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ABSTRACT

Nigerian unemployment data is modelled by Box-Jenkins approach and the use of automatic model selection
criteria Akaike Information criterion (AIC) and Schwarz Information Criterion (SIC). It is inferred that the most
adequate model is autoregressive integrated moving average of orders 1, 2 and 1(ARIMA(1 ,2,1)). Forecasts are
obtained on the basis of the model.
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INTRODUCTION

A time series is defined as a set of data collected sequentially in time. It has the property that neighbouring
values are correlated. This tendency is called autocorrelation. A time series is said to be stationary if it has a
constant mean and variance. Moreover the autocorrelation is a function of the lag separating the correlated
values called the autocorrelation function (ACF).

A stationary time series {X;} is said to follow an autoregressive moving average model of orders p and g
(designated ARMA(p,q) ) if it satisfies the following difference equation

X +o X,  +o,X, ,+..+a, X, =g+ Be .+ B.€, ., +...+ﬂq8,_q (1)
or
a(B)X; = B(B)e (2)

where {g} is a sequence of random variables with zero mean and constant variance, called a white noise
process, and the a;’s and B;’s constants; a(B) =1+ o,B + B+ ..+ o,B” and B(B)=1+ BB + BB + ..+
BB and B is the backward shift operator defined by B*X, = X
If p=0, model (1) becomes a moving average model of order g (designated MA(q)). If, however, q=0 it
becomes an autoregressive process of order p (designated AR(p)). An AR(p) model of order p may be defined
as a model whereby a current value of the time series X; depends on the immediate past p values: X, X2, ..,
Xip . On the other hand an MA(q) model of order q is such that the current value X; is a linear combination of
immediate past values of the white noise process: €, &, ..., €. Apart from stationarity, invertibility is another
important requirement for a time series. It refers to the property whereby the covariance structure of the eries is
unique [7]. Moreover it allows for meaningful association of current events with the past history of the series
[2].

An AR(p) model may be more specifically written as

Xt + ocplXt_l + ocszt_z +..+ O(,prt_p =&t

Then the sequence of the last coefficients{oy;} is called the partial autocorrelation function(PACF) of {X;}. The
ACF of an MA(q) model cuts off after lag q whereas that of an AR(p) model is a combination of sinusoidals
dying off slowly. On the other hand the PACF of an MA(q) model dies off slowly whereas that of an AR(p)
model cuts off after lag p. AR and MA models are known to have some duality properties. These include:
A finite order AR model is equivalent to an infinite order MA model.
A finite order MA model is equivalent to an infinite order AR model.
The ACF of an AR model exhibits the same behaviour as the PACF of an MA model.
The PACF of an AR model exhibits the same behaviour as the ACF of an MA model.
An AR model is always invertible but is stationary if au(B) = 0 has zeros outside the unit circle.
An MA model is always stationary but is invertible if B(B) = 0 has zeros outside the unit circle.

Parametric parsimony consideration in model building entails preference for the mixed ARMA fit to
either the pure AR or the pure MA fit. Stationarity and invertibility conditions for model (1) or (2) are that the
equations a(B) = 0 and B(B) = 0 should have roots outside the unit circle respectively.
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Often, in practice, a time series is non-stationary. Box and Jenkins [2] proposed that differencing of an
appropriate data could render a non-stationary series {X} stationary. Let degree of differencing necessary for
stationarity be d. Such a series {X;} may be modelled as

(1+X7_, a;BYVX, = B(B)e, 3)

where V = 1 — B and in which case a(B) = (1+ Zle a;BYV4 = 0 shall have unit roots d times. Then
differencing to degree d renders the series stationary. The model (3)

is said to be an autoregressive integrated moving average model of orders p, d and q and designated ARIMA(p,
d, q). The purpose of this paper is to fit an ARIMA model to monthly unemployment rate data of Nigeria.

MATERIALS AND METHODS

The data for this work are monthly unemployment rate data from 1999 to 2008 obtainable from quarterly
abstracts of the Central Bank of Nigeria. Unemployment rate in this context is the percentage of the workforce
that are without jobs.

Determination of the differencing order d:

Preliminary analysis of time series involves the time-plot and the correlogram. A stationary time series
exhibits no trend and the degree of variability is invariant with time. In addition the covariance is a function of
the time lag. The time plot of a stationary time series shows no change in the mean level as well as the variance
over time. The autocorrelation function should decay fast to zero.

Test for stationarity:

The ACF of a non-stationary time series starts high and declines slowly. Moreover to test for stationarity we
shall be using the Augmented Dickey-Fuller (ADF) test. This involves testing for b=1 against b< 1 in X;=a +
bX..1 + & The software Eviews 3.1 that we shall use has facility for the ADF test also.

Determination of the orders p and q:

As already mentioned above, an AR(p) model has a PACF that truncates at lag p and an MA(q)) has an
ACF that truncates at lag q. In practice +2Vn are the nonsignificance limits for both functions. We shall
explore the range of models ARMA(a,b), 0 < a <p, 0 <b < q for an optimum one. To do this we shall use the
automatic model determination criteria AIC and SIC ( e.g. [1], [3], [4] and][ 8]) defined by:

AIC(p+aV+q):nh152 +2(p+d+q)

pt+d+q

SIC(p+d+q)=nnG.,,. +(p+d+q)ln(n)/n

p+d+q

where of is the maximum likelihood estimate of the residual variance when the model has k parameters.The
optimum model corresponds to the minimum of the criteria within the explored range.
Model Estimation:

The involvement of the white noise terms in an ARIMA model entails a nonlinear iterative process in the
estimation of the parameters, o;’s and PBi’s. An optimization criterion like least error of sum of squares,
maximum likelihood or maximum entropy is used. An initial estimate is usually used. Each iteration is expected
to be an improvement of the last one until the estimate converges to an optimal one. However,for pure AR and
pure MA models linear optimization techniques exist (See for example [2],[6]). There are attempts to adopt
linear methods to estimate ARMA models (See for example, [3], [4], [5]).

Diagnostic Checking:

The model that is fitted to the data should be tested for goodness-of-fit. The automatic order determination
criteria AIC and SIC are themselves diagnostic checking tools. Further checking can be done by the analysis of
the residuals of the model. If the model is correct, the residuals would be uncorrelated and would follow a
normal distribution with mean zero and constant variance.

RESULTS AND DISCUSSION

The time plot of the original series NUMP in Fig.land the correlogram of Figure 2 clearly depict non-
stationarity. Differencing the series once yields a still non-stationary process, DNUMP; the ADF test of Table 1
confirms the non-stationary nature. This necessitated second order differencing. The ADF test of Table 2 attests
to the stationary nature of the second differences SNUMP. We note that in this table the dependent variable is
the third difference TNUMP of the original series. From fig. 4, the ACF cuts off at lag 5 and the PACF at lag 4.
Exploring the range of models {ARMA(p,q): 0 < p <4, 0 <q<5}for the optimal on the basis of AIC and SIC
yields an ARMA(1,1) as summarized in Table 3.
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— FIG. 1: TIME PLOT OF NUMP

|[Path = c:\windows |[DB =nore |[WF =

Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob

1 0.942 0.942 109.09 0.000
2 0896 0.081 208.68 0.000
3 0.841 -0.098 29711 0.000
4 0790 -0.002 37595 0000
5 0735 -0.063 444 66 0000
6 0681 -0028 50422 0000
7 0630 0002 55566 0000
8 0574 -0074 59875 0000
9 0530 0061 63581 0000
10 0478 -0.073 66626 0000
11 0.437 0.032 691.91 0.000
12 0.387 -0.080 712.18 0.000
13 0.336 -0.075 727.61 0.000
14 0.290 0.019 739.19 0.000
15 0.238 -0.081 747.09 0.000
16 0.187 -0.051 752.02 0.000
17 0.134 -0.039 754.58 0.000
0.081 -0.073 755.52 0.000
19 0.029 -0.018 755.64 0.000
20 -0.018 -0.010 755.69 0.000
21 -0.067 -0.063 756.35 0.000
22 -0.112 -0.019 758.23 0.000
23 -0.158 -0.065 762.02 0.000
24 -0.209 -0.096 768.70 0.000
25-0.243 0086 777.82 0.000
26 -0.278 -0.029 789.83 0.000
27 -0.305 0.005 804.47 0.000
28 -0.331 -0.008 821.87 0.000
29 -0.363 -0.136 843.09 0.000
30 -0.392 -0.010 868.04 0.000
31-0414 0011 896.18 0.000
32 -0.431 -0.020 92713 0.000
33 -0.445 0.037 96042 0.000
34 -0450 0009 99482 0000
35 -0.457 -0.023 10307 0000
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FIG. 2. CORRELOGRAM OF NUMP

0.6

0.4

0.2

0.0 4

-0.2

-0.4

99 00 01 02 03 04 05 06 07 08

— FIG.3:TIME PLOT OF DNUMP
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TABLE 1: Augmented Dickey Fuller Test on DNUMP
-1.400118

ADF Test Statistic

1% Critical Value
5% Critical Value
10% Critical Value

*

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: SDNUMP

Method: Least Squares

Date: 12/24/11 Time: 17:16
Sample(adjusted): 1999:07 2008:12
Included observations: 114 after adjusting endpoints

Variable

D(X(-1))
D(X(-1),2)
D(X(-2),2)
D(X(-3),2)
D(X(-4),2)

C
R-squared

Adjusted R-squared

S.E. of regression
Sum squared resid
Log likelihood

Durbin-Watson stat

Coefficient

-0.222120
-0.830500
-0.519311
-0.276272
-0.243273
0.012374
0.596501
0.577821
0.128639
1.787181
75.10788
2.014234

Std. Error
0.158644
0.161518
0.166142
0.147540
0.099133
0.012392

Mean dependent var

S.D. dependent var

t-Statistic
-1.400118
-5.141845
-3.125705
-1.872524
-2.454007

0.998626

Akaike info criterion

Schwarz criterion
F-statistic
Prob(F-statistic)

TABLE 2: Augmented Dickey Fuller Test on SDNUMP
-7.831665

ADF Test Statistic

1% Critical Value*

5% Critical Value
10% Critical Value

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: TNUMP

Method: Least Squares
Date: 12/24/11 Time: 17:10
Sample(adjusted): 1999:08 2008:12
Included observations: 113 after adjusting endpoints

Variable
D(X(-1),2)
D(X(-1),3)
D(X(-2),3)
D(X(-3),3)
D(X(-4),3)

C
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat

Autocorrelation

Partial Correlation AC

PAC Q-Stat

Prob.

2
a
¢
°
H
]

na

Y
5
°
o
B
5

-0.670
-0.420
-0.070
-0 269
-0.123
-0.053
-0.016

0.024
0173

-0.022

0010

-0.024

0.055
0013

-0.086
.03
-0.016

0.062
0.027

54.302
60.069
60.292
66411
74.339
77.107
77685
77.835
77.837
79.099

Coefficient

-3.783728
1.730148
1.016548
0.555296
0.130074
0.009594
0.878016
0.872316
0.129319
1.789405
73.88096
2.003449

Std. Error
0.483132
0.424541
0.331170
0.215904
0.097086
0.012215
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)

t-Statistic
-7.831665
4.075343
3.069566
2.571960
1.339781
0.785434

FIG. 4: CORRELOGRAM OF SNUMP
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-3.4885
-2.8868
-2.5801

Prob.
0.1643
0.0000
0.0023
0.0638
0.0157
0.3202

0.002632
0.197981
-1.212419
-1.068408
31.93177
0.000000

-3.4890
-2.8870
-2.5802

Prob.
0.0000
0.0001
0.0027
0.0115
0.1832
0.4339

0.002655
0.361905
-1.201433
-1.056616
154.0331
0.000000
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Table 3. Comparison of models within the range of exploration using AIC and SIC

p q AlIC SIC

0 1 -0.997 -0.974
0 2 -1.234 -1.187
0 3 -1.223  -1.153
0 4 -1.116  -1.022
0 5 -1.208 -1.091
1 0 -0.999 -0.975
1 1 -1.250 -1.203
1 2 -1.235 -1.164
1 3 -1.224 -1.129
1 4 -1.215 -1.097
1 5 -1.150 -1.009
2 0 -1.174  -1.127
2 1 -1.231 -1.159
2 2 -1.220 -1.126
2 3 -1.234 -1.116
2 4 -1.217 -1.075
2 5 -1.215 -1.049
3 0 -1.158 -1.086
3 1 -1.212 -1.117
3 2 -1.225 -1.105
3 3 -1.208 -1.065
3 4 -1.194 -1.027
3 5 -1.190 -0.999
4 0 -1.225 -1.129
4 1 -1.229 -1.109
4 2 -1.211  -1.067
4 3 -1.238 -1.070
4 4 -1.222 -1.030
4 5 -1.218 -1.002

TABLE 4: Model Estimation
Dependent Variable: SDNUMP
Method: Least Squares
Date: 12/24/11 Time: 18:32
Sample(adjusted): 1999:04 2008:12
Included observations: 117 after adjusting endpoints
Convergence achieved after 6 iterations
Backcast: 1999:03

Variable Coefficient Std. Error t-Statistic Prob.

AR(1) -0.388391 0.099793 -3.891961 0.0002

MA(1) -0.716548 0.077618 -9.231771 0.0000

R-squared 0.587306 Mean dependent var 0.005128

Adjusted R-squared 0.583717 S.D. dependent var 0.199069

S.E. of regression 0.128440 Akaike info criterion -1.249770

Sum squared resid 1.897123 Schwarz criterion -1.202554

Log likelihood 75.11156 F-statistic 163.6567

Durbin-Watson stat 1.966983 Prob(F-statistic) 0.000000
Inverted AR Roots -39
Inverted MA Roots 72

The chosen model as summarized in Table 4 is ARIMA(1, 2, 1) and is given by

SDNUMP, = -0.388391SDNUMP,., — 0.716548¢,.; + &,
(£0.099793) (£0.077618)

Clearly non-linear techniques used by Eviews 3.1 involved an iterative process that converged after six
iterations. We observe that the coefficients are both highly significant, each being more than twice its standard
error. The roots of a(B) = 0 and B(B) = 0 are -2.56 and 1.39, both outside the unit circle indicating stationarity
and invertibility respectively. Besides the residual plot of Fig. 5 confirms that the residuals follow the normal
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distribution with zero (actually 0.01) mean. The kurtosis is 2.8 which compares favourably with the normal
distribution standard of 3. 0.

12

Series: Residuals
Sample 1999:04 2008:12

104 Observations 117
8 Mean 0.013349
Median 0.015404
6 Maximum 0.393472
] Minimum -0.247810
Std. Dev. 0.127180
4 Skewness 0.198703
Kurtosis 2.804635

Jarque-Bera  0.955984
Probability 0.620027

0.
-0.250 -0.125 0.000 0.125 0.250 0.375

FIG. 5. HISTOGRAM OF THE MODEL RESIDUALS

Forecasting:
An ARIMAC(1, 2, 1) model may be written as

VX, =a, VX, +Be,, +é,

This translates into

Xt _2Xt—l +Xt—2 :al(Xt—l _2Xt—2 +Xt—3)+ﬂlgt—l +gt

That is,
X, =(a, +2)X,, —(1+2a)X, , +a, X, ; + B, +g,

At time t+k, the model may be written as

Xogp=@+2)X,, —(+2a)X, , , +a X, 5+ Be ., +e,

Taking conditional expectations at time t, we have
X.()=(a, +2)X, —(1+2a) X, +a, X, , + Bie,
X, Q) =(a, +2)X, (1) —(1+2a) X, +o, X,
X,.3)=(a, +2X,2)—(1+2a) X, () +a, X,
X.(k)=(a, +)X,(k-1)—(1+2a)X,(k-2)+a,X,(k=3), k=>4

where X , (k) is the k-step ahead forecast. That is the forecast of X.

TABLE 6. Forecasts

Residuals SNUMP DNUMP NUMP
October 2008 0.14626 0.4 0.4 6.6
November 2008 0.06016 -0.2 0.2 6.8
December 2008 0.16543 0.2 0.4 7.2
January 2009 0.33015 0.73015 7.9
February 2009 0.56511 1.29526 9.2
March 2009 0.75936 2.05462 11.3
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Conclusion

We have successfully fitted an ARIMA(1, 2, 1) model to Nigerian monthly unemployment data. This
means that the second differences SNUMP follow an ARMA(1,1) model. Its adequacy has been established and
on its basis we have made forecasts.
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