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ABSTRACT 
 

This paper introduces CCS (complementary canonical sliding window) representation which is an efficient class of 
the non-adjacent-form (NAF). The CCS representation is an extension of the complementary representation. The 
proposed algorithm for converting the integer from the binary representation to the CCS representation uses the 
complementary method, the canonical recoding method and the sliding window method consecutively. Using 
Markov chain, we proved that the average Hamming weight of the CCS representation is

8039
39
w
n for n-bit integer 

with window width w. In elliptic curve cryptosystem (ECC) implementation, the CCS representation is applied on 
the scalar multiplication to reduce the average number of the point addition/subtraction operation. Our analysis 
shows that the average Hamming weight of the CCS representation is reduced compared to other representations. 
Therefore, using the CCS representation in the scalar multiplication, the average number of the point 
addition/subtraction operation is reduced compared to other scalar multiplication algorithms considerably. 
Keywords: signed-digit representation, non-adjacent form (NAF), scalar multiplication, canonical recoding, elliptic 

curve cryptosystem (ECC), high-speed arithmetic, public-key cryptography. 
 

1 INTRODUCTION 
 

Elliptic curve cryptosystem (ECC) which was introduced independently by Miller [1] and Koblitz [2], offers 
shorter keys and faster performance in comparison with other existing public key cryptosystems. These properties 
make ECC more suitable for using in the limited environments such as wireless sensor network, PDA and smart 
carts     [3, 4, 5]. Thus ECC is now one of a well established and standardized public key cryptosystems (PKCs) [6]. 

The most important operation in ECC is the scalar multiplication. But, this operation is the most time consuming 
operation [5]. So, the major research efforts focused on the speed improvement of the scalar multiplication, 
especially on the integer representation of the scalar which plays an important role in the performance of the scalar 
multiplication [7, 8].  

There are many research efforts to reduce the average Hamming weight of the integer representation such as: the 
non-adjacent form (NAF) [9, 10, 11, 12], the generalized NAF (gNAF) which is known as an efficient class of 
radix-r representation [13], the left-to-right (L2R) signed-digit radix-r representation [14, 15, 16], the width-w NAF 
(wNAF) [17, 18, 19, 20, 21, 22, 23, 24],  the width-w radix-r NAF (wrNAF) [8, 9, 25], and the complementary 
representation [26, 27, 28, 29,30]. 

This paper presents CCS (complementary canonical sliding window) representation as a novel and efficient class 
of NAF. The CCS representation is extension of Chang et al.’s complementary representation [26]. For converting 
an integer from the binary representation to the CCS representation, the proposed algorithm uses the complementary 
method, the canonical recoding method and the sliding window method consecutively. The Markov chain is also 
used to prove that the average Hamming weight of the CCS representation is

8039
39
w
n for n-bit integer with window 

width w. Moreover, the proposed CCS representation is applied on the scalar multiplication to reduce the average 
number of the point addition/subtraction operation. Our analysis shows that the average Hamming weight of the 
CCS representation and thereby the average number of required point addition/subtraction in the proposed scalar 
multiplication algorithm is reduced considerably. 

The rest of this paper is organized as followings: section 2 briefly describes the background of the proposed 
representation algorithm. Section 3 presents the proposed representation and analyzed it. Section 4 investigates the 
CCS representation affects on the scalar multiplication. Results and discussion is presented in section 5. Finally, 
conclusion is given in section 6. 
 
2 Background  
2.1 Complementary recoding: 

A complementary representation of an integer }1,0{  , 2.1
0  

 i
n
i

i
i kkk is a unique signed binary string which 

satisfies the following equation [26, 27, 28]: 
  12.2kk 1n

0i
i

i  

 kn  (1) 
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where k  is 1’s complement of k and it is shown as 012n1n kkkkk   in which 











0k   if   1k

1k   if   0k

ii

ii  1n0,1,...,ifor    (2) 

For example for 210 )1111111100011()7967(k  , the number of bits in the binary representation is n=13 and 
the 1’s complement of k is

2)0000000011100(k  . So based on (1), the complementary representation of k is as 
follows: 1326412881921)0000000011100(2k 13  . 

In this example, the Hamming weight of the integer k is reduced from 10 in the binary representation into 5 in 
the complementary representation which saves 5 point addition operations in the scalar multiplication. As each point 
addition requires 2S+2M+I (two finite field squaring (S), two finite field multiplication (M) and one finite field 
inverse (I) operation) [27, 28], this representation saves 10S+10M+5I finite field operations in this example. 

  
2.2 Canonical recoding: 
A signed-digit representation of an integer B is a sequence of digits )...( 0121 bbbbB nn 

 such 
that }1,0,1{  Where, 2.1

0  

 i

n
i

i

i bbB . This integer representation is introduced by Booth [31]. The Booth’s 
representation does not guarantee minimal Hamming weight for the integer representation. Reitwinsner [9] 
presented a canonical recoding method to convert integer from the binary representation to the signed digit 
representation. This recoding method which is also called non-adjacent form (NAF) guarantees the minimal 
Hamming weight. Algorithm 1 is used to convert an integer from the binary representation into its canonical 
representation. 

 
Algorithm 1: The canonical recoding algorithm 

Input: B= (bn-1bn-2…b1b0)2         
Output: D= (dndn-1…d1d0)SD        
1.  c0:= 0; 
2.  For i = 0 to n  
3.      ci+1:= (bi + bi+1 + ci)/2; 
4.      di := bi + ci - 2ci+1; 
5.  Return D; 

 
This algorithm scans input integer B from the least significant bit (LSB) to the most significant bit (MSB) and it 

is called right-to-left (R2L) algorithm. The average Hamming weight of an n-bit canonical recoded integer is at 
about 

3
n  [32].  

For example for
210

)1111111100011((7967)B  , the canonical recoded integer is
SD)10010000110000(D  . In this 

example the Hamming weight of B is reduced from 10 in the binary representation into 4 in the canonical 
representation which saves 6 point additions/subtractions or 12S+12M+6I finite field operations in the scalar 
multiplication in comparison with the binary representation. 

  
3 The proposed integer representation 
3.1  The CCS representation 

The CCS (complementary canonical sliding window) representation of an integer k is a sequence of digits 
)k,,...kk,(kk 012l1l   1)}(23,...,1,{0,k  where w

i  . This novel signed-digit representation uses three methods: the 
complementary method, the canonical recoding method and the sliding window method. We proposed algorithm 2 
to convert an integer from the binary representation to the CCS representation. 
 

Algorithm 2: The proposed CCS recoding algorithm 
Input: k= (kn-1kn-2…k1k0)2         
Output: C= (cm-1cm-2…c1c0)SD  
1. Count Hamming weight of k, denote as H(k) 
2. If H (k)> n/2 then 

3.      kB ; 
4.      Perform algorithm 1 and sliding window method on B to obtain kSD; 
5.      C=2n-kSD-1; 
6. Else 
7.      B=k; 
8.      Perform algorithm 1 and sliding window method on B to obtain kSD 
9.      C=kSD; 
10. End if 
11. Return C; 
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In this algorithm, the input is an n-bit integer k= (kn-1kn-2…k1k0)2. The output is the CCS representation            

C= (cm-1cm-2…c1c0)SD. In the first step of this algorithm, H(k) as the Hamming weight of k is determined. Then, the 
Hamming weight of k is compared to the average Hamming weight of the binary representation (

2
n ). If H(k) is 

greater than 
2
n , the CCS representation is computed based on 1’s complement representation of  scalar k as follows: 

C=2n-kSD-1; 
In this case, The Hamming weight of the integer kB  is less than

2
n  and the kSD is obtained by applying the 

canonical recoding method and the sliding window method on kB .  
On the other hand, when H(k) is less than

2
n , the CCS representation is computed as follows: 

C=kSD 
In this case, B=k has Hamming weight less than

2
n and kSD is obtained by applying the canonical recoding 

method and the sliding window method on B=k. 
In the CCS algorithm, similar to [33, 34, 35] the sliding window method scans the integer from the least 

significant digit (LSD) to the most significant digit (MSD) according to the state machine as shown in figure 1. 
 

 
Figure 1: The sliding window state machine used in the CCS algorithm 

 
This sliding window state machine starts from the zero window state (ZWS), and then the integer digits are 

checked one by one. If the incoming digit is zero, the finite state machine stays in ZWS, but if the incoming digit is 
nonzero, the finite state machine switches to the nonzero window state (NZWS). This state will not change as long 
as q consecutive zeros had not been collected. If this condition occurs, the automaton switches to ZWS. Otherwise, 
if w digits can be collected, the finite state machine stores the nonzero window and stays in NZWS to generate 
another nonzero window. It should be noted that after generating one digit of the canonical representation, the 
sliding window method is applied on it.  

For example for k= (1897423)10= (111001111001111001111)2, the Hamming weight of the binary representation 

is 15, which is greater than 5.10
2
21

2


n . So, the CCS representation is computed as following: 

B= (000110000110000110000), after applying algorithm 1 on B, it convert to 
SD)0000100010100010100010(D  and 

after using the sliding window method with w=3 and q=2 it convert to
SDSDk )}0000)(110)(000)(110)(000)(110)(000{( . 

So, the result is C=221-196608-3072-48-1. 
In this example the Hamming weight of the CCS representation is only 5, however, the Hamming weight of the 

binary representation, NAF and complementary representation is 15, 8 and 8 respectively. 
As another example for

210
)111111100000000()24607(k  , the Hamming weight of the binary representation is 7, 

which is less than 5.7
2

15
2


n . So, the CCS representation is computed as following:  

2
)111111100000000(B  , after applying algorithm 1 on B, it convert to

SD)1000000000100110(D  and after using 

the sliding window method with w=3 and q=2 it convert to
SD

)}1)(0000)(1)(0000000)(110{(k
SD
 . So, the result 

is 13224576C  . 
In this example the Hamming weight of the CCS representation is only 3, however, the Hamming weight of the 

binary representation, NAF and complementary representation is 7, 10 and 4 respectively. 
 
3.2 Computational complexity analysis of the CCS representation 

Assume that, k is an n-bit binary integer. In order to compute the average Hamming weight of the CCS 
representation, we can model it by using two Markov chains: one of them after using the complementary method 
and the canonical recoding technique, another after applying the sliding window method on the previous results. 

According to [32] and based on the canonical recoding algorithm, all possible inputs and corresponding outputs 
of algorithm 1 are listed in table 1. 
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                                      Table 1: State transition table for the canonical recoding algorithm 

State Output Next State 
si (bi+1, bi, ci) (di,ci+1) bi+2 = 0 bi+2 = 1 
s0 
s1 
s2 
s3 
s4 
s5 
s6 
s7 

(0, 0, 0) 
(0, 0, 1) 
(0, 1, 0) 
(0, 1, 1) 
(1, 0, 0) 
(1, 0, 1) 
(1, 1, 0) 
(1, 1, 1) 

(0, 0) 
(1, 0) 
(1, 0) 
(0, 1) 
(0, 0) 
(1, 1) 
(1, 1) 
(0, 1) 

s0 
s0 
s0 
s1 
s2 
s3 
s3 
s3 

s4 
s4 
s4 
s5 
s6 
s7 
s7 
s7 

 
In this table, the state transitions are produced by considering all 8 states labelled 0s  through 7s . For example 2s  

represents 0) 1, (0,)c ,b ,(b
ii1i



. In this state, the output is 0) (1,)c ,(d

1ii



which computes from algorithm 1. Thus the 

next state is 0)  0, ,(b)c ,b ,(b
2i1i1i2i 

 . The complementary method is applied on the integer k to compute 

B,
4
30)P(b

2i



 and

4
11)P(b

2i



 [26]. Thus, there are transitions from the state 0) 1, (0,s

2
  to the states 0) 0, (0,s

0
  

and 0) 0, (1,s
4
 with probability 

4
3 and 

4
1 respectively. In this paper, the probability where the state is succeeds the 

state js is denoted by ijP  . So, from the above analysis
4
3

P20  , 
4
1P24   and 0P2j   for 7 6, 5, 3, 2, 1,j  . Hence, the one 

step transition probability matrix of this method is given as follow: 
 

P =





























4/10004/3000
4/10004/3000
4/10004/3000

04/10004/300
004/10004/30
0004/10004/3
0004/10004/3
0004/10004/3

 (3) 

 
Let πi be the limiting probability of the state si for 7 , 1, ,0 i . The limiting probability for each state is found by 

solving the following system of linear equations [32]: 
 P.  (4) 

 

7
0 i 1i   (5) 

This gives
 

]
52
1,

208
9,

208
3,

52
9,

52
3,

208
27,

208
9,

52
27[ . (6) 

So, the probability of the zero digit and nonzero digits are 
13
10

7430    and 
13
3

6521    

respectively. Thus, the average Hamming weight in this representation is 
13
3n for n-bit length integers.  

In order to obtain the average Hamming weight of the CCS representation, another Markov chain is required. 
This Markov chain has w+1 state. The probability where state 0 is succeeded by state 0 is 

8
5

00
P  since

 

8
5

7430

7,4,3,0 77443300
)0|0

1
( 














j j

p
j

p
j

p
j

p

i
D

i
DP . Similarly, the probability where state 0 is succeeded by state 

1 is
8
3

01
P . After w bits have been collected to form a nonzero digit, we have  

13
10

0


w
P  and 

13
3

1


w
P  . These results 

are obtained from the previous Markov chain results. So, the one-step transition probability matrix P of the CCS 
algorithm for w=5 is given as following: 
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P=



























000013/313/10
100000
010000
001000
000100
00008/38/5

 (7) 

 
The limiting probability for each state is found by solving the following system of linear equations  
























1πππ
1i1for        ππ

ππ
13
3π

8
3

ππ
13
10π

8
5

10

1ii

10

00

w

w

w

w


 (8) 

Let p= wπππ 21   so 











1π

0
13
10π

8
3

0

0

wp

p  (9) 

thus 

8039
80π 0 


w

  and  
8039

39p



w

 

Therefore, for large n, we can approximate the average Hamming weight of the CCS representation as following: 

8039
39)(



w

nkHam  (10) 
 

4 The scalar multiplication algorithm using the CCS representation  
The most important operation in ECC is the scalar multiplication which is defined by  

k times

PPPkPQ  where P 

and Q are the elliptic curve points and k is a scalar. The prevalent method for performing the scalar multiplication is 
the binary (double-and-add) method [5, 36, 37]. There are two typical algorithms in binary method: the left-to-right 
(L2R) algorithm and right-to-left (R2L) algorithm. The L2R algorithm scans the scalar bits from the most significant 
bits while the R2L algorithm processes the scalar bits from the least significant bits. The L2R algorithm is widely 
used algorithm, because it can speed up the multiplication while the R2L algorithm requires extra memory to store 
the partial result. The L2R scalar multiplication algorithm [5, 38] is shown in algorithm 3.  
 

Algorithm 3: The binary scalar multiplication algorithm 
INPUT: k=(kn-1kn-2...k1k0)2 ;P=(x,y); 
OUTPUT: Q=(x',y')=kP; 
1. Q ← 0; 
2. For i= n-1 to 0 do  
3.       Q=2Q; 
4.       If ki=1 then  Q ← Q+P; 
5. Return Q; 

 
In this algorithm, }1,0{ such that  2.1

0  

 i

n
i

i

i kkk . This algorithm scans the scalar bits from left-to-right. 
When 0  ik , the point addition and point doubling operation are performed. But for 0  ik , the point doubling 
operation is only performed. So, the integer representation (the length and Hamming weight of the scalar k) plays an 
important role in the performance of the scalar multiplication algorithm. 

Using CCS representation, the average Hamming weight of the scalar is reduced from
2

 n in the binary 

representation to
8039

39
w
n . Thus, the CCS representation can increase the speed of the scalar multiplication. 

Algorithm 4 shows how the CCS representation can be used in the scalar multiplication algorithm. 
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Algorithm 4: The proposed  scalar multiplication algorithm 
Input: k=(kn-1kn-2...k1k0)2;P=(x,y); 
Output: Q =(x',y')= kP   
 Parallel begin  
{recoding phase} 
1. C=CCS(k); 
{ pre-computation phase} 
2. Compute and store viP for odd numbers of vi 
    Parallel end 
3. Q = 0 
{evaluation phase} 
4. For i = m - 1 to 0 

5.      Q = i2l
Q 

6.      If (ci > 0) then Q = Q + viP 
7.      Else If (ci < 0) then Q = Q - viP 
8. Return Q 

 
In this algorithm, m is the number of partitions in CCS representation, li is the length of ith partition, and vi is the 

ith partition value. In recoding phase of this algorithm, the CCS representation of the scalar k is computed.  
In the pre-computation phase of algorithm 4, the LSD of nonzero partition is either 1 or -1. So, the nonzero 

partition value is always an odd number. Hence, we only require pre-computation of viP for odd numbers of vi in 
step 2. Moreover, the pre-computation phase of the proposed scalar multiplication algorithm is performed 
independently from recoding phase. Thus, these two phases can be performed in parallel. 

In the evaluation phase of the proposed scalar multiplication algorithm, the point doubling operation is 
performed li times per iteration, but the point addition/subtraction operation is only performed for 0  ic  (point 
addition operation for 0  ic  and point subtraction operation for 0  ic ). As viP is computed in the                     
pre-computation phase, the point addition/subtraction operation is only performed once for each 0  ic . 
 

5 RESULTS AND DISCUSSION 
 

5.1 Evaluation of the CCS representation 

As described in section 3.2, the average Hamming weight of the CCS representation for n-bit scalar k is
8039

39
w
n . 

However, the average Hamming weight of the NAF and complementary representation, gNAF and wrNAF are
3
n , 

1
)1(




r
rn and 

1)1(
)1(



rw

rn respectively.  

The average Hamming weight of the CCS representation is reduced in comparison with the following 
representation by about: 

8039
781

2/
8039

39

1



wn

w
n

                        (Binary representation) 

8039
1171

3/
8039

39

1



wn

w
n

                         (NAF and complementary representation) 

)8039)(1(
)1(391

1
)1(
8039

39

1









wr
r

r
nr

w
n

             (gNAF) 

)8039)(1(
)1)1((391

1)1(
)1(
8039

39

1









wr
rw

rw
nr

w
n

            (wrNAF). 

Figure 2 and table 2 summarize the comparison of the average Hamming weight of the CCS representation with 
the binary representation, NAF and complementary representation for n-bit scalar k and various window widths w. 
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Figure 2: The average Hamming weight improvement over the binary representation, NAF  

and complementary representation for w=2-10. 
 

Table 2: The comparative table for the average Hamming weight improvements over 
the binary representation, NAF and complementary representation 

Representation Average 
Hamming 

weight 

Average Hamming weight improvement (%) 

w=2 w=3 w=4 w=5 w=6 w=7 w=8 w=9 w=10 

Binary 
2
n  50.6 60.4 66.9 71.6 75.2 77.9 80.1 81.9 83.4 

NAF and 
complementary 3

n  25.9 40.6 50.4 57. 5 62.7 66.9 70.2 72.9 75.1 

 
As it is shown in figure 2 and table 2, the average Hamming weight of the CCS representation is reduced by 

about 50.6%-83.4% and 25.9%-75.1% in comparison with the binary representation and NAF and complementary 
representation respectively for   w=2-10. 

Moreover, figures 3-4 and table 3 summarize the comparison of the average Hamming weight of the CCS 
representation with the gNAF and wrNAF for various w and r. 
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Figure 3: The average Hamming weight improvement over gNAF for w=2-10 and r=2-10 
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Figure 4: The average Hamming weight improvement over wrNAF for w=2-10 and r=2-10. 

 
Table 3: The comparative table for the average Hamming weight improvements 
over the gNAF and wrNAF 

Representation Average 
Hamming 

weight 

Average Hamming weight improvement (%) 

r=2 
w=2 

r=2 
w=10 

r=4 
w=2 

r=4 
w=10 

r=8 
w=2 

r=8 
w=10 

r=10 
w=2 

r=10 
w=10 

gNAF 
1

)1(



r
rn  25.9 75.1 58.9 86.2 68.3 89.3 69.8 89.9 

wrNAF 
1)1(

)1(



rw

rn  26 8.7 42.4 14.3 47.1 15.8 47.9 16.1 

 

4583 



Rezai and Keshavarzi 2012 
 

As it is shown in figures 3-4 and table 3, the average Hamming weight of the CCS representation is reduced by 
about 25.9%-89.9% and 8.7%-47.9% in comparison with gNAF and wrNAF respectively for w=2-10 and r=2-10. 
 
5.2 Evaluation of the proposed scalar multiplication 
As the number of required point addition/subtraction operation in the scalar multiplication is determined by the 
Hamming weight of the scalar k, reducing the Hamming weight can speed up the scalar multiplication. So, the effect 
of the CCS representation on the scalar multiplication is considered in this subsection. 

The average number of required point addition/subtraction operation in the scalar multiplication for various 
representations and operand size are computed and summarize in figure 5 and table 4. 
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Figure 5: The comparison of the average number of required addition/subtraction operation in the proposed scalar 

multiplication algorithm and other scalar multiplication algorithms 
 

Table 4: The comparative table for the average number of the required point 
addition/subtraction operation for various scalar representations 

Scalar representation Average 
Hamming 

weight 

Average number of required point 
addition/subtraction operation 

n=163 n=192 n=233 
Binary 

2
n  82 96 117 

NAF and complementary 
3
n  55 64 78 

gNAF r=2 
1

)1(



r
rn  55 64 78 

r=10 
1

)1(



r
rn

 
134 158 191 

wrNAF r=2 w=2 
1)1(

)1(



rw

rn  55 64 78 

r=10 w=10 
1)1(

)1(



rw

rn

 

17 19 24 

CCS w=2 
8039

39
w
n  41 48 58 

w=10 
8039

39
w
n

 
14 16 20 

 
As it is shown in figure 5 and table 4, the average number of required point addition/subtraction operation in the 

proposed scalar multiplication algorithm is reduced in comparison with the scalar multiplication algorithm which 
uses other representations. As described in section 2, each point addition requires 2S+2M+I (two finite field 
squaring (S), two finite field multiplication (M) and one finite field inverse (I) operation). So, the speed of the 
proposed scalar multiplication is increased compared to the scalar multiplication algorithm which uses other 
representation considerably.  

  
6 Conclusion  
 

As the integer representation has an important role in the computer arithmetic, major researches have been done 
in this area. This paper presents the CCS representation as a novel non-adjacent form (NAF) which uses the 
advantages of three recoding methods simultaneously: the complementary method, the canonical recoding method 
and the sliding window method. The main idea in this novel representation is the integer Hamming weight reduction 
by applying the canonical recoding method [9] and the sliding window method on the Chang et al.’s complementary 
recoding method [26]. Moreover, the Markov chain is used to analyze the average Hamming weight of the CCS 
representation. We proved that the average Hamming weight of the CCS representation is

8039
39
w
n for n-bit integer 

with window width w. Using this representation in the scalar multiplication algorithm, the average number of the 
point addition/subtraction operation is reduced considerably. Our analysis shows that the average Hamming weight 
of the CCS representation is reduced at about 50.6%-83.4%, 25.9%-75.1%, 50.6%-90.7%, and 8.7%- 48.7% in 
comparison with the binary representation, NAF and complementary representation, gNAF and wrNAF respectively 
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for w=2-10 and r=2-10. Therefore, the proposed representation is particularly able to improve the speed of 
computing scalar multiplication and consequently ECC implementation for cryptography applications. 
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