅ܲ

← ൜ܻ݁ݏ ܴܣܲ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ℎݐ݅ݓ
݋ܰ 1)ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ℎݐ݅ݓ −  (ܴܣܲ

                                                                                  
(16) 
 

The value of (1 – PAR) sets the rate of doing nothing. If the pitch adjustment decision for ݔ௜′  is YES, ݔ௜′  is 
replaced as follow: 
′௜ݔ ← ′௜ݔ  ± ()݀݊ܽݎ ×                                   ݓܾ

(17) 
where bw is an arbitrary distance bandwidth, rand() is a random number between 0 and 1. 
 
Step 6: Calculate objective functions  

In this step the new solution should be decoded to identify all the components of the corresponding graph 
and then the objective functions will be calculated. 
 
Step 7: Is the new harmony Pareto dominates? 
If the new solution is Pareto dominated, go to the next step, otherwise go to step 9. 
 
Step 8: Update harmony memory 

If the new harmony vector ݔ ′ = ′ଵݔ) ′ଶݔ, , … , ′ேݔ ) dominates one of the solutions in the HM then swap the 
new harmony with the dominated solution in the HM and add the solution to the repository.  
 
Step 9: Check stopping criterion 

If the stopping criterion (maximum number of improvisations) is satisfied, computation is terminated. 
Otherwise, go to step 5. 
 

5. EXPERIMENTAL RESULTS 
 
The performance of the proposed multi-objective HSA-CLS is compared with a well-known multi-

objective genetic algorithm SPEA II on synthetic benchmark datasets. The effectiveness of stochastic algorithms 
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is greatly dependent on the generation of initial solutions and therefore, for every dataset, algorithms have 
individually performed 100 times to test their own effectiveness, and each time with randomly generated initial 
solutions. Our algorithm was implemented into Matlab 7.1. All the experiments were conducted on a computer 
with Intel Core 2 Duo, 2.66 GHz, 4 GB RAM. 
 
5.1. SPEA II 

The Strength Pareto Evolutionary Algorithm II (SPEA II) (proposed by Zitzler et al. [20]) is an improved 
extension of SPEA which differs from it in three following aspects: fitness assignment technique, density 
estimation technique, and archive truncation method. This genetic algorithm is implemented according to the 
description in the literature. In genetic algorithms chromosomes exchange information with each other by 
crossover or/and mutation, yet according to the specific nature of our solution, application of these operations 
require a lot of modification after solutions have undergone crossover or/and mutation. This makes the process 
unpractical and clearly undermines the positive effect of crossover or/and mutation.  
 
5.2. Test problems 

Table 1 represents 10 test problems generated randomly. After carrying out the test problems, the 
performance of the proposed multi-objective HSA-CLS is measured using some comparison metrics which are 
discussed in the following section. 
 

Table 1. Test problems 
No. test problems No. Projects No. Periods Benefit Cost Risk 

1 15 3 U[0, 35] U[0, 35] U[0, 1] 
2 15 1 U[0, 50] U[0, 30] U[0, 1] 
3 20 3 U[0, 50] U[0, 30] U[0, 1] 
4 20 1 U[0, 50] U[0, 30] U[0, 1] 
5 25 3 U[0, 55] U[0, 60] U[0, 1] 
6 25 2 U[0, 45] U[0, 30] U[0, 1] 
7 25 1 U[0, 80] U[0, 60] U[0, 1] 
8 30 3 U[0, 100] U[0, 80] U[0, 1] 
9 30 2 U[0, 95] U[0, 75] U[0, 1] 
10 30 1 U[0, 120] U[0, 100] U[0, 1] 

 
5.4. Comparison metrics 
1. Number of non-dominated solutions: This metric shows the number of locally non-dominated solutions that 
each algorithm can find. It’s obvious that a higher value of this metric signifies better exploration and a more 
diverse search direction.  
2. Quality metrics: This metric is simply measured by putting together the non-dominated solutions found by the 
algorithms, and the ratios between non-dominated solutions are reported. 
3. Diversity metric: This metric measures the spread of obtained solutions. As a result, the volume of the 
smallest cube containing all the non-dominated solutions can be considered as a criterion to evaluate this metric.  
4. Spacing metric: We define this metric as follows: 

ܵ =
∑ ห݀௜ − ݀̅หேିଵ
௜ୀଵ

(ܰ − 1)݀̅
 

(18) 

where di is the Euclidean distance between the consecutive solutions in the obtained non-dominated set of 
solutions, and ݀̅ is the average of these distances. This metric allows us to measure the uniformity of the 
solution set points’ spread. Using a triangularization technique or a Voronoi diagram approach to calculate di, 
the above procedure can be extended to estimate the spread of solutions in higher dimensions. To apply the 
triangularization technique in a three dimensional space, we divided the space by the Delaunay triangulation 
into some tetrahedrons, the vertices of which were the obtained non-dominated solutions. Note that the 
Delaunay triangulation is a set of lines connecting each point to its natural neighbours. Afterwards, we 
substituted the term di in the above formula by the volume of these tetrahedrons.  
 
5.5. Computational results 

Table 2 shows the number of non-dominated solutions gained by HSA-CLS and SPEA II. It can be 
observed that HSA-CLS outperforms SPEA II according to this metric, for it produces a higher number of non-
dominated solutions. In addition, as shown in Table 3, the proposed HSA-CLS has generally achieved solutions 
with higher quality in comparison with SPEA II. In Table 4, the comparison of diversification metric indicates 
the dominance of HSA-CLS to SPEA II. Finally, Table 5, which represents the spacing metric, signifies a higher 
performance for SPEA II, while the difference between HSA-CLS and SPEA II in this metric is practically 
negligible. Tables 2–4 are represented in an average term, yet Table 5 shows the minimum of the spacing metric 
gained in each test problem. It is important to mention that the maximum of the spacing metric, in the test 
problems in which SPEA II outperformed HSA-CLS, was notably higher in comparison to that of HSA-CLS. 
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Due to the discrete nature of problem and large number of constraints, the trade-off surface has some holes and 
thus leads to difficulty in spacing metric interpretation. Finally, it is reasonable to claim the superiority of the 
designed HSA-CLS to SPEAII. 

  

Table 2. Comparison of number of non-dominated solutions 
Problem HSA-CLS SPEAII 

1 32.7 25.2 
2 35.3 25.6 
3 38.9 33.8 
4 29 25.3 
5 69.5 42.7 
6 48.1 45.7 
7 91.3 51.1 
8 72.9 58 
9 86.7 58.1 

10 145.1 58.6 
 

Table 3. Comparison of number of non-dominated solutions 
Problem HSA-CLS:SPEAII 

1 31.7:23.6 
2 32.5:22.6 
3 33.9:32.8 
4 21.6:21.6 
5 56.6:37.1 
6 49.3:41.2 
7 75.7:41.4 
8 49.1:45.7 
9 64.4:43.6 

10 109.2:38.9 
 

Table 4. Comparison of number of non-dominated solutions 
Problem HSA-CLS SPEAII 

1 1.9208×105 1.4357×105 
2 3.4722×105 1.8441×105 
3 5.1635×105 4.1145×105 
4 7.3307×105 4.9857×105 
5 1.6915×105 1.0137×105 
6 1.1591×105 3.0792×105 
7 1.1537×105 1.0083×105 
8 7.6811×105 5.7617×105 
9 2.7719×105 2.4194×105 

10 7.1185×105 5.9359×105 
 

Table 5 Comparison of number of non-dominated solutions 
Problem HSA-CLS SPEAII 

1 0.0015 0.0005 
2 0.0173 0.0060 
3 0.0182 0.0095 
4 0.0241 0.0220 
5 0.3364 0.1789 
6 0.0287 0.0511 
7 0.4290 0.3320 
8 0.3366 1.8624 
9 1.5779 0.4960 

10 1.9055 0.9099 
 

6. Conclusions 
 

This paper presented a hybrid multi-objective harmony search algorithm to solve the project selection 
problems with simultaneously considering three objectives: maximizing the total benefit, minimizing the total 
cost, and minimizing the total risk. The original HAS often converges to local optima which is a disadvantage 
with this method. To avoid this shortcoming the HAS was combined with a Chaotic Local Search (CLS). In the 
proposed algorithm an external repository considered to save non-dominated solutions found during the search 
process and a fuzzy clustering technique was used to control the size of the repository. The experiment results 
show the capability of the proposed multi-objective algorithm in project selection problem.  
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