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ABSTRACT 
 

In this paper, we propose a transmitter algorithm for optimizing the placement of the pilot tones in SISO and MIMO 
OFDM systems. Optimum pilot design for OFDM systems has been well studied, however, most existing optimal 
pilot placement in the literature are special cases. Our approach based on differential evolution optimizer adapts the 
time-frequency pilot spaces according to the changes that experience the channel's delay spread and doppler spread as 
well as pilot power allocation. The main attraction of adopting differential evolution algorithm is that it may facilitate 
optimal pilot designs with affordable computational costs by avoiding the matrix inversion in the MSE of least-square 
estimation.  Different from most existing work, we do not impose any condition on the pilot design; we explicitly 
consider regular pilot design as well as irregular ones. 
KEYWORDS: Differential evolution (DE), OFDM, MIMO, Mobile multipath channel. 
        

INTRODUCTION 
 

OFDM (Orthogonal Frequency Division Multiplexing) has been widely applied in wireless communication 
systems due to its high data rate transmission and its robustness to multipath channel delay [1, 2]. Additionally, 
multiple antenna architecture on the transmitter and receiver side, which is called multiple input multiple output 
(MIMO) is a suitable technique to improve the OFDM channel capacity [3]. For that reason, OFDM modulation is 
adopted in a number of standards, e.g IEEE 802.11a/g, IEEE 802.16a/d/e [3], DVB-T, etc. 

In OFDM systems, channel estimation is usually performed by sending training pilot symbols on sub-carriers 
known at the receiver and the quality of the estimation depends on the pilot arrangement. Since the channel’s response 
is a slow varying process, the pilot symbols essentially sample this process and therefore need to have a density that is 
high enough to reconstruct the channel’s response at the receiver side [4]. 

Two classes of methods are available for pilot arrangements: One is based on regular patterns, where 
pilot symbols are equally-spaced in time and/or frequency domain, whereas the other relies on irregular 
patterns.  

The optimal spacing design of pilot symbols for OFDM systems has been investigated by several studies over 
the past ten years. In literature, several methods have been designed for regular pilot lattices that satisfy a suitable 
Nyquist criterion [3, 5, 6]. These regular patterns are not acceptable for systems in which pilot overhead is of primary 
concern since the uninterrupted distribution of pilot symbols may be excessive [7]. Recently, irregular pilot 
arrangements were shown to be optimal in the mean-square error (MSE) sense for certain classes of time varying 
channels [8, 9]. 

In this work we propose a transmitter method based on Differential Evolution algorithm for OFDM pilot design 
optimization. It is specifically tailored to irregular pilot arrangements over multipath channels. 

Recently, Differential Evolution (DE) algorithm has become popular and has been applied to a variety of 
engineering applications. The effectiveness of DE in tackling challenging optimization problems have now widely 
been recognized by the computational intelligence community. 

This paper is organized as follows. Section II presents OFDM system model. In Section III, we evaluate the 
MSE of LS channel estimation. Pilot design optimization is described in Section IV. The system simulation results are 
presented in Section V. 
 

SYSTEM MODEL 
 

The system under consideration is given in Fig. 1, which shows a MIMO-OFDM system with Nt transmit 
antennas, Nr receive antennas, and N subcarriers. Generated OFDM signals are transmitted through a number of 
antennas in order to achieve diversity. 
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Fig.1. Block diagram of MIMO-OFDM system [10]. 

 
In MIMO OFDM system shown in Fig. 1 (for SISO-OFDM systems we consider Nt =1), we assume that the 

duration of the cyclic prefix is long enough to avoid inter-symbols interferences (ISI) and we suppose the OFDM 
symbol that is transmitted from the pth antenna at time index n is denoted by the N x 1 vector Xp (n), after removing 
the cyclic prefix at the qth receive antenna, the received N x 1 vector Yq(n) at time index n can be written with the 
following equation [10, 15] 

          )(.).()(
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             (1) 

 
Where hp,q is an L x 1 vector representing the length L  channel impulse response from the pth transmit antenna to the 
qth receive antenna. Note that F denotes the N x N unitary DFT matrix; Wq (n) is additive white Gaussian noise, and 
(.)diag is a diagonal matrix with column vector (.). In this paper we consider a multipath fading channel. Therefore, 
when the channel is frequency-selective invariant over each received block OFDM symbol the orthogonality between 
subcarriers can be fully preserved. 

 
I. Pilot tones design for OFDM systems 

There are several criteria used for channel estimation, for reasons of complexity, the estimation can be per-
formed by using either linear MMSE criterion (Wiener filtering) [12, 13] and least squares (LS) criterion. However, in 
high SNR regimes and when the noise level is low, LS criterion offers a good compromising performance / 
complexity. 
 
A. 1-D case: Time invariant channels (very low Doppler spread) 

In this section we consider channel estimation over the frequency domain. 
Knowing that Xp (n) = Dp (n) + Bp (n) [10, 15], where Dq (n) is some arbitrary N x 1 data vector, and Bq (n) is some 
arbitrary N x 1 pilot sequence vector. Then, from (1) we can write 
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Therefore, we consider the data model as in [10, 15] 
            Yq=G.hq + A.hq + Wq                             (3) 

where 
TTtNqh

Tqhqh

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
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



 ,,...,1,  is a channel impulse response vector of Nt.L length, G = [D1

diag.F, ..., DNt
diag.F] is a N × 

Nt.L matrix, A = [B1
diag.F, ..., BNt

diag.F]  is a N × Nt.L matrix, and (.)T is the transpose operation.  
In this section, LS channel estimation scheme is derived. The LS estimate of hq can then be obtained as [15] 

qWHAAHAqhqYtAqh 1)( 


                       (4) 
(.)H is the Hermitian matrix and At is the pseudo-inverse of A can be written as  At =(AHA)-1AH. 
It is assumed that pilot sequences are designed as P × Nt.L matrix A, which has a full column rank Nt.L that 
requires LtNP  (P is the number of pilot tones). 
 
From (4), the MSE of the LS channel estimate is given by [10, 15] 
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For zero-mean white noise, we have PI
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 (IP is P x P identity matrix), the MSE can be defined as  
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The minimum MSE can be achieved if tNLIpAHA ...  where Pp is a fixed power dedicated for training [15]. 
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However, we have the following inequality 
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2-D case: Time varying channels 
The following section illustrates the evaluation of 2-D MMSE over time varying channels. It has been shown in 

[16] that the MSE of the LS channel estimation can be written as 
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Where  TfQ max2 , maxf is the maximum Doppler frequency, T is the duration of an OFDM packet and A is a P x 
Nt.L.(Q+1) matrix. The ceiling of a number is shown by . . 
The least square channel estimation,  supposing AHA has full rank and )1(  QLtNP (we should have at least 
Nt.L.(Q+1)pilot clusters) 
1-D case of time invariant channels is obtained from 2-D case by formally setting Q=0. 

To satisfy condition (6) in SISO-OFDM systems pilots have to be equally-powered and equally-spaced [17, 18]. 
In MIMO-OFDM systems, all pilot amplitudes must be the same (all pilots will have the same power) and pilot tones 
should be disjoint from pilot tones of any other antenna. All antennas will have the same pilot amplitude [19]. 

Condition (6) may not be necessarily achieved, because the data power distribution is not forced to be uniform if 
it does not maximize channel capacity or it does not achieve low PAPR to avoid nonlinear distortion of pilots at the 
transmit power amplifier design. Indeed, non uniform power loading at the transmitter will provide better overall 
system performance. In this case optimal pilot placement may be an irregular pilot design with non uniform pilot 
power (condition (6) is no satisfied). In order to minimize MSE channel estimation in Eq. (8) or (5), we propose a 
transmitter algorithm based on differential evolution algorithm. 
 
II. Pilot design optimization based on differential evolution algorithm 

In this section, we describe a transmitter algorithm for pilot design optimization. In order to optimize the 
positions of pilot tones, we use DE algorithm to find pilot design minimizing the MSE cost function given by Eq. (8) 
or (5). Our goal is to search for the optimal pilot positions that will minimize the MSE. The optimal pilot design 
position can be derived from an extensive matching of all possible positions. But the exhaustive search will be 
extremely time consuming and thus we will employ the optimization process on the cost function defined in Eq. (8) or 
(5) and we will reduce the computational complexity using Gershgorin theorem. Since the DE algorithm was 
originally designed to work with continuous variables, the optimization of continuous problems is discussed first in 
section A and DE for discrete variable is explained later in section B. 
 
A. Classical continuous DE algorithm 

The algorithm in its basic form is for continuous function optimization. DE algorithm introduced a novel parallel 
direct search for the optimization of continuous problems, it’s great advantage is fast convergence and the use of few 
control parameters. Basic DE algorithm [20, 21] is characterized with its initialization, mutation, re-combination and 
selection operations used to explore the search space in an iterative procedure, until some termination criteria are met. 
The basic strategy of DE algorithm can be described as follows. 
 

                         Operation 1. Initialization 
                         Operation 2. Evaluation 
                        Operation 3. While (termination criteria are not satisfied) Repeat 
                                                       Mutation 
                                                      Recombination 
                                                     Evaluation 
                                                    Selection 
                                            Until (termination criteria are met) 

 
 

Fig.2. DE algorithm operations 
- Initialization 
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 DE starts with a population of solutions, not with a single solution for the optimization problem. Population P of 
generation G contains NP solution vectors called individuals of the population and each vector represents potential 
solution for the optimization problem. Solutions are represented as vectors of size D with each value taken from some 
domain. First, all parameter vectors in a population are randomly initialized and evaluated using the fitness function. 
 
- Mutation 

The mutation operation is a genetic method which allows DE to maintain the diversity of the population from 
one generation of a population of algorithm to the next. DE generates new parameter vectors by adding the weighted 
difference between two parameter vectors to a third vector, temporary or trial population of candidate vectors for the 
subsequent generation. 
Temporary or trial population of candidate vectors in generation G is generated as follows: 

Vi,G+1=xr1,G+η(xr2,G-xr3,G) 
Where xi is a target vector and i, r1, r2, r3 Є {1,2,…,NP}. r1, r2 and r3 are three randomly chosen indices and η is a 
scaling factor in range [0,1] that controls the amplification of differential variations. 
 
-    Crossover 

In order to increase the diversity of the perturbed parameter vectors, crossover is introduced. To this end the trial 
vector is given by: 
        ui,G+1 = (u1i,G+1, u2i,G+1, …, uDi,G+1) 
Is formed by 


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j=1,…,D. 
where randb(j) is the jth evaluation of a uniform random number generator with outcome [0, 1], CR is the crossover 
constant [0, 1] which has to be determined by the user, rnbr(i) is randomly chosen index from 1..D which ensures that 
ui,G+1 gets at least one parameter from vi,G+1. 
 
- Selection 
 The selection operator determines whether the target vector ui,G+1 survives to the next generation. 





  elseGix
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Gix

,

),()1,(1,
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where f(.) is the fitness function. 
 
  -      Termination 

 The ultimate stopping criterion would be that the optimal MSE solution has indeed been found. However, it is 
impossible in practice to confirm this. Therefore, we stop the optimization procedure, when any of the following 
criteria are satisfied: 
- We stop DE algorithm when we find a solution for the optimization problem. Therefore, the minimum MSE is 
achieved. 
- The pre-defined maximum affordable number of generations Gmax has been exhausted. 
- Fixed number ∆Gmax generations have been explored without a trial vector being accepted. 
Usually stopping criterion is a maximum number of iterations (generations). 
 

 Modified DE algorithm for discrete variable optimization 
 

DE algorithm works only with floating-point variables but the data input for pilot design optimization problem 
are discrete values of pilot positions indexing. Hence the algorithm existing in its current form must be modified. 

Several approaches have been used to deal with discrete variable optimization [22]. Most of them round off the 
variable to the nearest available value before evaluating each trial vector. To keep the population robust, successful 
trial vectors must enter the population with all of the precision with which they were generated. The differential 
evolution algorithm, which in its canonical form is only capable of handling continuous variables, must be extended 
for optimization of integer variables. First, integer values should be used to evaluate the objective function, even 
though DE itself may still works internally with continuous floating-point values. 

Forward and backward transformation techniques have been developed to extend DE algorithm for problems 
with integer variables [22]. 
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Fig.3. Forward and backward transformations [22] 
 

A backward transformation method for transforming a population of continuous variables obtained after 
mutation back into integer variables for evaluating the objective function. Both forward and backward transformations 
are utilized in implementing the DE algorithm used in the present study for the pilot design optimization problem. Fig. 
3 shows how to deal with this inherent representational problem in DE. Level 0 deals with integer numbers (which are 
used in discrete problems). Level 1 of Fig. 3 deals with floating point numbers, which are suited for DE. At this level, 
the DE operators (mutation, crossover, and selection) take place. To transform the integer at level 0 into floating point 
numbers at level 1. 
 

 Proposed transmitter algorithm for pilot design optimization 
 

Proposed transmitter algorithm seeks the most appropriate time-frequency pilot space that minimizes the mean 
square error of channel estimate. We use the MSE function as an objective function for the DE algorithm. The matrix 
inversion in Eq. (5) will increase the computational load of the optimizer; we can reduce this computational 
complexity using Gershgorin theorem. 
 
 Fitness function of differential evolution algorithm 
We will employ the optimization process on the cost function defined in Eq. (5) as 
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Knowing that the power of a subcarrier is the same for all the antennas AHA . can be expressed as 
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where Pp is the diagonal element of matrix AHA . .  
Let aij (i=1,… ,Nt.L ; j=1,…, Nt.L) the elements of matrix AHA .  and Rmax=max(Ri) the maximum radius of the 
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According to Gershgorin theorem [23] we have  
maxRipP    , i=1,… , Nt.L  

Therefore, if Pp > Rmax we have the following inequality 
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From (5) and (8), the upper bound of MSE that we can use as an objective function for DE is obtained by: 

                              
max

2

RpP
MSE




                     (10) 

Knowing that the power dedicated for the pilot is fixed, the value of diagonal element Pp does not change during 
the optimization process. Therefore, we will use Rmax as the fitness function for differential evolution algorithm. 
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 Proposed transmitter algorithm 
Based on the discussion above, the proposed transmitter algorithm is described by the following steps. 
1) We first specify the channel parameters,  the impulse response length Nt.L and Doppler spread as well as 
maximum number of iterations (Nt =1 in SISO-OFDM schemes). 
2) The total number of pilot tones in one OFDM frame is chosen greater or equal to (Q+1).Nt.L. Then, we define 
pilot power allocation and initial population for DE (initial pilot design). The initial pilot positions are initialized at 
equally spaced random values. The use of equally spaced pilot tones as initial population is a good choice for fast 
convergence. 
3) In order to get the best positions of the pilots, we use modified DE algorithm mentioned in section B. The pilot 
positions are improved by the mutation, crossover, and selection operators. The optimization procedure is repeated 
until we find a solution for the optimization problem defined in Eq. (6) or until the end of maximum number of 
iterations.  

 
 

Fig.4. Description of transmitter adaptive pilot arrangement 
 
III. Simulation results 

We consider an OFDM system with N = 128 subcarriers of which 8 serve as pilot tones (Np =8), and an 
invariant multipath channel model (Q=0) with 4 paths according to Jackes model (L=4). For optimizing the pilot 
placement, we use the differential evolution parameters of a population size of 10, scale factor of 0.8 and crossover of 
0.9.We first apply our algorithm to SISO-OFDM system. Furthermore, we evaluate the performance of our transmitter 
algorithm in the context of MIMO-OFDM system. 
 
SISO-OFDM scheme 

In order to evaluate the performance of the proposed method, we deal with two cases: 
 1) We simulate an OFDM system with equi-powered pilot tones (we use pilot symbols 1+i, in this case pilot power is 
the same for all pilot tones). 
 

    10        26          42         58        74         90       106       122 
         

 
Fig.5. The optimal placement for equi-powered pilot tones (regular arrangement) 

 
Fig. 5 shows the designed optimal set for pilot tones using DE method Np >L. As it can be seen, equi-spaced 

pilots are the optimal pilot design as it is shown in [17, 18] with equi-powered pilot tones. The use of equally spaced 
pilot tones as initial population is a good choice for fast convergence. 
  
2) We simulate an OFDM system with unequi-powered pilot tones, we use as pilot symbols 1+i, 1+i, 1+i, 0.2+0.2i, 
0.3+0.3i, 1+i, 1+i and 1+i.  Pilot symbols are randomly chosen. 
                                                                  1                       32              51       64      78   87   97           110 

              
 

Fig.6. The optimal placement for unequi-powered pilot tones (irregular arrangement) 
 

Fig. 6 shows that the optimal set for pilot tones is an irregular arrangement. In this case of unequi-powered pilot 
tones, we have numerically evaluated the MSE for regular and irregular pilot arrangements, it has been found that 
irregular pilot arrangement evaluate MSE better than equi-spaced pilot arrangement (MSEequi-spaced=0.1345, MSEunequi-

spaced=0.1302). Therefore, regular pilot arrangements are not always optimal. 
MIMO-OFDM scheme 
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We next consider the application of the proposed method to 2 x 1 MIMO-OFDM scheme with N = 128 
subcarriers of which 8 serve as pilot tones (Np =8), and a multipath channel model with 4 paths according to Jackes 
model (L=4). 

1           19            37           55           73            91         109        127 
        

1           19            37          55            73            91         109        127 
        

 
Fig.7. The optimal placement for equi-powered pilot tones in 2x1 MIMO-OFDM system  

 
10  12              28                         60     75  84   93                  125 

               
 

10  12              28                         60     75  84   93                  125 
               

 
Fig.8. The optimal placement for unequi-powered pilot tones in 2x1 MIMO-OFDM system 

 
Fig. 7 and  Fig. 8 shows that the optimal set for equi-powered pilot tones is an equi-spaced arrangement (we use 

pilot symbols 1+i for all antennas). However, the optimal set for unequi-powered pilot tones is an irregular 
arrangement as it is normally the case in SISO-OFDM systems (we use 1+i, 1+i, 1+i, 0.2+0.2i, 0.3+0.3i, 1+i, 1+i and 
1+i as pilot symbols for all antennas). 
 
Computational complexity 
 
In OFDM systems with N = 128 subcarriers and Np = 8 pilot tones, the exhaustive search for the best pilot placement 
is 1210 x 1.42978

128 C , whereas the number of searches in DE method with a population size of 10 is 
- 212 x 10 = 2120 for equi-powered pilot tones in SISO-OFDM scheme. 
- 913 x 10 = 9130 for unequi-powered pilot tones in SISO-OFDM scheme. 
- 435 x 10 = 4350 for equi-powered pilot tones in 2 x 1 MIMO-OFDM scheme. 
- 959 x 10 = 9590 for unequi-powered pilot tones in 2 x 1 MIMO-OFDM scheme. 
 

The numerical results given in this section, shows the computational advantage of DE method. Furthermore, in 
the DE method, we avoid computing matrix inversion of MSE by use of Gershgorin theorem mentioned in section IV-
C, This greatly reduces the complexity and cost of our method knowing that 3

pN multiplications are needed for MSE 
matrix inversion in [24], with Gershgorin theorem; multiplications are not required to evaluate the fitness function. 
For the proposed algorithm, 2.Npop.M.Niter multiplications are required, where Npop is the population size, M is the 
additional multiplications per iteration used by DE algorithm to improve the population )1( popNM  and Niter is the 
number of iterations (two multiplications are required for forward and backward transformation techniques per 
population and per iteration). 

 
IV. Conclusion 
 

The proposed DE transmitter method for OFDM pilot design optimization is specifically tailored to irregular 
pilot arrangements over multipath channels. The algorithm can be implemented in a computationally efficient manner 
using the upper bound of MSE for the fitness function instead of using MSE directly.  

This study has demonstrated the effectiveness of the DE algorithm as a design tool for irregular pilot 
arrangements in SISO and MIMO-OFDM systems. 
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