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ABSTRACT 

 
This paper presents a new methodology based on the Body Immune Algorithm for optimal placement and 
estimation of distributed generator (DG) capacity in the radial distribution systems in order to reduce the 
real power losses and improve the voltage profile and un-supplied energy. The proposed method considers 
the options of the DGs installation and takes more number of significant parameters into account compare to 
the previous studies that consider only a few parameters in their optimization algorithms. Some of the so-
called cost parameters considered in the proposed approach are: loss reduction, voltage profile improvement, 
environmental effects, fuel price and costs of load prediction for each bus. Using an optimal Body Immune 
Algorithm in the proposed optimization method, a destination function that includes all of the above-
mentioned cost parameters has been optimized. Furthermore, this method is capable of changing the weights 
of each cost parameter in the destination function of the Body Immune Algorithm as well as the matrix of 
coefficients in the DIGSILENT environment. The proposed method has been applied and simulated on a 
sample IEEE 9-bus network. The obtained results show that any change in the weight of each parameter in 
the destination function of the Body Immune Algorithm and in the matrix of coefficients leads to a 
meaningful change in the prediction of the location and capacity of the prospective DG.  
Keywords: Body Immune Algorithm, Distributed Generation, DG placement, Radial distribution systems 

 
1. INTRODUCTION 

 
Distributed Generation (DG) is a small generator spotted throughout a power system network, providing 

the electricity locally to load customers of the network [1]. Also for improvement of power system situation 
such as correction of voltage profile, increment of stability, decrement of loses power, etc, it is necessary that 
the installation of DGs in power system become systematical [2]. The DG can be an alternative for industrial, 
commercial and residential applications. DG makes use of the latest modern technology which is efficient, 
reliable, and simple enough so that it can compete with traditional large generators in some areas [3].   

Generally, DG effects in distribution network depend on several factors such as the DG place, technology 
issues, capacity and the way it operates in the network. DG can significantly increase reliability, reduce losses 
and save energy while is cost effective, though it suffers from some disadvantages because of the isolated 
power quality functioning, and voltage control problems. Generally, planners assess DG functioning in two 
respects: costs and benefits. Cost is one of the most important factors that should be considered regarding DG 
application [4-5]. When installation and operation of distributed generation supplies are implemented based on 
optimization procedures, it can provide significant technical and economical advantages for the distribution 
companies [6]. 

In the most of the literatures only some parts of the effective parameters in DG placement problem have 
been considered. The optimal DG placement defined in [7] takes reliability, loss reduction, and load prediction 
into account while it fails to take into account the other parameters such as productivity, cost effectiveness, 
and type of DG. The optimal DG placement defined in [8] takes productivity, cost effectiveness, loss 
reduction, and reliability and DG type into account and fails to consider other parameters. In [9] only focuses 
on three parameters: DG cost, loss reduction and reliability. Also in [10] defines its optimal DG placement 
method taking DG capacity, cost effectiveness and loss reduction into account. In addition, in [11] defines its 
optimal placement method taking stability, loss reduction and productivity into account. In [12] optimal DG 
placement method takes loss reduction and load prediction into account. These fail to consider all aspects and 
parameters involving optimal DG placement. The present study is an attempt to define optimal DG placement 
by taking all pertinent parameters (loss reduction, voltage profile improvement, effects on environment, fuel 
price and load prediction cost) into consideration in optimization. 
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1.1 THE RESEARCH OBJECTIVE  
The main objective of this paper is to show that each of the effective parameters appeared in the multi-

objective destination function (DF) of the proposed method, which optimizes the DG installation location, and 
strength of variables, has direct impact on the optimized DG placement. This work shows that the DG 
placement optimization can be carried out with the purpose of voltage profile improvement and loss reduction 
which possibly cause the capacity of the DG to be floating. 

 
2.   THE PROPOSED METHOD 

 
In the present study, for the above-mentioned purpose, a destination function (DF) should be defined that 

includes all of the proposed parameters. In this study to compute the capacitance and location of DG in the 
distribution system, the immune algorithm has been used. The destination function (DF) of the immune 
algorithm is a cost function that includes most of the known parameters such as cost of decreasing losses, cost 
of voltage profile enhancement, cost incurred due to effects on environment and cost of the fuel used by DG 
sources and cost of load prediction for each bus and for the buses in which the load amount is not predictable 
and has following equation: 

௖௢௦௧(௫)ܨܦ = ௟௢௦௦ܥଵܨ + ௩௣௜ܥଶܨ + ௔ܥଷܨ + ௙ܥସܨ + )		௟ܥହܨ
$

௄௪௛
)                                   (1) 

Where: 
  ௖௢௦௧(௫): Destination functionܨܦ
 ௟௢௦௦: Cost of losses in the networkܥ
 ௩௣௜: Cost of voltage profile enhancementܥ
 ௔: Cost incurred due to effects on environmentܥ
 ௙: Cost of the fuel used by DG sourcesܥ
 : Cost of load prediction for each bus	௟ܥ
  ଵ: Coefficient of transferring losses to costܨ
 ଶ: Coefficient of transferring voltage profile enhancement to costܨ
 ଷ: Coefficient of transferring effects on environment to costܨ
 ସ: Coefficient of transferring fuel used by DG sources to costܨ
  ହ: Coefficient of transferring load prediction for each bus to costܨ

To define the destination function in (1), we have to convert all parameters to per unit to make them 
additive, this was accomplished by applying “F” coefficients (F1-F5). To calculate the cost of loss, first load 
flow is carried out in DIGSILENT software and then the results are used to calculate the losses and ultimately 
they are multiplied by the loss price. To calculate the cost of voltage profile improvement for each bus, the 
voltage difference for each bus is calculated before and after DG installment and the difference figure is 
multiplied by the cost of voltage profile improvement. To calculate pollution reduction cost using DG sources, 
the present study takes into account the variability of these coefficients for each bus depending on the type of 
the DG technology, and the cost incurred due to pollution which is calculated [13]. 

It is noteworthy that each of the coefficients of the environmental pollutions effects, fuel price and load 
prediction have been defined in DIGSILENT environment in the form of a matrix where these parameters are 
variable of each bus. Such values are shown in Tables 1-12. This paper has two major goals: 1) Improvement 
of voltage profile, 2) Loss reduction. There are also some limitations based on which the destination function 
should be defined [14]: 
 

1) maxmin
busbusbus VVV   

2)  DGwithoutLossDG)with(Loss    
 

According to the first limitation authorized voltage of a certain bus depends on the minimum and maximum 
voltages of the bus. Also, second limitation states that the loss reduces when DG exists in the prospective 
location.  

 

3. SIMULATION NETWORK 
 

In the proposed work, in order to observe and compare the results with those of the specified destination 
function, an IEEE 9-bus distribution network has been selected as a sample. It should be noted that the 
specified destination function could be generalized to be used for all distribution networks with any number of 
buses. 

Moreover, the optimization algorithm of the destination function is a Body Immune Algorithm. The single 
line diagram of the network is illustrated in Fig. 1.  
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Fig. 1: Single line diagram for IEEE 9-bus distribution network 

 
According to Fig. 1, 9-bus network contains one feeding source in bus 1. Tables 1 and Table 2 show the 
data on the lines and buses [15]. 

                           TABLE 1.DATA ON THE LINES                                  TABLE 2. DATA ON THE BUSES 
 
 
 
 
 
 
 
 
 

 
 

 
4. THE BODY IMMUNE ALGORITHM IMPLEMENTATION 

 
Immune algorithm is one of the optimization algorithms in the problem solving that inspired from Clonal 

selection theory in the body immune system [16]. This algorithm is used for optimization with multi function. 
Steps of immune algorithm implementation are summarized as follows: 

1. Coding: is mapping from problem area to search area (creating cells with enough length called anti 
body). 

2. Production of initial population: in this stage, anti bodies labeled randomly to create population of zero 
generation  

3. and by load distribution it's appropriation will be judge.  
4. Affinity: similarity of anti bodies to each other is a parameter called dependency and is given by (2): 

௠௡௔ି௔ܨܨܣ                                                                  =
ଵ

ଵାா(ଶ)
                                                           (2)   

where m and n are two distinct anti bodies and AFF is diversity between two anti bodies that is given 
by (3): 

                                                  (3)  ∑ ௜ܲ௝
ே
௜௝ୀଵ ݃݋ܮ ௜ܲ௝ 	ܧ௝(ܰ) =  

where Pij is the probability of un-similarity between ith anti body and jth gen with next un-similar cell.  
5. Selecting anti bodies with high dependency: after calculating dependency level of anti bodies those 

have high level of dependency will be selected to continue.  
6. Doing genetic action: on the anti bodies with low dependency, genetic actors (e.g. mutation and 

crossover) imply to increase their level of dependency. 
7. Clonal stage: in this step anti bodies with high dependency are chosen as the next population in the 

second generation.  
8. Controlling stop or continuation condition: in the steps 3 to 7, the number of generations and the best 

anti bodies that are the answer of the problem are updated until convergence achievement. 
 

Sen.bus  Res.bus  R(ohm)  X(ohm)  

0 1 0.4127 0.1233 
1 2 0.6053 0.2514 
2 3 1.2051 0.7463  
3 4 0.6084 0.6984 
4 5 1.7276 1.9831 
5 6 0.7886 0.9053 
6 7 1.1644 2.0552 
7 8 2.7166 4.7953 
8 9 3.0264 5.3434 

No.bus P(kw)  Q(kvar)  
1 1840 460 
2 980 340 
3 1790 446 
4 1598 1840 
5 1610 600 
6 780 110 
7 1150 60 
8 980 130 
9 1640 200 

6279 



Aref et al., 2012 
 

 

 
Fig. 2: Body Immune Algorithm computational procedure 

 
Used anti body in the immune algorithm to solving capacitor placement in this study has n member. Each 

member showing one bus in the network. Value of this buses in the ith position showing capacitance of 
installable capacitors in the ith bus. One general sample of anti bodies shown in the Fig. 3. 

 
 
 

Fig. 3: Used anti body in the immune algorithm 
 

Initial generation form this anti bodies, numbered randomly for starting the program.  
 

5. Simulation Procedure 
 

This study aims to optimize the placement of DG and assess DG capacity using weight coefficients for 
various parameters independently taking cost into account. The coefficients of the first case shown in Table 3 
include loss-reduction parameters like voltage profiles, environmental factors, fuel price and load prediction in 
the destination function of the Body Immune Algorithm shown by ( 1k - 5k ) in the destination function. 
However, other coefficients shown in Table 4 are related to the weight of parameters for the effects of 
environmental factors, fuel price and load prediction which are defined in an input matrix for the simulation 
software. In this case, since parameters related to loss reduction and voltage profile are calculated 
automatically, the coefficients of these parameters are not considered in the input matrix for the software. 
Thus, generally, parameters for any network have two conditions of weight coefficients with any number of 
buses. This has been achieved using Body Immune Algorithm optimization in DIGSILENT environment. The 
parameter changes are illustrated because they are variable in each bus. Optimization is carried out with Body 
Immune Algorithm using a cost function. For this purpose, changes in the coefficients of the parameters are 
specified due to their variability in each bus. Optimization of the destination function has been carried out 
using a Body Immune Algorithm.  

To assess the effect of loss reduction, voltage profile coefficient, environmental coefficient, fuel price and 
load prediction cost on the program, the program output was examined under two conditions (1), (2). For this 
purpose, different coefficients were applied to destination function parameters. Table 3 presents coefficients 
applied to parameters under the first condition, where parameters may vary depending on the place of the bus. 

n ................... 4 3 2 1 
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Table 3: Coefficients applied to the parameters under the first (1) condition        
 

 
 
 
 
 
 
 
 
 
 

 In addition, Table 4 presents an example of the weight of each parameter such as environmental pollution, 
fuel price and load prediction under the first condition. Table 5 presents program outputs regarding to the 
optimal capacity and placement of the prospective DG. 

 
Table 4: An example of the weights of each parameter 

  
6. SIMULATION RESULT 

 
The proposed method has been developed in DIGSILEN and MATLAB environments. The optimization 

algorithm in the present study is a Body Immune Algorithm. Table 5 presents the candidate position for DG 
installation in a 9-bus network as well as the capacity of optimal DG in terms of (KW) using LII and VPII 
indexes.     

Table 5: The algorithm outputs 
 
 
 
 
 
 
 
Also, in the above outlet, line loss reduction index is defined by: 

WODGLL
WDGLL

LII                                                                       (2) 

 Where LLWDG and LLWODG are the losses incurred with and without DG presence, respectively. This indicator 
can have the following implications under the following three conditions: 

 LII<1: DG reduces loss 
 LII=1: DG is not effective 
 LII>1: DG increases loss 

Furthermore in Table 5, VPII indicates voltage profile improvement and shows the effect of DG placement 
on the voltage profile which is defined as follows [17-18]: 

WODG

WDG

VP
VP

VPII                                                                      (3) 

Where VPWDG and VPWODG are the voltage profiles with and without DG presence, respectively, and can be 
interpreted as follows under the following conditions:  
 

 VPII<1: DG has a negative effect on network voltage 
 VPII=1: DG is not effective 
 VPII>1: DG has a positive effect on network voltage 

Coefficient Parameter 
Coefficients applied to each 

parameter in destination 
function 

1F Loss reduction 35% 

2F Voltage profile 20% 

3F Effects on environment 15% 

4F DG fuel cost 20% 

5F Load prediction cost 10% 

Bus No Coefficients applied in each  
bus to effect on environment 

Coefficient applied in each  
bus to fuel price 

Coefficients applied in each bus to 
load prediction cost 

1 10% 5% 15% 
2 15% 10% 10% 
3 10% 15% 15% 
4 10% 25% 5% 
5 5% 15% 15% 
6 15% 5% 10% 
7 10% 10% 20% 
8 25% 15% 10% 

DG name Location Capacity (KW) 
DG BUS 6 437 

Loss before DG Loss after DG LII 
0.131458 0.125732 0.956442 

VPI without DG VPI with DG VPII 
0.084524 0.095284 1.127301 
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To observe the effect of each parameter including environmental pollution, fuel price and load prediction 
cost, we changed the coefficients applied to each parameter in each bus in the form of a matrix. Table 6 
presents the weight of another example of parameters such as environmental pollution, fuel price and load 
prediction, under condition of Table 3. In addition, Table 7 presents program outputs regarding to optimal 
capacity and placement of DG. 

 
 Table 6: An example of the weights of each parameter 

 
Table 7: The algorithm outputs 

 
 
 
 
 
 
To test the program results under a different condition, we change all coefficients applied to the parameters 

of the destination function. Table 8 presents coefficients applied to parameters under different condition of 
Table 3. In addition, Table 9 presents the weight of parameters such as environmental pollution, fuel price and 
load prediction, under the same condition of Table 8. Also, Table 10 presents program output with regard to 
the optimal capacity and placement of DG. 

  
Table 8: Coefficients applied to the parameters under the second (2) condition 

 
 
 
 
 
 
 
 
 
 

 
Table 9: An example of the weights of each parameter 

 
 Table 10: The program outputs 

 
  
 
 
 
 
 

Bus No Coefficients applied in each bus to 
effect on environment 

Coefficients applied in each bus to 
fuel price 

Coefficients applied in each bus to 
load prediction cost 

1 20% 15% 10% 
2 15% 20% 15% 
3 10% 15% 25% 
4 20% 10% 5% 
5 5% 10% 10% 
6 10% 15% 10% 
7 5% 10% 5% 
8 15% 5% 20% 

DG name Location Capacity (KW) 
DG BUS 7 545 

Loss before DG Loss after DG LII 
0.129962 0.112316 0.864221 

VPI without DG VPI with DG VPII 
0.083472 0.094612 1.133457 

Coefficient Parameter 
Coefficient applied to each 

parameter in destination 
function 

1F  Loss reduction 20% 

2F  Voltage profile 30% 

3F  Effects on environment 25% 

4F
 

DG fuel cost 15% 

5F  Load prediction cost 10% 

Bus No Coefficients applied in each 
bus to effect on environment 

Coefficients applied in each bus to 
fuel price 

Coefficients applied in each bus to 
load prediction cost 

1 15% 20% 10% 
2 10% 10% 15% 
3 15% 20% 10% 
4 10% 5% 20% 
5 5% 10% 10% 
6 25% 15% 15% 
7 10% 15% 15% 
8 10% 5% 5% 

DG name Location Capacity (KW) 
DG BUS 5 617 

Loss Before DG Loss after DG LII 
0.132673 0.122168 0.920820 

VPI without DG VPI with DG VPII 
0.090432 0.098213 1.086042 
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To observe the effect of each parameter including environmental pollution, fuel price and load prediction 
cost, we changed again the coefficients applied to each parameter in each bus. Table 11 presents the weight of 
another example of parameters such as environmental pollution, fuel price and load prediction under the same 
conditions of Table 8. Finally, Table 12 presents program outputs with regard to the optimal capacity and 
placement of DG. 
 

Table 11: An example of the weights of each parameter 

 
Table 12: The program outputs 

 
 
 
 
 

 
 

7. CONCLUSION 
 

The values of Distributed Generation are very dependent on its size and location as it was installed in 
distribution feeders. Hence, in this paper the optimal DG placement and estimation of distributed generator 
(DG) capacity in power distribution networks using a immune algorithm based multi-objective optimization 
for sitting and sizing of distributed generation resources in distribution systems has been performed in order to 
minimize the cost of power losses and energy which is not supplied. In this paper, we studied the effects of the 
significant parameters to optimally enhance the cost parameters (such as loss reduction, voltage profile 
improvement, environmental effects, fuel price and costs of predicting load of each bus). The cost parameters 
are variables, which are dependent on the status and position of each power network bus.  

It has been shown that any changes made in the weight of parameters such as loss reduction, voltage 
profile coefficient, coefficient of environmental pollution, fuel price and load prediction cost in the destination 
function of Body Immune Algorithm directly affect the optimal DG capacity and placement. In the end, the 
DG placement will be carried out with the purpose of improving voltage profile and loss reduction which 
cause the distributed generation capacity to be floating.  
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