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ABSTRACT 

 
Nigerian unemployment data is modelled by Box-Jenkins approach and the use of automatic model selection 
criteria Akaike Information criterion (AIC) and Schwarz Information Criterion (SIC). It is inferred that the most 
adequate model is autoregressive integrated moving average of orders 1, 2 and 1(ARIMA(1 ,2 ,1)). Forecasts are 
obtained on the basis of the model. 
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INTRODUCTION 
 

A time series is defined as a set of data collected sequentially in time. It has the property that neighbouring 
values are correlated. This tendency is called autocorrelation. A time series is said to be stationary if it has a 
constant mean and variance. Moreover the autocorrelation is a function of the lag separating the correlated 
values called the autocorrelation  function (ACF).    

A stationary time series {Xt} is said to follow an autoregressive moving average model of orders p and q 
(designated ARMA(p,q) ) if it satisfies the following difference equation 

 

qtqtttptpttt XXXX    ...... 22112211   (1) 
or 
 (B)Xt = (B)t         (2)  
 
where {t} is a sequence of random variables with zero mean and constant variance, called a white noise 
process, and the i’s and j’s constants; (B) = 1 + 1B + 2B2 + ... + pBp and (B) = 1 + 1B + 2B2 + ... + 
qBq and B is the backward shift operator defined by BkXt = Xt-k.  
 If p=0, model (1) becomes a moving average model of order q (designated MA(q)). If, however, q=0 it 
becomes an autoregressive process of order p (designated AR(p)). An AR(p) model of order p may be defined 
as a model whereby a current value of the time series Xt depends on the immediate past p values: Xt-1, Xt-2, ..., 
Xt-p . On the other hand an MA(q)  model of order q is such that the current value Xt is a linear combination of 
immediate past values of the white noise process: 1, 2, ..., q. Apart from stationarity, invertibility is another 
important requirement for a time series. It refers to the property whereby the covariance structure of the eries is 
unique [7]. Moreover it allows for meaningful association of current events with the past history of the series 
[2]. 

An AR(p) model may be more specifically written as 
Xt + p1Xt-1 + p2Xt-2 + ... + ppXt-p = t 

 
Then the sequence of the last coefficients{ii} is called the partial autocorrelation function(PACF) of {Xt}. The 
ACF of an MA(q) model cuts off after lag q whereas that of an AR(p) model is a combination of sinusoidals 
dying off slowly. On the other hand the PACF of an MA(q) model dies  off slowly whereas that of an AR(p) 
model cuts off after lag p. AR and MA models are known to have some duality properties. These include: 

1. A finite order AR model is equivalent to an infinite order MA model. 
2. A finite order MA model is equivalent to an infinite order AR model. 
3. The ACF of an AR model exhibits the same behaviour as the PACF of an MA model. 
4. The PACF of an AR model exhibits the same behaviour as the ACF of an MA model. 
5. An AR model is always invertible but is stationary if (B) = 0 has zeros outside the unit circle. 
6. An MA model is always stationary but is invertible if (B) = 0 has zeros outside the unit circle. 

  Parametric parsimony consideration in model building entails preference for the mixed ARMA fit to 
either the pure AR or the pure MA fit. Stationarity and invertibility conditions for model (1) or (2) are that the 
equations (B) = 0 and (B) = 0 should have roots outside the unit circle respectively. 
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Often, in practice, a time series is non-stationary. Box and Jenkins [2] proposed that differencing of an 
appropriate data could render a non-stationary series {Xt} stationary. Let degree of differencing necessary for 
stationarity be d.  Such a series {Xt} may be modelled as 

  

 (1 + ∑ ௜ܤ௜ߙ
௣
௜ୀଵ )dXt = (B)t      (3) 

 
where  = 1 – B and in which case (B) =  (1 +	∑ ௜)∇ௗܤ௜ߙ

௣
௜ୀଵ  = 0 shall have unit roots d times. Then 

differencing to degree d renders the series stationary. The model (3)  
is said to be an autoregressive integrated moving average model of orders p, d and q and designated ARIMA(p, 
d, q). The purpose of this paper is to fit an ARIMA model to monthly unemployment rate data of  Nigeria. 
 

MATERIALS AND METHODS 
 

The data for this work are monthly unemployment rate data from 1999 to 2008 obtainable from quarterly 
abstracts of the Central Bank of Nigeria. Unemployment rate in this context is the percentage of the workforce 
that are without jobs. 
Determination of the differencing order d: 

Preliminary analysis of time series involves the time-plot and the correlogram.  A stationary time series 
exhibits no trend and the degree of variability is invariant with time. In addition the covariance is a function of 
the time lag. The time plot of a stationary time series shows no change in the mean level as well as the variance 
over  time. The autocorrelation function should decay fast to zero. 
Test for stationarity: 
       The ACF of a non-stationary time series starts high and declines slowly. Moreover to test for stationarity we 
shall be using the Augmented Dickey-Fuller (ADF) test. This involves testing for b=1 against b < 1 in Xt = a + 
bXt-1 + t. The software Eviews 3.1 that we shall use has facility for the ADF test also.  
Determination of the orders p and q: 
        As already mentioned above, an  AR(p) model has a PACF that truncates at lag p and an MA(q)) has  an 
ACF that truncates at lag q. In practice ±2√݊ are the nonsignificance limits for both functions.  We shall 
explore the range of models ARMA(a,b), 0  a  p, 0  b  q for an optimum one. To do this we shall use the 
automatic model determination criteria AIC and SIC ( e.g. [1], [3], [4] and[ 8]) defined by: 

nnqdpnqdpSIC

qdpnqdpAIC

qdp

qdp

/)ln()(~ln)(

)(2~ln)(
2

2












 

where ߪ௞ଶ෪ is the maximum likelihood estimate of the residual variance when the model has k parameters.The 
optimum model corresponds to the minimum of the criteria within the explored range. 
Model Estimation: 

 The involvement of the white noise terms in an ARIMA model entails a nonlinear iterative process in the 
estimation of the parameters, i’s and j’s. An optimization criterion like least error of sum of squares, 
maximum likelihood or maximum entropy is used. An initial estimate is usually used. Each iteration is expected 
to be an improvement of the last one until the estimate converges to an optimal one. However,for pure AR and 
pure MA models linear optimization techniques exist (See for example [2],[6]).   There are attempts to adopt 
linear methods to estimate ARMA models (See for example, [3], [4], [5]). 
Diagnostic Checking: 

 The model that is fitted to the data should be tested for goodness-of-fit. The automatic order determination 
criteria AIC and SIC are themselves diagnostic checking tools. Further checking can be done by the analysis of 
the residuals of the model. If the model is correct, the residuals would be uncorrelated and would follow a 
normal distribution with mean zero and constant variance.  

 
RESULTS AND DISCUSSION 

 
The time plot of the original series NUMP in Fig.1and the correlogram of Figure 2 clearly depict non-

stationarity. Differencing the series once yields  a still non-stationary process, DNUMP; the ADF test of Table 1 
confirms the non-stationary nature. This necessitated second order differencing.  The ADF test of Table 2 attests 
to the stationary nature of the second differences SNUMP. We note that in this table the dependent variable is 
the third difference TNUMP of the original series. From fig. 4, the ACF cuts off at lag 5 and the PACF at lag 4. 
Exploring the range of models {ARMA(p,q): 0  p 4, 0 q5}for the optimal on the basis of AIC and SIC 
yields an ARMA(1,1) as summarized in Table 3. 
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FIG. 2. CORRELOGRAM OF NUMP 
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TABLE 1: Augmented Dickey Fuller Test on DNUMP 
ADF Test Statistic -1.400118     1%   Critical Value* -3.4885 

      5%   Critical Value -2.8868 
      10% Critical Value -2.5801 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
     
     

Augmented Dickey-Fuller Test Equation 
Dependent Variable: SDNUMP 
Method: Least Squares 
Date: 12/24/11   Time: 17:16 
Sample(adjusted): 1999:07 2008:12 
Included observations: 114 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   
D(X(-1)) -0.222120 0.158644 -1.400118 0.1643 

D(X(-1),2) -0.830500 0.161518 -5.141845 0.0000 
D(X(-2),2) -0.519311 0.166142 -3.125705 0.0023 
D(X(-3),2) -0.276272 0.147540 -1.872524 0.0638 
D(X(-4),2) -0.243273 0.099133 -2.454007 0.0157 

C 0.012374 0.012392 0.998626 0.3202 
R-squared 0.596501     Mean dependent var 0.002632 
Adjusted R-squared 0.577821     S.D. dependent var 0.197981 
S.E. of regression 0.128639     Akaike info criterion -1.212419 
Sum squared resid 1.787181     Schwarz criterion -1.068408 
Log likelihood 75.10788     F-statistic 31.93177 
Durbin-Watson stat 2.014234     Prob(F-statistic) 0.000000 

 
TABLE 2: Augmented Dickey Fuller Test on SDNUMP 

ADF Test Statistic -7.831665     1%   Critical Value* -3.4890 
      5%   Critical Value -2.8870 
      10% Critical Value -2.5802 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
     
     

Augmented Dickey-Fuller Test Equation 
Dependent Variable: TNUMP 
Method: Least Squares 
Date: 12/24/11   Time: 17:10 
Sample(adjusted): 1999:08 2008:12 
Included observations: 113 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.   
D(X(-1),2) -3.783728 0.483132 -7.831665 0.0000 
D(X(-1),3) 1.730148 0.424541 4.075343 0.0001 
D(X(-2),3) 1.016548 0.331170 3.069566 0.0027 
D(X(-3),3) 0.555296 0.215904 2.571960 0.0115 
D(X(-4),3) 0.130074 0.097086 1.339781 0.1832 

C 0.009594 0.012215 0.785434 0.4339 
R-squared 0.878016     Mean dependent var 0.002655 
Adjusted R-squared 0.872316     S.D. dependent var 0.361905 
S.E. of regression 0.129319     Akaike info criterion -1.201433 
Sum squared resid 1.789405     Schwarz criterion -1.056616 
Log likelihood 73.88096     F-statistic 154.0331 
Durbin-Watson stat 2.003449     Prob(F-statistic) 0.000000 

 

 
FIG. 4: CORRELOGRAM OF SNUMP 
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Table 3. Comparison of models within the range of exploration using AIC and SIC 
  p q AIC SIC 

  0 1 -0.997 -0.974 
  0 2 -1.234 -1.187 
  0 3 -1.223 -1.153 
  0 4 -1.116 -1.022 
  0 5 -1.208 -1.091 
  1 0 -0.999 -0.975 
  1 1 -1.250 -1.203 
  1 2 -1.235 -1.164 
  1 3 -1.224 -1.129 
  1 4 -1.215 -1.097 
  1 5 -1.150 -1.009 
  2 0 -1.174 -1.127 
  2 1 -1.231 -1.159 
  2 2 -1.220 -1.126 
  2 3 -1.234 -1.116 
  2 4 -1.217 -1.075 
  2 5 -1.215 -1.049 
  3 0 -1.158 -1.086 
  3 1 -1.212 -1.117 
  3 2 -1.225 -1.105 
  3 3 -1.208 -1.065 
  3 4 -1.194 -1.027 
  3 5 -1.190 -0.999 
  4 0 -1.225  -1.129 
  4 1 -1.229 -1.109 
  4 2 -1.211 -1.067 
  4 3 -1.238 -1.070 
  4 4 -1.222 -1.030 
  4 5 -1.218 -1.002 
 
 
TABLE 4: Model Estimation 

Dependent Variable: SDNUMP 
Method: Least Squares 
Date: 12/24/11   Time: 18:32 
Sample(adjusted): 1999:04 2008:12 
Included observations: 117 after adjusting endpoints 
Convergence achieved after 6 iterations 
Backcast: 1999:03 

Variable Coefficient Std. Error t-Statistic Prob.   
AR(1) -0.388391 0.099793 -3.891961 0.0002 
MA(1) -0.716548 0.077618 -9.231771 0.0000 

R-squared 0.587306     Mean dependent var 0.005128 
Adjusted R-squared 0.583717     S.D. dependent var 0.199069 
S.E. of regression 0.128440     Akaike info criterion -1.249770 
Sum squared resid 1.897123     Schwarz criterion -1.202554 
Log likelihood 75.11156     F-statistic 163.6567 
Durbin-Watson stat 1.966983     Prob(F-statistic) 0.000000 
Inverted AR Roots       -.39 
Inverted MA Roots        .72 

 
The chosen model as summarized in Table 4 is ARIMA(1, 2, 1) and is given by 
 
 SDNUMPt = -0.388391SDNUMPt-1 – 0.716548t-1 + t 
                                   (0.099793)                  (0.077618) 
 

Clearly non-linear techniques used by Eviews 3.1 involved an iterative process that converged after six 
iterations. We observe that the coefficients are both highly significant, each being more than twice its standard 
error. The roots of (B) = 0 and (B) = 0 are -2.56 and 1.39, both outside the unit circle indicating stationarity 
and invertibility respectively. Besides the residual plot of Fig. 5 confirms that the residuals follow the normal 
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distribution with zero (actually 0.01) mean. The kurtosis is 2.8 which compares favourably with the normal 
distribution standard of 3. 0. 
 

 
 

FIG. 5. HISTOGRAM OF THE MODEL RESIDUALS 
 
Forecasting: 

  An ARIMA(1, 2, 1) model may be written as 
 
 tttt XX    111

2
1

2  
 
This translates into 
 tttttttt XXXXXX    11321121 )2(2  

  
That is, 
 tttttt XXXX    11312111 )21()2(  
 
At time t+k, the model may be written as 
 tktktktktkt XXXX    11312111 )21()2(  
 
Taking conditional expectations at time t, we have 

 ttttt XXXX  121111 )21()2()1(ˆ    

 1111 )21()1(ˆ)2()2(ˆ
 tttt XXXX   

 tttt XXXX 111 )1(ˆ)21()2(ˆ)2()3(ˆ    

 4),3(ˆ)2(ˆ)21()1(ˆ)2()(ˆ
111  kkXkXkXkX tttt   

 

where )(ˆ kX t is the k-step ahead forecast. That is the forecast of Xt+k. 
 
TABLE 6. Forecasts 
 Residuals SNUMP DNUMP NUMP 
October 2008 
November 2008 
December 2008 

0.14626 
0.06016 
0.16543 

0.4 
-0.2 
0.2 

0.4 
0.2 
0.4 

6.6 
6.8 
7.2 

January 2009 
February 2009 
March 2009 

 0.33015 
0.56511 
0.75936 

0.73015 
1.29526 
2.05462 

7.9 
9.2 
11.3 
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Conclusion 
  

We have successfully fitted an ARIMA(1, 2, 1) model to Nigerian monthly unemployment data. This 
means that the second differences SNUMP follow an ARMA(1,1) model. Its adequacy has been established and 
on its basis we have made forecasts. 
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