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ABSTRACT 
 

This paper presents a computational technique for the nonlinear mixed Volterra-Fredholm-Hammerstein integral 
equations. The method is based on the Taylor polynomials. Nonlinear integral equations are usually difficult to solve 
analytically. In many cases, it is required to obtain the approximate solutions. For this purpose, the presented method 
can be proposed. A considerable advantage of the method is that the solution is expressed as a truncated Taylor 
series. 
Keywords: Mixed Volterra – Fredholm – Hamerstein , integral equations, Taylor -polynomials. 

 
1. INTRODUCTION 

 
There  is considerable literature that discussed approximating the solution of linear and nonlinear 

Hammerstein integral equatins  [1,2,3,5,6,7,8,9,13,14]. A Taylor expansion approach for solving integral equations 
has been presented by kanwal and liu [4] and then this has been extended by Sezar to Volterra integral equations 
[10] and to differential equations [11]. The technique is based on, first, differentiating both sides of the unknown 
function in the resulting equation and later, transforming to a matrix equation.  

In this study, the basic of the previous works are developed and applied to the nonlinear Volterra-Fredholm-
Hammerstein integral equation 
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where p is positive integer and ),(),(,1 1 txKxfq   and ),(2 txK  are functions  

Having n th derivatives on an interval ,, btxa   and 21,,, ba  are constants; 
and the solution is expressed in the form 
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Which is a Taylor polynomial of degree N  at ,cx   where Nncy n ,,1,0),()(   are coefficients to be 
determined.  
 
2. The method of solution  
To obtain the solution of equation (1) in the form of expression (2) we first differentiate it n  times with respect to 
x :  
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We now consider eq. (4). Substituting the expression  

 ptytY )()(   
in Eq. (4), we obtain  
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By applying successively n  times the Leibnitz ̕s rule (dealing with differentiation of integrals) to the integral )(xV
, we have, for 1n  
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Form the Leibnitz ̕ s rule (dealing with differentiation of products of functions), we evaluate   )1()()( in
i xYxh  

and substitute it in Eq. (7). Thus, Eq. (6) becomes 
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Thus, Eq. (9) becomes 
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First, we put cx   in relation (3), thereby  in expressions (5) and (9), and then substitute the Taylor expansions of 

)(ty  and )(tY  at ct  , i.e. 
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Therefore  we have:  
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In other words,  
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Where for 0n  







1

0

)( ,0)()(
n

m

m
nmnm cYTH

                  






1

0

)( 0)(
n

m

m
nm cZK  

For ;,2,1 n   )(1,,1,0;,2,1 mnnmn    

)11()(
11

0

)1(












 


mn

i

imn
inm ch

m
in

H
 

For mn   
   

0nmH

 And for 2,1,0, mn  

)12(,)(),(
!

1 dtct
x

txK
m

T mc

a cxn

n

nm 



  

 

)13(.)(
),(

!
1 2 dtct

x
txK

m
K m

cx

b

a nnm 



 

 

The quantities ),2,1,0)(()( mcY m
 in Eq. (10) can be found from the permutation relation 
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If we take Nmn ,,2,1,0,  , then Eq. (10) becomes  
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Which is a algebraic system of 1N  nonlinear equations for the 1N  unknowns these can be solved 
numerically by standard methods.  
The system (15) can be put in a matrix form a matrix form as  
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21   

 where TKFY ,,,  and *, ZY   are matrices defined by     
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And  
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We  can easily check the accuracy of this solution as follows. Since the truncated Taylor series or the corresponding 
polynomial expansion is an approximate solution of equation (1), when the solution )(xy  is substituted in Eq. (1), 
the resulting equation must be satisfied approximately; that is, for   baxx ,   
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If max rkk  1010  ( rk is any positive integer) is prescribed, then the truncation limit N  is increased until the 

difference )(xD  at each of the points  becomes smaller than the prescribed rk10  [12].  
3. Illustrations 
The method of this study is useful in finding the solutions of nonlinear Vorterra-Frerholm-Hammerstein integral 
equations in terms of Taylor polynomials. We illustrate it by the following examples.  
4. Numerical examples 
The method of this study is useful in finding the solutions of nonlinear Volterra- Fredholm- Hammerstein integral 
equations in terms of Taylor polynomials. We illustrate it by the following examples. 
Example 1.  Let us first consider the nonlinear Volterra-Fredholm-Hammerstein integral equation  
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So that ,5N ,1,1,0,1,0 21  cba  
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First, let us find the coefficients nmH  from (8) and (11), the coefficients  nmT   from (12), and the coefficients 

)5,,1,0,( mnknm  from (13), and then we get the derivation values of the function )(xf  at 0x  as 

,
4
5)0()0( f ,

3
5)0()1( f ,2)0()2( f ,0)0()3( f ,8)0()4( f .0)0()5( f  
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From the obtained equation system, the coefficients  are found as 
.0)0(,0)0(,0)0(,2)0(,0)0(,2)0( )5()4()3()2()1()0(  yyyyyy  

Substituting these coefficients in (2) we have the solution .2)( 2  xxy .  
Example 2.  Let us now study the integral equation  
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And approximate the solution )(xy  by a Taylor polynomial of fifth degree, so that ,1,0,5,0 1  aNc  

First, we find the coefficients nmH  from (8) and (11) as  

010 H  
320 H      021 H  
030 H      531 H      032 H  
040 H      041 H      742 H      043 H  
050 H      051 H      052 H      953 H     054 H  

And then we obtain the derivation value of )(xf  function at 0x  as 

.54)0(,0)0(,0)0(,2)0(,1)0(,0)0( )5()4()3()2()1()0(  ffffff  
Then, these coefficients are obtained as  

6861 



Nazari, 2012 
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By means of  (14)  system. Thus, substituting these coefficients in (2), we get the solution of equation (18) as  
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5. CONCLUSIONS 
 

Nonlinear integral equations are usually to solve analytically. In many cases, it is required to obtain the 
approximate solutions. For this purpose, the presented method can be proposed. A considerable advantage of the 
method is that the solution is expressed as a truncated Taylor series and thereby a Taylor polynomial at cx   
.furthermore, after calculation of the series coefficients, the solution  )(xy  can be easily evaluated for arbitrary 
values of x  at low computation effort.  
If the function ),(),,(),( 1 txKtxKxf  are function having n th derivatives on the interval ,, btxa  then we 
can approach the solution )(xy by the Taylor polynomial  
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About ;cx   otherwise, the method cannot be used.   
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