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ABSTRACT

This paper presents a computational technique for the nonlinear mixed Volterra-Fredholm-Hammerstein integral
equations. The method is based on the Taylor polynomials. Nonlinear integral equations are usually difficult to solve
analytically. In many cases, it is required to obtain the approximate solutions. For this purpose, the presented method
can be proposed. A considerable advantage of the method is that the solution is expressed as a truncated Taylor
series.
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1. INTRODUCTION

There is considerable literature that discussed approximating the solution of linear and nonlinear
Hammerstein integral equatins [1,2,3,5,6,7,8,9,13,14]. A Taylor expansion approach for solving integral equations
has been presented by kanwal and liu [4] and then this has been extended by Sezar to Volterra integral equations
[10] and to differential equations [11]. The technique is based on, first, differentiating both sides of the unknown
function in the resulting equation and later, transforming to a matrix equation.

In this study, the basic of the previous works are developed and applied to the nonlinear Volterra-Fredholm-
Hammerstein integral equation

X p b a
YO = 0+ 4 [ KOyl + [ K xolyold, @
where p is positive integer and g =1, f (X), K, (X,t) and K, (X,t) are functions

Having N th derivatives on aninterval a < X,t <b, and a, b,ll, 12 are constants;
and the solution is expressed in the form
N
y(x):2$y(”)(c)(x—c)”, a<xc<b, (2)
n=0 -
Which is a Taylor polynomial of degree N at X = ¢, where y‘”) (c),n=01,...,N are coefficients to be
determined.

2. The method of solution
To obtain the solution of equation (1) in the form of expression (2) we first differentiate it N times with respect to
X:

YO0 = £ 000+ 4V 0 () + 2,6 (3, ©
Where

VO (x) = 'dt, (4)

FO () = j K EE Dy e ©)

We now consider eq. (4). Substituting the expression

Y =[y®]°

in Eq. (4), we obtain
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d
vV (x) =
(x) ™

(6)
For N=0
VO (x) =V (x) = j K, (X, DY (t)dt.

By applying successively N times the Leibnitz s rule (dealing with differentiation of integrals) to the integral V (X)
, We have, for n >1

n-1 (n-i-1) ()
Vo -Shovel  + [ vgr @
where :
h, (x) = w . ®)

Form the Leibnitz s rule (dealing with differentiation of products of functions), we evaluate [hi (X)Y (X)](nfifl)
and substitute it in Eq. (7). Thus Eqg. (6) becomes

VO (x) = f‘zl( jh‘”m'l)(x)Y‘m)(x) [ —a(n)K(X Hwd. (@)

m=0 i=0
Where
A G S I G
" m mi(n—i—m-1)!
Thus, Eq. (9) becomes
n-1n-i-1
VO =Y > eh™ DY O () + [ mv(t)dt
i=0 m=0
Note that in Eq. (9)
-1 n-m-1 n-1n-i-1
IDATES I
m=0 i=0 i=0 m=0

First, we put X = C inrelation (3), thereby in expressions (5) and (9), and then substitute the Taylor expansions of
y(t) and Y (t) att=c,i.e.

20 =Yy )=o), V(=X V-0

Therefore we have:

YOO =100+ 23, 3o IO (9
v, [ CRLED *; )y {i =IO —c)m}dt
+Mj% i Li%z““) Ot —c)m}dt
Or briefly

n-1 0 ©
y(“)(c)=f<”>(c)+zi{ Hnmv““)(c)+ZTan(m>(c)}+@ZKnmz(m)(c) (10)
m=0 m=0 m=0

In other words,
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Where for N1 =0

n-1 n-1
D (Hp +T0 )Y ™ () =0, > KmZ™()=0
m=0 m=0
For N=12,...; n=12,..; m=01,...,n=1(n>m)
n-m-1 1 _1 )
Hiw = 2, [” | th”‘m"‘” ) (11)
i-0 m
Forn<m
H, =0
And for n,m=0,1,2
1 < 0"K(x,t) m
m —HLTJ’X_CG—C) dt, (12)
1 K, (x,t) 0
n= LT b (t—c)mdt 13

(m) -
The quantities Y (e)m=012,..) in Eq. (10) can be found from the permutation relation
Y@= 3o y™ ey ™ ey e 14)

L+t +. -t =m
(m) — (mg+ty) (m3+tp) (my+tg)
Z™(c) = Ztcﬂy (©).y™(c)---y ™" (c)
m! m!
C,=——, Ci=———
tl!tz!-ntp! tl!tz!-ntq!
If we take n,m =01,2,---, N, then Eqg. (10) becomes
N N
y@ )= F @) + 4,2 TonY ™ (c)+ 2, ) Ko Z™(c),

m=0 m=0

n-1 N
n=12--;m=021--,N=y™()=f™(c) +AI{Z(Hnm + )Y () + D T, Y ‘m)(c)}
m=0

m=n

+ A, i K..Z™(c) (15)

m=0

Which is a algebraic system of N +1 nonlinear equations for the N +1 unknowns these can be solved
numerically by standard methods.
The system (15) can be put in a matrix form a matrix form as

Y-ATY" -A,KZ*=F
where Y, F,K,T and Y *,Z" are matrices defined by
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[, (0) b _ _
y(l) (c) f©(c)
y*™(c) £ @ (c)
Y = y(2)(C) ) F = f(z)(c) ’
y(N) .I:(N)(C)
_Koo K01 Koz KON ]
K1o K11 K12 KlN
K=Ky Ky Ky Koy |,
_KNO KNl KNZ KNN
Too T01 Toz TON
(H10 +T10) T11 T12 TlN
T= (Hzo +T20) (H21 +T21) Tzz TZN )
(HN0+TN0) (HN1+TN1) (HN2+TN2) TNN

And
Y =[yO@© Y®@© - YO,

7' =290 z9@) - z™@)].
We can easily check the accuracy of this solution as follows. Since the truncated Taylor series or the corresponding
polynomial expansion is an approximate solution of equation (1), when the solution y(X) is substituted in Eq. (1),

the resulting equation must be satisfied approximately; that is, for X = X e [a, b]

D(X) = |y(X) - (%) = AV (X) - 4,F (%) 2 0, (17)
where .

F(x) = [ K, (x.0)Z(bdt, V(%) = [ K (X0 (t)dt
or

D(X)<10 ™, kez*
Ifmax 107 =107% ( K, is any positive integer) is prescribed, then the truncation limit N is increased until the

difference D(X) at each of the points becomes smaller than the prescribed 107 [12].

3. Hlustrations

The method of this study is useful in finding the solutions of nonlinear Vorterra-Frerholm-Hammerstein integral
equations in terms of Taylor polynomials. We illustrate it by the following examples.

4. Numerical examples

The method of this study is useful in finding the solutions of nonlinear Volterra- Fredholm- Hammerstein integral
equations in terms of Taylor polynomials. We illustrate it by the following examples.

Example 1. Let us first consider the nonlinear Volterra-Fredholm-Hammerstein integral equation

1 6 1 4 2 5 5 X 2 1
X)=——X +=X —=X"+=X——+| (x=t)|y@®)| dt+| (x+t)y(t)dt, 0<x,t<1
V0 =5+ X5+ L - OlvoF des oy
And approximate the solution y(X) by the Taylor polynomial

Y =3 Sy )"
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Sothat N =5,a=0,b=1¢c=0,4, =114, =1,
1 1 5 5
fOX)=——xX+=x* = x?+Sx==, K (x,t)=x-t, K,(X,t)=X+t1.
(%) 30 3 3% 72 (X, 1) 2 (X, 1)
First, let us find the coefficients H, from (8) and (11), the coefficients T from (12), and the coefficients

K,,(n,m=0,1,...,5) from (13), and then we get the derivation values of the function f (x) atx =0 as

5 5
f‘°)(0)=—z, f<1>(0)=—§, f@0)=-2, £®0)=0, f*®(0)=8, f*®(0)=0.
Then, for N =5, the matrix equation (17)
1 11 1 1 1 ]r .
2 3 s w i s’
1)
AT S S SR S S B A )
2 6 24 120 720 || y®(0)
0 0 1 0 0 0
0 0 0 1 0 0 y (O
0 0 0 0 1 0 yo(0)
(5)0
0 0 0 0 0 1 S
[0 0 0 0 0 O] _Y(O)(O)_ [ 57
0 000 0 0fywgq _SZ
B 1 0 0 0 0 O Y @(0) . 3
01 0 0 0 O Y ©(0) -2
001 0 0 0fly“( 0
000 1 0 0]lvy®() 8
- o y 0

From the obtained equation system, the coefficients are found as
y@(0)=-2,y?(0)=0,y*(0) =2,y (0) =0,y (0) = 0,y (0) = 0.
Substituting these coefficients in (2) we have the solution y(X) = x* — 2..
Example 2. Let us now study the integral equation

y(x)=—£x8+£x7 11 6+ix5+x2—x, K,(x,t) = x +t. (18)

56 12" 10" 20
And approximate the solution y(X) by a Taylor polynomial of fifth degree, sothat c=0,N =5,a=0,4, =1,

First, we find the coefficients H  from (8) and (11) as

H10=0
H20=3 H, =0
Hso =0 H31= H32 =0

Hy,=0 H,=0 H,=7 H,L=0

Hgp =0 Hg =0 Hy, =0 Hg =9 Hg =0
And then we obtain the derivation value of f (x) functionat X =0 as
f©0)=0fP0)=-1,f@@©0)=2,f®0)=0, f“(0)=0, f ®(0) =54.
Then, these coefficients are obtained as
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YOO =0 y?O=-1 y?©=2 y?©@©=0 y“(©0)=0

(5) —
y™(0)=0
By means of (14) system. Thus, substituting these coefficients in (2), we get the solution of equation (18) as
y(x) = x? = x.

5. CONCLUSIONS

Nonlinear integral equations are usually to solve analytically. In many cases, it is required to obtain the

approximate solutions. For this purpose, the presented method can be proposed. A considerable advantage of the
method is that the solution is expressed as a truncated Taylor series and thereby a Taylor polynomial at X = C

furthermore, after calculation of the series coefficients, the solution y(x) can be easily evaluated for arbitrary
values of x at low computation effort.
If the function f (x), K, (x,t), K(X,t) are function having N th derivatives on the interval a < x,t < b, then we

can approach the solution y(X) by the Taylor polynomial

Y09 =Sy e)(x o)

About X = C; otherwise, the method cannot be used.
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