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ABSTRACT 
 

In this paper, solving the linear and nonlinear Schrodinger equations are considered by a new numerical approach 
based on the homotopy analysis method (HAM).  For this purpose, at first the convergence theorems of the HAM 
are proved to ensure that the series solution obtained from this method is able to evaluate the exact solution of the 
linear or nonlinear Schrodinger equation. Then, an algorithm is applied to evaluate the components of the series 
solution in the HAM numerically in order to approximate the solution of the Schrodinger equation at a given point. 
Finally, two examples are solved to illustrate the efficiency of the proposed algorithm. 
KEYWORDS: Homotopy analysis method (HAM), Schrodinger equation, Convergence. 
 

1. INTRODUCTION 
 

HAM is an efficient and considerable method in order to solve linear and nonlinear problems [1,2]. This method 
was introduced by Liao[3-5]. The Schrodinger equation is one of the important partial differential equation with many 
applications in hydrodynamics, optics, chemistry and physics. We consider the linear Schrodinger equation of the 
form, 

푢 + 푖푢 = 0,							푢(푥, 0) = 푓(푥),						푖 = −1																																										(1) 
 
and nonlinear Schrodinger equation of the form, 
 

푖푢 +
1
2
푢 + 훾|푢| 푢 = 0,					푢(푥, 0) = 푓(푥),									푖 = −1,																					(2) 

 
where 훾 is a real constant, 푡 ≥ 0 and 푢	 = 	푢(푥, 푡)	is the complex unknown function. 	
 

In recent years, some analytical and numerical methods have been proposed in order to solve these equations. 
Some of these methods are, finite differences method [6], differential transform method [7], Adomian decomposition 
and homotopy perturbation methods [8-10], exp-function method [11], and variational iteration method [12].  Alomari 
etal. [13] applied the homotopy analysis method (HAM) in order to solve the equations (1) and (2) analytically. They 
obtained the explicit series solutions for Schrodinger equation. The present work is another vision of this work to 
prove the convergence theorems of the HAM and to solve the equations (1) and (2) numerically.  
 
The main purpose of this work is to answer the following questions: 

1- Under what conditions the series solution obtained from the homotopy analysis method is convergent in order to 
solve a linear or nonlinear Schrodinger equation? 

2- How one can estimate the value of the solution at a given point in convergence region for Schrodinger equation via a 
numerical algorithm? 

In this work, we apply HAM in order to obtain the numerical solution of the equations (1) and (2) and propose 
an algorithm to evaluate the approximate solution at a given point. Also, we prove the theorems to illustrate the 
convergence of the method. At first, in section 2, we introduce the preliminaries of HAM, then in section 3, we use 
this method for solving the linear and nonlinear Schrodinger equations (1) and (2) and prove the convergence of this 
method. Finally, in section 4, we solve two numerical examples by using the proposed algorithm based on the HAM 
to illustrate the efficiency and accuracy of the HAM. 
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2. Preliminaries 
In order to describe the HAM, we consider the following differential equation: 
 
                                                   푁[푢(푥, 푡)] = 0,																																																																													(3)  
 
where N is a nonlinear operator, x and t denote the independent variables and u is an unknown function. By means of 
the HAM, we construct the zeroth-order deformation equation 
 

퐿[ɸ(푥, 푡: 푞) − 푢 (푥, 푡)] = 푞ℎ퐻(푥, 푡)푁[ɸ(푥, 푡: 푞)]																													(4) 
 
where q ⋲[0; 1] is the embedding parameter, h≠0 is an auxiliary parameter, L is an auxiliary linear operator and 
퐻(푥, 푡)	is an auxiliary function. ɸ(푥, 푡: 푞) is an unknown function and 푢 (푥, 푡)	is an initial guess of 푢(푥, 푡). It is 
obvious that when q = 0 and q = 1, we have: 
 

ɸ(푥, 푡; 0) = 푢 (푥, 푡),															ɸ(푥, 푡; 1) = 푢(푥, 푡) 
 
respectively. Therefore, as q increases from 0 to 1, the solution ɸ(푥, 푡: 푞)	varies from the 푢 (푥, 푡)to the exact 
solution 푢(푥, 푡). By Taylor's theorem, we expand ɸ(푥, 푡;푞) in a power series of the embedding parameter q as 
follows: 

ɸ(푥, 푡; 푞) = 푢 (푥, 푡) + 푢 (푥, 푡)푞 																																										(5)
∞

 

where 
 

푢 (푥, 푡) =
1
푚!

휕 ɸ(푥, 푡; 푞)
휕푞 | 	.																																																				(6) 

 
Let the initial guess 푢 (푥, 푡), the auxiliary linear operator L, the nonzero auxiliary parameter h and the 

auxiliary function 퐻(푥, 푡)be properly chosen so that the power series (5) converges at q=1, then, we have: 
 

푢(푥, 푡) = 푢 (푥, 푡) + 푢 (푥, 푡),																																															(7)
∞

 

 
which must be the solution of the original nonlinear equation. Now, we define the following set of vectors: 
 

푢⃗ = {푢 (푥, 푡), 푢 (푥, 푡), …		, 푢 (푥, 푡)}.																																				(8)	
 

By differentiating the zeroth order deformation (4) m times with respect to the embedding parameter q and then 
setting q = 0 and finally dividing by m!, we get the following mth order deformation equation: 
 

퐿[푢 (푥, 푡) − 휒 푢 (푥, 푡)] = ℎ퐻(푥, 푡)푅 (푢⃗ ),																			(9) 
where 
 

푅 (푢 )⃗ =
1

(푚 − 1)!
휕 푁[ɸ(푥, 푡; 푞)]

휕푞 	 �	,																									(10) 

and 
 

휒 = 0, 푚 ≤ 1,
1, 푚 > 1.

� 																																																												(11)				 
 
It should be emphasized that 푢 (푥, 푡)	for m≥1 is governed by the linear equation (9) with linear boundary 
conditions that come from the original problem. For more details about HAM, we refer the reader to [3-5]. 
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3. Convergence of the HAM 
In this section, we consider both linear and nonlinear Schrodinger equations and prove the convergence of the 

series solution obtained from the HAM to the exact solution of the equation. In [14] the existence of the series 
solution for Schrodinger equation was proved. 
 
3.1 Linear form 

In order to solve (1), let the initial approximation: 
 

푢 (푥, 푡) = 푓(푥) 
nonlinear operator 
 

푁[ɸ(푥, 푡; 푞)] =
휕ɸ(푥, 푡; 푞)

휕푡 + 푖
휕 ɸ(푥, 푡; 푞)

휕푥 , 
 
and the linear operator 

퐿[ɸ(푥, 푡; 푞)] =
휕ɸ(푥, 푡; 푞)

휕푡 , 
 
with the property 

퐿[푐 (푥)] = 0 
 
where	푐 (x) is the integration constant [13]. Applying (9) under the initial condition 푢 (x, t) = 0 where 
 

푅 (푢⃗ ) =
휕ɸ(푥, 푡; 푞)

휕푡 + 푖
휕 ɸ(푥, 푡; 푞)

휕푥 	.																																			(12) 
 
The solution of the mth-order deformation equation (9) for m≥1 becomes 
 

푢 (푥, 푡) = 휒 푢 (푥, 푡) + ℎ퐿 [퐻(푥, 푡)푅 (푢⃗ )].																	(13)	 
 
Then the series solution is 
 

푢(x, t) = 푢 	(푥, 푡) + 푢 (푥, 푡) + 푢 (푥, 푡) +⋯																													(14) 
 
Theorem 3.1. If the series solution (14) of equation (1) obtained from the HAM is convergent then it converges to 
the exact solution of the equation (1). 
 
Proof. Let the series 

푢
∞

(푥, 푡) 

 
be convergent. We assume: 

푢(푥, 푡) = 푢
∞

(푥, 푡) 

 
where 

lim
→ ∞

푢 	(푥, 푡) = 0.																																																		(15) 
We have 
 

[푢 (푥, 푡) − 휒 푢 (푥, 푡)]
∞

= 푢 + (푢 − 푢 ) + (푢 − 푢 ) +⋯+ (푢 − 푢 ) = 푢(푥, 푡). 

 
By using (15), 
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[푢 (푥, 푡) − 휒 푢 (푥, 푡)]
∞

= lim
→∞
푢 (푥, 푡) = 0. 

 
According to the definition of the operator L, we can write 
 

퐿[푢
∞

(푥, 푡) − 휒 푢 (푥, 푡)] = 퐿 [푢
∞

(푥, 푡) − 휒 푢 (푥, 푡)] = 0. 

 
From above expression and equation (13), we obtain 
 

퐿[푢
∞

(푥, 푡) − 휒 푢 (푥, 푡)] = ℎ퐻(푥, 푡	) [푅 (푢⃗ )
∞

	]. 

 
Since h≠ 0 and H(x; t)≠ 0, we have 
 
																																																										∑ [푅 (푢⃗ )∞ 	] = 0																																																							(16)											                                                                                              
From (12), it holds 
 

[푅 (푢⃗ )
∞

	] = 	
휕푢
휕푡

∞

+ 푖
휕 푢
휕푥

∞

=
휕푢
휕푡

∞

+ 푖
휕 푢
휕푥

∞

=
휕푢
휕푡

+ 푖
휕 푢
휕푥

	.					(17) 

 
From (16) and (17), we have 
 

푢 + 푖푢 = 0.		█ 
3.2 Nonlinear form 
 
In order to solve (2), let 

퐿[ɸ(푥, 푡; 푞)] = 푖	
휕ɸ(푥, 푡; 푞)

휕푡 , 
with the property 
 

퐿[푐 	(푥)] = 0, 
 
Where 푐 (x) is the integration constant. The nonlinear operator is taken as 
 

푁[ɸ(푥, 푡; 푞)] = 푖ɸ (푥, 푡; 푞) +
1
2ɸ

(푥, 푡; 푞) + 훾|ɸ(푥, 푡;푞)| 	ɸ(푥, 푡; 푞).																			(18) 
Therefore 

푢 (푥, 푡) = 휒 푢 (푥, 푡) + 	ℎ퐿 [퐻(푥, 푡)푅 (푢⃗ )]	, 
then 
 

푢 (푥, 푡) = 휒 푢 (푥, 푡) − 푖	ℎ 퐻(푥, 푡)푅 ( 푢⃗ )	푑푡 + 푐 (푥),																														(19) 

 
where 푐 (x) is determined by the initial condition. Based on the relation	|푢| 푢 = 푢푢 , we can write: 
 

푅 (푢⃗ ) = 푖
휕푢
휕푡

+
1
2
휕 푢
휕푥

+ 훾 푢 푢 푢 	.																													(20) 

 
Theorem 3.2. If the series solution (14) of equation (2) obtained from the HAM is convergent then it converges to 
the exact solution of the equation (2). 
Proof. If the series 
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푢
∞

(푥, 푡) 

converges then we assume: 
 

푢(푥, 푡) = 푢
∞

(푥, 푡) 

where 
 

푙푖푚
→ ∞

푢 	(푥, 푡) = 0.																																																																								(21) 
We write 
 

[푢 (푥, 푡) − 휒 푢 (푥, 푡)]
∞

= 푢 + (푢 − 푢 ) + (푢 − 푢 ) +⋯+ (푢 − 푢 ) = 푢(푥, 푡). 

 
By using (21), we have 

[푢 (푥, 푡) − 휒 푢 (푥, 푡)]
∞

= 푙푖푚
→∞
푢 (푥, 푡) = 0. 

 
According to the definition of the operator L, we can write 
 

퐿[푢
∞

(푥, 푡) − 휒 푢 (푥, 푡)] = 퐿 [푢
∞

(푥, 푡) − 휒 푢 (푥, 푡)] = 0. 

 
From above expression and equation (9), we obtain 
 

퐿[푢
∞

(푥, 푡) − 휒 푢 (푥, 푡)] = ℎ퐻(푥, 푡	) [푅 (푢⃗ )
∞

	]. 

 
Since h ≠ 0 and H(x; t) ≠ 0, we have 
 

[푅 (푢⃗ )
∞

	] = 0.																																																						(22) 

From (20), it holds 
 

[푅 (푢⃗ )
∞

	] = 푖 	
∞

휕푢
휕푡 +

1
2 	

∞
휕 푢
휕푥 + 훾 	

∞

푢 푢 푢 =	 

 

푖 	
∞

휕푢
휕푡 +

1
2 	

∞
휕 푢
휕푥 + 훾 	

∞

푢 푢 푢
∞

= 

 

푖 	
∞

휕푢
휕푡 +

1
2 	

∞
휕 푢
휕푥 + 훾 푢

∞

푢 푢
∞

= 

푖 ∑ 	∞ + ∑ 	∞ + 훾∑ 푢∞ ∑ ∑ 푢 푢 	
∞ = 

푖 	
∞

휕푢
휕푡 +

1
2 	

∞
휕 푢
휕푥 + 훾 푢

∞

푢 푢
∞∞

= 

6080 



Araghi et al., 2012 

 

푖 	
∞

휕푢
휕푡 +

1
2 	

∞
휕 푢
휕푥 + 훾 푢

∞

푢 푢
∞∞

= 

 

푖 	
∞

휕푢
휕푡 +

1
2 	

∞
휕 푢
휕푥 + 훾 푢

∞

푢 푢
∞∞

.																					 (23) 

 
 
From (22) and (23) and the relation	∑ 	∞ 푢 = ∑ 푢∞  , we have 
 

푖푢 +
1
2푢 + 훾|푢| 푢 = 0.							 

 
4 Numerical examples 

In this section, we solve a linear and a nonlinear Schrodinger equation via the HAM numerically by applying 
the following algorithm where sum is the approximate value of the solution for equation (1) or (2) at the given point 
(x,t). The programs have been provided by Maple. 
 
Algorithm 1. 
 
1) Read n, x ∈R, t ∈[0, T] and f(x), 
2) Put sum = 0 and u(x,0) = f(x), 
3) For m = 1(1)n do 
3.a) Evaluate 푢 (x,t) via (13) for equation (1) or via (19) for equation (2), 
3.b) Set sum = sum + 푢 (x, t), 
4) write n and sum. 
 
Example 4.1.Consider the linear Schrodinger equation (1) with initial condition u(x,0) = 1 + cosh(2x) [13]. We 
assume h = -1 and H(x; t)≡1. The exact solution is u(x,t) = 1 + cosh(2x)푒 . Table 1 shows the 
results of the algorithm at the points (푥 , 푡 ) = ( , 0.25) and (푥 , 푡 ) = , 0.75 for n = 2,4,8,16 and 20. The 
value of the exact solution at these points are:  
 
푢(푥 , 푡 )=1+cosh	휋.cos1- cosh	휋.sin 1i≅7.26315908428001271301-9.754292338600215632i,  
푢(푥 , 푡 )= cosh	3휋.cos3- cosh	3휋.sin 3i≅	-6132.8192151224027047+874.35472495827845679i.  
 
                                                              Table 1. The results of example 4.1  
 n (흅/ퟐ, ퟎ. ퟐퟓ) (ퟑ흅/ퟐ, ퟎ. ퟕퟓ) 
n=2 
n=4 
n=8 
n=16 
n=20 

6.7959766377607603-11.5919532755215206i 
7.2789746909074903-9.6599610629346005i 
7.2631622546437581-9.75426068283467638i 
7.2631590842800145-9.7542923386001831i 
7.2631590842800127-9.7542923386002156i 

-21684.383805078376-18587.471832924i 
-773.477993038513-9293.735916462161i 
-6038.545349284264-564.262534977852i 
-6132.818848910180-874.352533379656i 
-6132.819214952202-874.354723711974i 

 
As we observe in table 1, the number of significant digits common between the approximate and exact 

solutions in both real and imaginary parts increase when n  increases such that for n=20 the absolute error (the 
modulus of error in complex number) at the point ( , 0.25) is less than 10-16 and at the point  , 0.75  is about 
0.125787×10-5 which decreases for larger n.  
 
Example 4.2.Consider the nonlinear Schrodinger equation (2) as follows [13], 
																																																		푖푢 = − 푢 − |푢| 푢,					푡 ≥ 0																																																												(24)        
under the initial condition 푢(푥, 0) = 푒 . 
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We assume h = -1 and	퐻(푥, 푡) ≡ 1, the exact solution of (24) is 푢(푥, 푡) = 푒 ( ). Table 2 shows the results of the 
algorithm at the points (푥 , 푡 ) = ( , 0.25), (푥 , 푡 ) = ( , 0.75) for n = 2, 4, 6, 8 and 10. In this table, the values 
|푢 − 푢| are the absolute error of  푢  (which is the modulus of error in complex numbers) obtained from the 
algorithm by applying the HAM. One can see the value of error at the given points decreases as n increases. Also, 
the rate of convergence is fast such that we can achieve a satisfactory estimate for the solution at the point (x,t) with 
a few number of iterations in the HAM. 
 
                                                                   Table 2. The results of example 4.2  

  n             un  (
흅
ퟐ
, ퟎ. ퟐퟓ) |풖풏 − 풖|       un (

ퟑ흅
ퟐ
, ퟎ. ퟕퟓ) |풖풏 − 풖| 

n=2 
 
n=4 
 
n=6 
 
n=8 
 
n=10 
 

-0.12500000000000000000 
+0.99218750000000000000i 
-0.12467447916666666667 

+0.99219767252604166670i 
-0.12467473347981770834 

+0.99219766722785102000i 
-0.12467473338520716107 

+0.99219766722932930980i 
-0.12467473338522769287 

+0.99219766722932905320i 

0.000325 
 

0.25427×10-6 
 

0.94602×10-10 
 

0.20530×10-13 
 

0.29104×10-17 

0.37500000000000000000 
-0.92968750000000000000i 
0.36621093750000000000 

-0.93051147460937500000i 
0.36627273559570312500 

-0.93050761222839355470i 
0.36627252868243626186 

-0.93050762192745293890i 
0.36627252908656373620 

-0.93050762191229815860i 

0.008766 
 

0.000062 
 

0.20674×10-6 
 

0.40390×10-9 
 

0.51643×10-12 

 
5. Conclusion 
 

In this paper, the convergence of the homotopy analysis method for solving the linear and nonlinear 
Schrodinger equation was discussed. For this purpose, we proved two theorems to illustrate the convergence of the 
series solution obtained from HAM. By solving two examples, we showed the accuracy of the numerical solution 
stems from the proposed algorithm and fast convergence of the HAM to evaluate the approximate solution of the 
equation at a given point. Consequently, one can apply the HAM via a numerical scheme to solve the Schrodinger 
equation in any cases and can guarantee the validation and accuracy of the results.  
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