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ABSTRACT 
 
If ARCH model changes in the parameter through a Markov-switching process then it is called Markov 
Switching Autoregressive Conditional Heteroskedasticity (SWARCH). In the model, conditional variance in any 
regime has different persistence. In this paper, we present the estimate of this model by Maximum Likelihood 
method. 
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INTRODUCTION 
 

The volatility clustering in many financial time series is implied persistence of states of high volatility. 
This persistence of states of high volatility leads to the rejection of standard time series; therefore 
Autoregressive Conditionally Heteroskedasticity (ARCH) model is proposed.  

 Nevertheless, if a spuriously high persistence be due to volatility clustering also the poor forecasting using 
ARCH model, then ARCH model will not satisfactory for studying this data. A number of researchers have 
suggested that the poor forecasting performance and spuriously high persistence of ARCH model might relate to 
structural change in the ARCH process. For these reasons, Hamilton and Susmel (1994) introduced Markov-
switching ARCH (SWARCH) model. They achieved better fitting and forecasting to the New York Stock 
Exchange Data by SWARCH model. In this model, Markov switching process generates limited persistence.  

Further applications of switching ARCH models in financial econometrics include modeling of stock 
market returns (Hamilton and Lin, 1996; Fornari and Mele,1997), interest rates ( Gray, 1996; Ang and Bekaert, 
2002), and exchange rate data (Klaasen, 2001). 

The paper is structured as follows. Section 2 defined SWARCH model .sections 3 we present Maximum 
Likelihood Estimate of SWARCH model. 
 
2-Model Definition 

One popular approach to modeling volatility is the autoregressive conditional heteroskedasticity (ARCH) 
specification introduced by Engle (1982).  Let {yt} denote a discrete time stochastic process and      the 
information available at time t - 1. In this process, conditional mean of yt given    is: 

 
E[y | �] = μ  

 
Then, define the innovation process by u = y − μ . In addition, the conditional variance of process given   
is: 
Heteroskedastic) processoduced in Elevar(y | �) = E(u | �) = σ 															 
 
Therefore, The ARCH model of order q is given by  

	y = μ +	u 															 
             u = σ ϵ 													, ϵ ~N(0,1) 

                                                       σ = γ + α u +	…+ α u 																																										(1) 
With  γ = γ . Where     γ > 0 ,  α ≥ 0,  j =1,..q-1, and α > 0. The parameter restrictions in Eq. (1) are a 
necessary and sufficient condition for positivity of the conditional variance. 
An alternative parameterization of this model reads: 

y = μ +	u 																		 
                                                          u = γ 	h ϵ 																, ϵ ~N(0,1) 

																																												h = 1 +
α

γ
	u +	…+

α
γ

	u 																																					(2) 

 
ARCH model with Markov Switching introduced by Hamilton and Susmel (1994) into parameterization (2) is: 
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y = μ + u 																 

                                                   									u = γ 	h ϵ 													, 		ϵ ~N(0,1) 

                                            h = 1 + α
γ

	u +	…+ α

γ
	u 																			(3) 

 
The model is called The Markov Switching ARCH model (SWARCH). In Eq. (3) ARCH process depend on the 
unobserved regimes, s  . In this model, with changes in the regime, only parameter γ  will has changed. 
It is assumed that st follows an ergodic M- state Markov process with an irreducible transition matrix as follows 
 

P =

p p
p p ⋯

p
p

⋮ ⋱ ⋮
p p ⋯ p

		 

 
Where p + p +	…+ p = 1,  for i = 1,… ,N. The row j, column i element of P is the transition probability 
рij. Therefore, if  s = i , then  γ = γ  .  
Gray (1996) the switching ARCH model has been extended by switching into all coefficients of the ARCH 
process. 
 
3-Maximum Likelihood Estimate of SWARCH model 

To make the analysis simple, we focus on an SWARCH model of order 1. However, an extension of the 
procedure to the general SWARCH of order q case would be straightforward. For the SWARCH of order 1 case, 
we have 

y = μ + u 																 

                                      u = γ 	h ϵ 													, 		ϵ ~N(0,1)															 

           h = 1 + α
γ

	u 								                                                                                                        

Conditional variance of u  is given by 

E[u |s �, s , u ] = γ 1 + α
γ

	u  

= σ (s , s ) 
 
Calculation of the density of yt given past information (t-1) is: 
 

f(y | �, s , s ) 	=
1

√2π	σ (s , s )
exp

− y − μ
2σ (s , s ) 																(4)		 

 
Thus, the log likelihood function is given by 
 

																																																			ln L = ln f(y | )� 

                                                    = ∑ ln ∑ ∑ f(y , s , s | )�  
                 =∑ ln ∑ ∑ f(y |s , s , �) P[s , s | �]      (5) 

 
And (5) can be  maximized with respect to parameters of population, p , p , …	 , p ,α  
, γ , … , γ , with restriction p + p +	…+ p = 1 for 푖 = 1, … , 푁. 
For calculation of the log likelihood function, we need  St and St-1, which are unobserved. Therefore, with 
applying the repetitive filtering provided in the next section is obtainable. 
 
3-1. Filtering 

First, we calculate the steady-state probabilities π = P(s = i)	for	푖 = 1, … , 푁. We obtain for two-state and 
first-order Markov switching as follows: 
The eigenvalues of the transition matrix P for any N-state Markov chain are achieved from the solutions to 
|푃 −  | = 0 . For the two-state Markov chain, the eigenvalues satisfy  
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0 = 푝 −  1 − 푝
1 − 푝 푝 −   

= (− 1)( + 1− 푝 − 푝 ) 
 
Thus, the eigenvalues for a two-state chain are given by   = 1	and  = −1+ 푝 + 푝 . 
The eigenvector associated with		  for the two-state chain turns out to be 
  

휋 =

⎣
⎢
⎢
⎡

1 − 푝
2 − 푝 − 푝

1 − 푝
2 − 푝 − 푝 ⎦

⎥
⎥
⎤
																																				(6) 

 
 Elements of   휋  are steady –state or unconditional probabilities of regimes. 
 Then iterating in the following steps for  t=1,2,…,T: 
Step 1- 

P[s = j, s = i| �] 	= P[s = j|s = i]	P[s = i| �]� 
Where P[s = j|s = i]	�	, i=1, …, N, are the transition probabilities. For t=1 is given by 

P[s = i| �] = P(s = i) 
 This is the same the steady-state probability. 
Step 2- Once 	y  is observed at the end of the t-th iteration, we can update the probability terms in the following 
way: 

P[s = j, s = i| �] =
f(y , s = j, s = i| �)

f(y | �)  

And 

P[s = j| ] =� P[s = j, s = i| �] 

 
Filtered probabilities refer to inferences about St conditional on information up to t i.e.	 . Then, we 

achieve smoothed probabilities refer to inferences about St conditional on all the information in the sample 
i.e.	 . The smoothed probabilities obtained by the smoothing algorithm provided in the next section. 
 
3-2. Kim’s Smoothing   

Kim’s Smoothing estimates smoothed probabilities using all the information in the sample. The Kim’s 
smoothing algorithm (it considered by Kim 1994) as follow: 

 

푃[푠 = 푗, 푠 = 푘| �] =
푃[푠 = 푘| �]푃[푠 = 푗| �]푃[푠 = 푘|푠 = 푗�]	

푃[푠 = 푘| �]  

And 

푃[푠 = 푗| ] =	� 푃[푠 = 푗	, 푠 = 푘| �] 

 
The above procedure can be iterated for t=T-1,T-2, … ,1. 푃[푠 | ]	�for t=T-1,T-2, … ,1 are estimation of 

the smoothed probabilities.  푃[푠 | ]	� is estimated at the last iteration of the basic filter in 3.1 section. 
 
3- Conclusions 
 

The ARCH model is applied for studying time series data with volatility clustering in their behavior. On 
the other hand, the spuriously high persistence of the volatility clustering is suggested that the use of Markov 
switching ARCH model. So, when allowing for a switching regime in some parameters, process has less 
volatility persistence. 

We need to the unobserved St and St-1 with the order of using maximum likelihood method to estimate 
SWARCH model. For this cause, we achieve Filtered and smoothed probabilities. Filtered probabilities are 
inferences about St conditional on information up to t. also, smoothed probabilities are inferences about St 
conditional on all the information in the sample. 
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