On Reliability Criterion Approach for Three Hypotheses Optimal Testing of Three Independent Markov Chains

Leader Navaei ${ }^{1}$; Rogayeh Dayanian ${ }^{1}$; Ashraf Rahmanzadeh ${ }^{2}$
${ }^{1}$ Payame Noor University, 19395-4697,Tehran, I.R. of Iran
${ }^{2}$ Islamic Azad University, Tehran Shomal Branch, Iran

Abstract

The problem of three hypotheses logarithmically asymptotically optimal (LAO) testing for a model consisting of three simple homogeneous stationary Markov chains is studied. Three independent Markov chains is considered. This problem was introduced by Ahlswede and Haroutunian. It is supposed that three probability distributions are known and each Markov chain is independently of others follows to one of them. The matrix of asymptotic interdependencies (Reliability Matrix) in Optimal testing of this model is studied. KEYWORDS: Independent Objects, Error Reliability, Reliability, Markov chain.

1.INTRODUCTION

Recently Ahlswede and Haroutunian in [1] formulated an ensemble of new problems on multiple hypotheses testing for many objects and on identification of hypotheses. The problem of many ($M>2$) hypotheses testing on distributions of a finite state Markov chain is studied in [11] via large deviations techniques (LDT). In this paper we consider the case of three Markov chains which independently follow to one from three given probability distributions. In section 2 we recall main definitions and results of [7] and [11] for many hypotheses testing and in section 3 present the problem of hypotheses testing for three independent objects via Markov chains.

2. LAO Hypotheses Testing for one Markov Chains

Let the finite set $\chi=\{1,2, \ldots, \mathrm{I}\}$ be the state space of Markov chain and $\mathrm{X}=\left(x_{0}, x_{1}, \ldots, x_{N}\right), x_{n} \in \chi$,
$\mathrm{n}=1,2, \ldots, \mathrm{~N}, \mathrm{X} \in \chi^{\mathrm{N}+1}, \mathrm{~N}=0,1,2, \ldots$, be a vector of observed states of three simple homogeneous stationary Markov chain with finite number I of states. The three hypotheses H_{l} concern the matrix of the transition probabilities
$\mathrm{P}_{1}=\left\{\mathrm{P}_{1}(j \mid i)\right\}, \mathrm{P}_{2}=\left\{\mathrm{P}_{2}(j \mid i)\right\}, \mathrm{P}_{3}=\left\{\mathrm{P}_{3}(j \mid i)\right\}, i, \mathrm{j}=1,2, \ldots, \mathrm{I}$.
The stationary of the chain provides existence for each $l=1,2,3$, of the unique stationary distribution
$\mathrm{Q}_{l}=\left\{\mathrm{Q}_{l}(i), i=1,2, ., \ldots, \mathrm{I}\right\}$, such that
$\sum_{i=1}^{\mathrm{I}} \mathrm{Q}_{l}(i) \mathrm{P}_{l}(j \mid i)=\mathrm{Q}_{l}(j), \quad \sum_{i=1}^{\mathrm{I}} \mathrm{Q}_{l}(i)=1, \quad i, \mathrm{j}=1,2, \ldots, \mathrm{I}, \quad l=1,2,3$.
The joint distributions of pair $(\mathrm{i}, \mathrm{j}) \in \mathrm{I}^{2}$ are
$\mathrm{Q}_{l} \mathrm{OP}_{l}=\left\{\mathrm{Q}_{l}(i) \mathrm{P}_{l}(\mathrm{j} \mid i), \quad i, \mathrm{j}=1,2, \ldots, \mathrm{I}\right\}, \quad l=1,2,3$.
We denote by $\mathrm{D}\left(\mathrm{QOP} \| \mathrm{Q}_{l} \mathrm{OP}_{l}\right)$ the Kullback - Leibler divergence
$\mathrm{D}\left(\mathrm{QOP} \| \mathrm{Q}_{l} \mathrm{OP}_{l}\right)=\sum_{i, j} \mathrm{Q}(i) \mathrm{P}(j \mid i) \frac{\log \mathrm{Q}(i) \mathrm{P}(j \mid i)}{\log \mathrm{Q}_{l}(i) \mathrm{P}_{l}(j \mid i)}=\mathrm{D}\left(\mathrm{Q} \| \mathrm{Q}_{l}\right)+\mathrm{D}\left(\mathrm{QOP}_{l} \mid \mathrm{QOP}_{l}\right)$,
of a joint distribution
$\mathrm{QOP}(\mathrm{i}, \mathrm{j})=\{\mathrm{Q}(i) \mathrm{P}(j \mid i), i, \mathrm{j}=1,2, \ldots, \mathrm{I}\}$.
From joint to distribution $\mathrm{Q}_{l} \mathrm{OP}_{l}$, where the divergence for marginal distributions is
$\mathrm{D}\left(\mathrm{Q} \| \mathrm{Q}_{l}\right)=\sum_{i} \mathrm{Q}(i) \frac{\log \mathrm{Q}(i)}{\log \mathrm{Q}_{l}(i)}, \quad l=1,2,3, \quad i=1,2, \ldots, \mathrm{I}$.
The probability of vector $\mathrm{X} \in \chi^{\mathrm{N}+1}$ of the Markov chain with transition probability P_{l} and stationary distribution Q_{l}, is the following

[^0]$\mathrm{Q}_{l} \mathrm{OP}_{l}^{\mathrm{N}}(\mathrm{X})=\mathrm{Q}_{l}\left(x_{0}\right) \prod_{n=1}^{N} \mathrm{P}_{l}\left(x_{\mathrm{n}} \mid x_{\mathrm{n}-1}\right), l=1,2, \ldots, \mathrm{I}$,
$\mathrm{Q}_{l} \mathrm{OP}_{l}^{\mathrm{N}}(\mathrm{A})=\bigcup_{\mathrm{X} \in A} \mathrm{Q}_{l} \mathrm{OP}_{l}^{\mathrm{N}}(\mathrm{X}), \quad \mathrm{A} \subset \chi^{\mathrm{N}+1}$.
The second order type of Markov vector X is the square matrix of I^{2} relative frequencies
$\left\{\mathrm{N}(\mathrm{i}, \mathrm{j}) N^{-1}, i, \mathrm{j}=1,2, \ldots, \mathrm{I}\right\}$ of the simultaneous appearance in X of the states i and j on the pairs of neighbor places.
It is clear that $\sum_{(\mathrm{i}, \mathrm{j}) \in \chi^{2}} \mathrm{~N}(\mathrm{i}, \mathrm{j})=\mathrm{N}$. Denote by $\mathcal{T}_{Q O P}^{N}$ the set of vector X from χ^{N+1} which have the second
order type such that for some joint probability distributions QOP
$\mathrm{N}(\mathrm{i}, \mathrm{j})=\mathrm{NQ}(\mathrm{i}) \mathrm{P}(\mathrm{j} \mid \mathrm{i}), i, \mathrm{j}=1,2, \ldots, \mathrm{I}$.
The set of joint PD QOP on I^{2} is denoted by $Q O P$. Non-randomized test $\Phi_{N}(\mathrm{X})$ one of the hypotheses $\mathrm{H}_{l}, l=1,2,3$, on the basis of the trajectory $\mathrm{X}=\left(x_{0}, x_{1}, \ldots, x_{N}\right)$ of the $\mathrm{N}+1$ observations.
We denote $\alpha_{l \mid m}^{(N)}\left(\Phi_{N}\right)$ the probability to accept the hypotheses H_{l} under the condition that $\mathrm{H}_{m}, \mathrm{~m} \neq l$,
is true. For $\mathrm{m}=l$ we denote $\alpha_{m \mid m}^{(N)}\left(\Phi_{N}\right)$ the probability to reject the hypothesesH ${ }_{m}$. It is clear that
$\alpha_{m \mid m}^{(N)}\left(\Phi_{N}\right)=\sum_{\mathrm{m} \neq l} \alpha_{l \mid \mathrm{m}}^{(N)}\left(\Phi_{N}\right), \quad m=1,2,3$.
We study error probability exponents of the sequence of tests Φ, which we call reliabilities:
$\mathrm{E}_{l \mid \mathrm{m}}(\Phi)=\varlimsup_{N \rightarrow \infty}-\frac{1}{N} \log \alpha^{(\mathrm{N})}{ }_{l \mid \mathrm{m}}\left(\Phi_{N}\right), \quad \mathrm{m}, l=1,2,3$.
It is easy to show using (1) and (2) it follows that:
$E_{m \mid m}(\Phi)=\min _{\mathrm{m} \neq l} \mathrm{E}_{l \mid m}(\Phi)$.
The test Φ_{N} is defined by a partition of the space χ^{N+1} on sets $\mathcal{G}_{l}^{N}=\left\{\mathrm{X}: \varphi^{\mathrm{N}}(\mathrm{X})=l\right\}, l=1,2,3$, and $\alpha_{l \mid m}^{(N)}\left(\Phi_{N}\right)=\mathrm{Q}_{\mathrm{m}} \mathrm{OP}_{\mathrm{m}}\left(\mathcal{G}_{l}^{\mathrm{N}}\right), \mathrm{m}, l=1,2,3$.
Let P be a matrix of transition probabilities of some stationary Markov chain and Q be the corresponding stationary PD.
For given positive values of 2 diagonal elements $\mathrm{E}_{1 \mid 1}$ and $\mathrm{E}_{2 \mid 2}$, we consider the decision rule Φ^{*} by the sets of distributions
$\mathrm{R}_{l}=\left\{\mathrm{QOP}: \mathrm{D}\left(\mathrm{QOP} \| Q O P_{l}\right) \leq E_{l| |}\right\}, l=1,2$,
$\mathrm{R}_{3}=\left\{\mathrm{QOP}: \mathrm{D}\left(\mathrm{QOP} \| Q O P_{l}\right)>E_{l \mid l}, \quad l=1,2\right\}$.
And the function:
$E_{l \mid l}^{*}\left(E_{l \mid l}\right)=E_{l \mid l}, l=1,2$,
$E_{l \mid m}^{*}\left(E_{l \mid l}\right)=\inf _{\mathrm{QOP} \in \mathrm{R}_{l}} \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{m}\right), \quad m=1,2,3, \quad m \neq l, l=1,2$,
$\mathrm{E}_{3 \mid 3}^{*}\left(E_{1 \mid 1}, E_{2 \mid 2}\right)=\min _{l=1,2} \mathrm{E}_{l \mid 3}^{*}$.

Theorem 1:

Let $\chi=\{1,2, \ldots$, I $\}$ be a finite set of the states of the stationary Markov chain possessing an irreducible transition matrix P and A be a nonempty and open subset or convex subset of joint distributions QOP and Q_{m} is stationary distribution for P_{m}, then for the type $\operatorname{QOP}(x)$ of vectors X^{1}, X^{2} and X^{3} from $Q_{m} O P_{m}$ on χ :
$\varlimsup_{N \rightarrow \infty}-\frac{1}{N} \log \mathrm{Q}_{\mathrm{m}} \mathrm{OP}_{\mathrm{m}}^{\mathrm{N}}\{\mathrm{X}: \mathrm{QOP}(\mathrm{x}) \in \mathrm{A}\}=\inf _{\mathrm{QOP} \in \mathrm{A}} \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{\mathrm{m}}\right)$.

Theorem2:

Let χ be a finite set, for a family of distinct distributions $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} the following two statements hold.

If the positive finite numbers $E_{1 \mid 1}$ and $E_{2 \mid 2}$ satisfy conditions:
$0<\mathrm{E}_{1 \mid 1}<\min \left[\mathrm{D}\left(\mathrm{Q}_{2} \mathrm{OP}_{2} \| \mathrm{Q}_{2} \mathrm{OP}_{1}\right)\right]$,
$0<\mathrm{E}_{2 \mid 2}<\min \left[\mathrm{E}_{2 \mid 1}^{*}\left(\mathrm{E}_{1 \mid 1}\right), \mathrm{D}\left(\mathrm{Q}_{3} \mathrm{OP}_{3} \| \mathrm{Q}_{3} \mathrm{OP}_{2}\right)\right]$.
Then:
a) There exists a LAO sequence of tests Φ^{*}, the reliability matrix of which $E\left(\Phi^{*}\right)$ is defined in (5) and all elements of it are positive,
b) Even if one of conditions (6) is violated, then the reliability matrix of an arbitrary test necessarily has an element equal to zero, (the corresponding error probability does not tend exponentially to zero).

Remark (1):

From the definition (3), (5) and (6) it follows that: $E_{m \mid m}<E_{M \mid m}^{*}$ and also, $E_{m \mid m}^{*}=E_{M \mid m}^{*}, \mathrm{~m}=1,2$.

3. LAO Hypotheses Testing for Three Markov Chains

In this section we expand the concept of section 2 for three independent homogenizes stationary finite Markov chain. Let the finite set $\chi=\{1, \ldots, I\}$ be the state space of Markov chain and $\mathrm{X}^{1}=\left(x_{0}^{1}, x_{1}^{1}, \ldots, x_{N}^{1}\right)$, $\mathrm{X}^{2}=\left(x_{0}^{2}, x_{1}^{2}, \ldots, x_{N}^{2}\right)$ and $\mathrm{X}^{3}=\left(x_{0}^{3}, x_{1}^{3}, \ldots, x_{N}^{3}\right), x_{n}^{1}, x_{n}^{2}, x_{n}^{3} \in \chi, n=1,2, \ldots, N, \mathrm{X}^{1}, \mathrm{X}^{2}, \mathrm{X}^{3} \in \chi^{\mathrm{N}+1}$,
$\mathrm{N}=0,1,2, \ldots$, be vectors of observed states of three simple homogeneous stationary Markov chain with finite number I of states. The probability of the vector $\mathrm{X}^{1}, \mathrm{X}^{2}, \mathrm{X}^{3} \in \chi^{\mathrm{N}+1}$ of the Markov chain with transition probabilities P_{1} and one of stationary distribution Q_{l} is
$\mathrm{Q}_{l} \mathrm{OP}_{l}^{N}\left(\mathrm{X}^{i}\right)=\mathrm{Q}_{l}\left(x_{0}^{i}\right) \prod_{n=1}^{\mathrm{N}} \mathrm{P}_{l}\left(x_{n}^{i}, x_{n-1}^{i}\right), \quad l=1,2,3, \quad i=1,2,3$,
$\mathrm{Q}_{l} \mathrm{OP}_{l}^{\mathrm{N}}(\mathrm{A})=\bigcup_{\mathrm{X}^{\mathrm{i}} \in A} \mathrm{Q}_{l} \mathrm{OP}_{l}^{\mathrm{N}}\left(\mathrm{X}^{\mathrm{i}}\right), \quad l=1,2,3, \quad \mathrm{i}=1,2,3, \quad \mathrm{~A} \subset \chi^{\mathrm{N}+1}$.
We have three hypotheses $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$ and call the procedure of making decision on the base of $\mathrm{N}+1$ observations the test, which we denote by Φ_{N}. The test Φ_{N} for this model can be composed by $\Phi_{N}=\left(\varphi_{N}^{1}, \varphi_{\mathrm{N}}^{2}, \varphi_{\mathrm{N}}^{3}\right)$.
So the space $\chi^{\mathrm{N}+1}$ will be divided into three parts,
$\mathcal{G}_{l, i}^{\mathrm{N}}=\left\{\mathrm{X}^{\mathrm{i}}: \varphi_{N}^{\mathrm{i}}\left(\mathrm{X}^{\mathrm{i}}\right)=l\right\}, l=1,2,3, \quad \mathrm{i}=1,2,3$.
We denote by $\alpha_{l_{1}, l_{2}, l_{3} \mid m_{1}, m_{2}, m_{3}}^{(N)}\left(\Phi_{N}\right)$ the probability of the erroneous acceptance by the test Φ_{N} of the three of the hypotheses $\left(\mathrm{H}_{l_{1}}, \mathrm{H}_{l_{2}}, \mathrm{H}_{l_{3}}\right)$ provided that the hypotheses $\left(\mathrm{H}_{\mathrm{m}_{1}}, \mathrm{H}_{\mathrm{m}_{2}}, \mathrm{H}_{\mathrm{m}_{3}}\right)$ is true,
$\alpha_{l_{1}, l_{2}, l_{3} \mid m_{1}, m_{2}, m_{3}}^{(N)}\left(\Phi_{N}\right)=\mathrm{Q}_{\mathrm{m}_{1}} \mathrm{OP}_{\mathrm{m}_{1}}^{\mathrm{N}}\left(\mathcal{G}_{l_{1}, 1}^{\mathrm{N}}\right) \cdot \mathrm{Q}_{m_{2}} \mathrm{OP}_{m_{2}}^{\mathrm{N}}\left(\mathcal{G}_{l_{2}, 2}^{\mathrm{N}}\right) \cdot \mathrm{Q}_{m_{3}} \mathrm{OP}_{m_{3}}^{\mathrm{N}}\left(\mathcal{G}_{l_{3}, 3}^{\mathrm{N}}\right), \quad\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right) \neq\left(l_{1}, l_{2}, l_{3}\right), m_{i}, l_{i}=1,2,3$.
The probability to reject a true three of hypotheses $\left(\mathrm{H}_{\mathrm{m}_{1}}, \mathrm{H}_{\mathrm{m}_{2}}, \mathrm{H}_{\mathrm{m}_{3}}\right)$ by analogy with (1) is the following
$\alpha_{m_{1}, m_{2}, m_{3} \mid m_{1}, m_{2}, m_{3}}^{(N)}\left(\Phi_{N}\right)=\sum_{\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right) \neq\left(l_{1}, l_{2}, l_{3}\right)} \alpha_{l_{1}, l_{2}, l_{3} \mid m_{1}, m_{2}, m_{3}}^{(N)}\left(\Phi_{N}\right)$,
We also study corresponding limits $E_{l_{1}, l_{2}, l_{3} \mid m_{1}, m_{2}, m_{3}}\left(\Phi_{N}\right)$ of error probability exponents of the sequence of tests Φ, which we call reliabilities:
$\mathrm{E}_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}(\Phi)=\varlimsup_{N \rightarrow \infty}-\frac{1}{N} \log \alpha^{(\mathrm{N})}{ }_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}\left(\Phi_{N}\right), \quad \mathrm{m}_{\mathrm{i}}, l_{i}=1,2,3, \quad \mathrm{i}=1,2,3$,
It is easy to show using (7) and (8) it follows that
$E_{m_{1}, m_{2}, m_{3} \mid m_{1}, m_{2}, m_{3}}(\Phi)=\min _{\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right) \neq\left(l_{1}, l_{2}, l_{3}\right)} \mathrm{E}_{l_{1}, l_{2}, l_{3} \mid m_{1}, m_{2}, m_{3}}(\Phi)$,
The matrix $\mathrm{E}(\Phi)=\left\{E_{l_{1}, l_{2}, l_{3} \mid m_{1}, m_{2}, m_{3}}(\Phi)\right\}$ is called the reliability matrix of the sequence Φ of tests.
The sequence of tests Φ^{*} is called logarithmically asymptotically optimal (LAO) for the model with three Markov chains if for given positive values of six diagonal elements of the reliability matrix $\mathrm{E}\left(\Phi^{*}\right)$ all other elements of it are maximal.

Lemma 1:

If elements $\mathrm{E}_{l \mid \mathrm{m}}\left(\varphi^{i}\right), \mathrm{m}, l=1,2,3, \mathrm{i}=1,2,3$, are strictly positive, then the following equalities hold for $\Phi=\left(\varphi^{1}, \varphi^{2}, \varphi^{3}\right):$

$$
\begin{align*}
& \mathrm{E}_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}(\Phi)=\mathrm{E}_{l_{1} \mid \mathrm{m}_{1}}\left(\varphi^{1}\right)+\mathrm{E}_{l_{2} \mid \mathrm{m}_{2}}\left(\varphi^{2}\right)+\mathrm{E}_{l_{3} \mid \mathrm{m}_{3}}\left(\varphi^{3}\right) \quad \text { if } \mathrm{m}_{\mathrm{i}} \neq l_{\mathrm{i}}, i=1,2,3, \tag{10.a}\\
& \mathrm{E}_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}(\Phi)=\mathrm{E}_{l_{1} \mid \mathrm{m}_{1}}\left(\varphi^{1}\right)+\mathrm{E}_{l_{2} \mid \mathrm{m}_{2}}\left(\varphi^{2}\right) \quad \text { if } \mathrm{m}_{1} \neq l_{1}, \mathrm{~m}_{2} \neq l_{2}, \quad i=1,2,3, \tag{10.b}\\
& \mathrm{E}_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}(\Phi)=\mathrm{E}_{l_{3} \mid \mathrm{m}_{3}}\left(\varphi^{3}\right)+\mathrm{E}_{l_{2} \mid \mathrm{m}_{2}}\left(\varphi^{2}\right) \quad \text { if } \mathrm{m}_{2} \neq l_{2}, \mathrm{~m}_{3} \neq l_{3}, \quad i=1,2,3, \tag{10.c}\\
& \mathrm{E}_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}(\Phi)=\mathrm{E}_{l_{1} \mid \mathrm{m}_{1}}\left(\varphi^{1}\right)+\mathrm{E}_{l_{3} \mid \mathrm{m}_{3}}\left(\varphi^{3}\right) \quad \text { if } \mathrm{m}_{1} \neq l_{1}, \mathrm{~m}_{3} \neq l_{3}, \quad i=1,2,3, \tag{10.d}\\
& \mathrm{E}_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}(\Phi)=\mathrm{E}_{l_{1} \mid \mathrm{m}_{1}}\left(\varphi^{1}\right) \quad \text { if } \mathrm{m}_{1} \neq l_{1}, \mathrm{~m}_{2}=l_{2}, \quad \mathrm{~m}_{3}=l_{3}, \quad i=1,2,3, \tag{10.e}\\
& \mathrm{E}_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}(\Phi)=\mathrm{E}_{l_{2} \mid \mathrm{m}_{2}}\left(\varphi^{2}\right) \quad \text { if } \mathrm{m}_{2} \neq l_{2}, \mathrm{~m}_{3}=l_{3}, \quad \mathrm{~m}_{1}=l_{1}, \quad i=1,2,3, \tag{10.f}\\
& \mathrm{E}_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}(\Phi)=\mathrm{E}_{l_{3} \mid \mathrm{m}_{3}}\left(\varphi^{3}\right) \quad \text { if } \mathrm{m}_{3} \neq l_{3}, \mathrm{~m}_{2}=l_{2}, \quad \mathrm{~m}_{1}=l_{1}, \quad i=1,2,3, \tag{10.g}
\end{align*}
$$

Proof:

It follows from the independence of the Markov chains that

$$
\begin{align*}
& \alpha_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}\left(\Phi_{N}\right)=\alpha_{l_{1} \mid m_{1}}\left(\varphi_{N}^{1}\right) . \alpha_{l_{2} \mid m_{2}}\left(\varphi_{N}^{2}\right) \cdot \alpha_{l_{3} \mid m_{3}}\left(\varphi_{N}^{3}\right), \tag{11.a}\\
& \alpha_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}\left(\Phi_{N}\right)=\left(1-\alpha_{l_{3} \mid m_{3}}\left(\varphi_{N}^{3}\right)\right) \alpha_{l_{2} \mid m_{2}}\left(\varphi_{N}^{2}\right) \cdot \alpha_{l_{1} \mid m_{1}}\left(\varphi_{N}^{1}\right), m_{3}=l_{3}, m_{1} \neq l_{1}, m_{2} \neq l_{2}, \tag{11.b}\\
& \alpha_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}\left(\Phi_{N}\right)=\left(1-\alpha_{l_{1} \mid m_{1}}\left(\varphi_{N}^{1}\right)\right) \alpha_{l_{2} \mid m_{2}}\left(\varphi_{N}^{2}\right) \cdot \alpha_{l_{3} \mid m_{3}}\left(\varphi_{N}^{3}\right), m_{1}=l_{1}, m_{2} \neq l_{2}, m_{3} \neq l_{3}, \tag{11.c}\\
& \alpha_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}\left(\Phi_{N}\right)=\left(1-\alpha_{l_{2} \mid m_{2}}\left(\varphi_{N}^{2}\right)\right) \cdot \alpha_{l_{1} \mid m_{1}}\left(\varphi_{N}^{1}\right) . \alpha_{l_{3} \mid m_{3}}\left(\varphi_{N}^{3}\right), m_{2}=l_{2}, m_{2} \neq l_{2}, m_{3} \neq l_{3}, \tag{11.d}\\
& \mathrm{E}_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}\left(\Phi_{N}\right)=\left(1-\alpha_{l_{3} \mid m_{3}}\left(\varphi_{N}^{3}\right)\right)\left(1-\alpha_{l_{2} \mid m_{2}}\left(\varphi_{N}^{2}\right)\right) \alpha_{l_{1} \mid m_{1}}\left(\varphi_{N}^{1}\right) \text { if } \mathrm{m}_{1} \neq l_{1}, \mathrm{~m}_{2}=l_{2}, \mathrm{~m}_{3}=l_{3} \text {, (11.e) } \\
& \mathrm{E}_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}\left(\Phi_{N}\right)=\left(1-\alpha_{l_{3} \mid m_{3}}\left(\varphi_{N}^{3}\right)\right)\left(1-\alpha_{l_{1} \mid m_{1}}\left(\varphi_{N}^{1}\right)\right) \alpha_{l_{2} \mid m_{2}}\left(\varphi_{N}^{2}\right) \text { if } \mathrm{m}_{2} \neq l_{2}, \mathrm{~m}_{1}=l_{1}, \mathrm{~m}_{3}=l_{3}, \text { (11.f) } \tag{11.f}\\
& \mathrm{E}_{l_{1}, l_{2}, l_{3} \mid \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}}\left(\Phi_{N}\right)=\left(1-\alpha_{l_{2} \mid m_{2}}\left(\varphi_{N}^{2}\right)\right)\left(1-\alpha_{l_{1} \mid m_{1}}\left(\varphi_{N}^{1}\right)\right) \alpha_{l_{3} \mid m_{3}}\left(\varphi_{N}^{3}\right) i f \mathrm{~m}_{2} \neq l_{2}, \mathrm{~m}_{1}=l_{1}, \mathrm{~m}_{3}=l_{3}, \text { (11.g) } \tag{11.g}
\end{align*}
$$

According to the definitions (7) and (8) and from equalities (11) we obtain relations (10).
Our aim is to find LAO test from the compound tests $\left\{\Phi=\left(\varphi^{1}, \varphi^{2}, \varphi^{3}\right)\right\}$ when strictly positive elements $\mathrm{E}_{1,1,1 \mid 3,1,1}$, $E_{1,1,1 \mid 1,3,1}, E_{1,1,1 \mid 1,1,3}, E_{2,2,2 \mid 3,2,2}, E_{2,2,2 \mid 2,3,2}$ and $E_{2,2,2 \mid 2,2,3}$ of the reliability matrix are given.
The elements $E_{1,1,1 \mid 3,1,1}, E_{1,1,1 \mid 1,3,1}, E_{1,1,1 \mid 1,1,3}, E_{2,2,2 \mid 3,2,2}, E_{2,2,2 \mid 2,3,2}$ and $E_{2,2,2 \mid 2,2,3}$ of the test for Markov chains can be positive Only in the following two subsets of tests $\left\{\Phi=\left(\varphi^{1}, \varphi^{2}, \varphi^{3}\right)\right\}$:
$\mathcal{A}=\left\{\Phi=\left(\varphi^{1}, \varphi^{2}, \varphi^{3}\right): \mathrm{E}_{\mathrm{m}} \mid \mathrm{m}\left(\varphi^{i}\right)>0, m=1,2 i=1,2,3\right\}$,
$\mathcal{B}=\left\{\Phi=\left(\varphi^{1}, \varphi^{2}, \varphi^{3}\right)\right.$: one m^{\prime} from [1,2] exist such that $\mathrm{E}_{\mathrm{m}}{ }^{\prime} \mid \mathrm{m} \cdot\left(\varphi^{i}\right)=0, i=1,2,3$, and for other $\left.\mathrm{m}<3, \mathrm{E}_{\mathrm{m} \mid \mathrm{m}}\left(\varphi^{i}\right)>0, i=\overline{1,3}\right\}$,
Let us define the following family of sets for given positive
elements $E_{1,1,1 \mid 3,1,1}, E_{1,1,1 \mid 1,3,1}, E_{1,1,1 \mid 1,1,3}, E_{2,2,2 \mid 2,2,3}, E_{2,2,2 \mid 2,3,2}$ and $E_{2,2,2 \mid 3,2,2}$:

$$
\begin{equation*}
\mathrm{R}_{1}^{(1)}=\left\{\mathrm{QOP}: \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{2}\right) \leq \mathrm{E}_{1,1,1 \mid 3,1,1}\right\}, \quad \mathrm{R}_{2}^{(1)}=\left\{\mathrm{QOP}: \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{2}\right) \leq \mathrm{E}_{2,2,2 \mid 3,2,2}\right\} \tag{12.a}
\end{equation*}
$$

$R_{1}^{(2)}=\left\{\mathrm{QOP}: \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{1}\right) \leq \mathrm{E}_{1,1,1 \mid 1,3,1}\right\}, \quad \mathrm{R}_{2}^{(2)}=\left\{\mathrm{QOP}: \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{2}\right) \leq\left.\mathrm{E}_{2,2,2}\right|_{2,3,2}\right\}$,
$\mathrm{R}_{1}^{(3)}=\left\{\mathrm{QOP}: \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{1}\right) \leq \mathrm{E}_{1,1,1 \mid 1,1,3}\right\}, \quad \mathrm{R}_{2}^{(3)}=\left\{\mathrm{QOP}: \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{2}\right) \leq \mathrm{E}_{2,2,2 \mid 2,2,3}\right\}$,
$R_{3}^{(1)}=\left\{\mathrm{QOP}: \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{1}\right)>\mathrm{E}_{1,1,1 \mid 3,1,1}\right\}, \quad \mathrm{R}_{3}^{(1)}=\left\{\mathrm{QOP}: \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{2}\right)>\mathrm{E}_{2,2,2 \mid 3,2,2}\right\}$,
$\mathrm{R}_{3}^{(3)}=\left\{\mathrm{QOP}: \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{1}\right)>\left.\mathrm{E}_{1,1,1}\right|_{1,1,3}\right\}, \quad R_{3}^{(3)}=\left\{\mathrm{QOP}: \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{2}\right)>\left.\mathrm{E}_{2,2,2}\right|_{2,2,3}\right\}$.
And consider the following values:
$\mathrm{E}_{l_{1}, l_{2}, l_{3} \mid m_{1}, m_{2}, m_{3}}^{*}=\inf _{\mathrm{Q}: \mathrm{Q} \in \mathrm{R}_{l_{i}}^{\mathrm{i}}} \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{m_{i}}\right), \quad \quad m_{k}=l_{k}, \mathrm{~m}_{\mathrm{i}} \neq l_{\mathrm{i}}, \mathrm{i} \neq \mathrm{k}, \mathrm{i}, \mathrm{k}=1,2,3$,
$\mathrm{E}_{l_{1}, l_{2}, \mathrm{~m}_{3} \mid m_{1}, m_{2}, m_{3}}^{*}=\inf _{\mathrm{Q}: \mathrm{Q} \in \mathrm{R}_{l_{2}^{2}}^{2}} \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{\mathrm{m}_{2}}\right)+\inf _{\mathrm{Q}: Q \in \mathrm{R}_{1_{1}}^{1}} \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{\mathrm{m}_{1}}\right) m_{3}=l_{3}, m_{1} \neq l_{1}, m_{2} \neq l_{2},(13 . \mathrm{b})$
$\mathrm{E}_{l_{1}, l_{2}, \mathrm{~m}_{3}}^{*} \mid m_{1}, m_{2}, m_{3}=\inf _{\mathrm{Q}: \mathrm{Q} \in \mathrm{R}_{l_{3}}^{3}} \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP} \mathrm{m}_{3}\right)+\inf _{\mathrm{Q}: Q \in \mathrm{Re}_{l_{1}^{1}}^{1}} \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{\mathrm{m}_{1}}\right) m_{2}=l_{2}, m_{1} \neq l_{1}, m_{3} \neq l_{3},(13 . c)$
$\mathrm{E}_{l_{1}, l_{2}, \mathrm{~m}_{3} \mid m_{1}, m_{2}, m_{3}}^{*}=\inf _{\mathrm{Q}: \mathrm{Q} \in \mathrm{R}_{l_{2}^{2}}^{2}} \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP} \mathrm{m}_{2}\right)+\inf _{\mathrm{Q}: Q \in \mathrm{R}_{l_{3}}^{3}} \mathrm{D}\left(\mathrm{QOP} \| \mathrm{QOP}_{\mathrm{m}_{3}}\right) m_{1}=l_{1}, m_{3} \neq l_{3}, m_{2} \neq l_{2},(13 . d)$
$\mathrm{E}_{l_{1}, l_{2}, l_{3} \mid m_{1}, m_{2}, m_{3}}^{*}=\mathrm{E}_{m_{1}, m_{2}, l_{3} \mid m_{1}, m_{2}, m_{3}}^{*}+\mathrm{E}_{m_{1}, l_{2}, m_{3}}^{*} \mid m_{1}, m_{2}, m_{3}+\mathrm{E}_{l_{1}, m_{2}, m_{3} \mid m_{1}, m_{2}, m_{3}}^{*}, \mathrm{~m}_{\mathrm{i}} \neq l_{\mathrm{i}}, \mathrm{i}=\overline{1,3}, \quad$ (13.e)
$\mathrm{E}_{m_{1}, m_{2}, m_{3}}^{*} \mid m_{1}, m_{2}, m_{3}=\underset{\left(l_{1}, l_{2}, l_{3}\right) \neq\left(m_{1}, m_{2}, m_{3}\right)}{ } \mathrm{E}_{l_{1}, l_{2}, l_{3} \mid m_{1}, m_{2}, m_{3}}^{*}$,
The optimal values of the reliabilities of the LAO tests sequence will be the following:

Theorem3:
If all distributions $\mathrm{QOP}_{\mathrm{m}}, \mathrm{m}=1,2,3$, are different and consequently $\mathrm{D}\left(\mathrm{QOP}_{l} \| \mathrm{QOP}_{m}\right)>0, l \neq \mathrm{m}$, Then the following three statements are valid:
a) when given strictly positive elements $\mathrm{E}_{1,1,1 \mid 3,1,1}, \mathrm{E}_{2,2,2 \mid} \mid 3,2,2, \mathrm{E}_{1,1,1 \mid 11,3,1}, \mathrm{E}_{2,2,2 \mid 2,3,2}, \mathrm{E}_{1,1,1 \mid 1,13}$, $\mathrm{E}_{2,2,2 \mid 2,2,3}$, meet the following conditions:
$\mathrm{E}_{1,1,1 \mid 3,1,1}<\min \left[\inf _{\mathrm{Q}_{3}} \mathrm{D}\left(\mathrm{Q}_{3} \mathrm{OP}_{3} \| \mathrm{Q}_{3} \mathrm{OP}_{1}\right), \inf _{\mathrm{Q}_{2}} \mathrm{D}\left(\mathrm{Q}_{2} \mathrm{OP}_{2} \| \mathrm{Q}_{2} \mathrm{OP}_{1}\right)\right]$,
$\mathrm{E}_{1,1,1 \mid 1,3,1}<\min \left[\inf _{\mathrm{Q}_{3}} \mathrm{D}\left(\mathrm{Q}_{3} \mathrm{OP}_{3} \| \mathrm{Q}_{3} \mathrm{OP}_{1}\right), \inf _{\mathrm{Q}_{2}} \mathrm{D}\left(\mathrm{Q}_{2} \mathrm{OP}_{2} \| \mathrm{Q}_{2} \mathrm{OP}_{1}\right)\right]$,
$\mathrm{E}_{1,1,1 \mid 1,1,3}<\min \left[\mathrm{inf}_{\mathrm{Q}_{3}} \mathrm{D}\left(\mathrm{Q}_{3} \mathrm{OP}_{3} \| \mathrm{Q}_{3} \mathrm{OP}_{1}\right), \inf _{\mathrm{Q}_{2}} \mathrm{D}\left(\mathrm{Q}_{2} \mathrm{OP}_{2} \| \mathrm{Q}_{2} \mathrm{OP}_{1}\right)\right]$,
$\mathrm{E}_{2,2,2 \mid 3,2,2}<\min \left[\mathrm{E}_{2,2,2 \mid 1,2,2}^{*}, \inf _{\mathrm{Q}_{3}} \mathrm{D}\left(\mathrm{Q}_{3} \mathrm{OP}_{3} \| \mathrm{Q}_{3} \mathrm{OP}_{2}\right)\right]$,
$\mathrm{E}_{2,2,2} \mid 2,3,2<\min \left[\mathrm{E}_{2,2,2 \mid 2,1,2}^{*}, \inf _{\mathrm{Q}_{3}} \mathrm{D}\left(\mathrm{Q}_{3} \mathrm{OP}_{3} \| \mathrm{Q}_{3} \mathrm{OP}_{2}\right)\right]$,
$\mathrm{E}_{2,2,2 \mid 2,2,3}<\min \left[\mathrm{E}_{2,2,2 \mid 2,2,1}^{*}, \inf _{\mathrm{Q}_{3}} \mathrm{D}\left(\mathrm{Q}_{3} \mathrm{OP}_{3} \| \mathrm{Q}_{3} \mathrm{OP}_{2}\right)\right]$,
Then:
a) There exists a LAO test sequence $\Phi^{*} \in \mathcal{A}$, the reliability matrix of which $\mathrm{E}\left(\Phi^{*}\right)$ is defined in (13) and all elements of it are positive,
b) When even one of the inequalities (15) is violated, then there exists at least one element of the matrix $\mathrm{E}\left(\Phi^{*}\right)$ aqual to 0 , c) The reliability matrix $\mathrm{E}\left(\Phi^{*}\right)$ of the tests Φ^{*} from the families $\boldsymbol{\mathcal { B }}$ necessarily contains equal to zero.

Proof:
a) we can write for three Markov chains as follows:
$0<\mathrm{E}_{13}\left(\varphi^{1}\right)<\min \left[\inf _{\mathrm{Q}_{3}} \mathrm{D}\left(\mathrm{Q}_{3} \mathrm{OP}_{3} \| \mathrm{Q}_{3} \mathrm{OP} \mathrm{P}_{1}\right), \inf _{\mathrm{Q}_{2}} \mathrm{D}\left(\mathrm{Q}_{2} \mathrm{OP}_{2} \| \mathrm{Q}_{2} \mathrm{OP} \mathrm{P}_{1}\right)\right]$,
$0<\mathrm{E}_{113}\left(\varphi^{2}\right)<\min \left[\inf _{\mathrm{Q}_{3}} \mathrm{D}\left(\mathrm{Q}_{3} \mathrm{OP}_{3} \| \mathrm{Q}_{3} \mathrm{OP}_{1}\right), \inf _{\mathrm{Q}_{2}} \mathrm{D}\left(\mathrm{Q}_{2} \mathrm{OP}_{2} \| \mathrm{Q}_{2} \mathrm{OP}_{1}\right)\right]$,
$0<\mathrm{E}_{13}\left(\varphi^{3}\right)<\min \left[\inf _{\mathrm{Q}_{3}} \mathrm{D}\left(\mathrm{Q}_{3} O \mathrm{OP}_{3} \| \mathrm{Q}_{3} \mathrm{OP} \mathrm{P}_{1}\right), \inf _{\mathrm{Q}_{2}} \mathrm{D}\left(\mathrm{Q}_{2} \mathrm{OP}_{2} \| \mathrm{Q}_{2} \mathrm{OP} \mathrm{P}_{1}\right)\right]$,
$0<\mathrm{E}_{213}\left(\varphi^{1}\right)<\min \left[\mathrm{E}_{211}^{\mathrm{Q}_{3}}, \inf _{\mathrm{Q}_{3}} \mathrm{D}\left(\mathrm{Q}_{3} O \mathrm{OP}_{3} \| \mathrm{Q}_{3} \mathrm{OP}_{2}\right)\right]$,
$0<\mathrm{E}_{213}\left(\varphi^{2}\right)<\min \left[\mathrm{E}_{211}^{* 2}, \inf _{\mathrm{Q}_{3}} \mathrm{D}\left(\mathrm{Q}_{3} \mathrm{OP}_{3} \| \mathrm{Q}_{3} \mathrm{OP}_{2}\right)\right]$,
$0<\mathrm{E}_{213}\left(\varphi^{3}\right)<\min \left[\mathrm{E}_{211}^{* 3}, \inf _{\mathrm{Q}_{3}} \mathrm{D}\left(\mathrm{Q}_{3} \mathrm{OP}_{3} \| \mathrm{Q}_{3} \mathrm{OP}_{2}\right)\right]$,
We shal prove, for example, the inequality (16.e) which are the consequence of the inequality (15.e). consider the tests $\Phi=\left(\varphi^{1}, \varphi^{2}, \varphi^{3}\right) \in \mathcal{A}$ such that $\mathrm{E}_{2,2,2 \mid 2,3,2}^{*}(\varphi)=\mathrm{E}_{2,2,2 \mid 2,3,2}^{*}(\varphi)$ and $\mathrm{E}_{2,2,2|2|, 1,2}^{*}(\varphi)=\mathrm{E}_{2,2,2|2|, 1,2}^{*}(\varphi)$.
The corresponding error probabilities $\alpha_{2,2,2 \mid 2,3,2}\left(\varphi_{N}\right)$ and $\left.\alpha_{2,2,2}\right|_{2,1,2}\left(\varphi_{N}\right)$ are given as products defined by (5.c). According to (2) and (5) we obtain that:
$\mathrm{E}_{2,2,2 \mid 2,1,2}(\varphi)=\mathrm{E}_{211}^{* 2}+\varlimsup_{N \rightarrow \infty} \log \left(1-\alpha^{(\mathrm{N})}{ }_{2 \mid 2}\left(\Phi_{\mathrm{N}}^{2}\right)\right)+\varlimsup_{N \rightarrow \infty} \log \left(1-\alpha^{(\mathrm{N})}{ }_{3 \mid 3}\left(\Phi_{\mathrm{N}}^{3}\right)\right)$,
$\mathrm{E}_{2,2,212,3,2}(\varphi)=\mathrm{E}_{2 \mid 3}^{* 2}+\overline{\lim }_{N \rightarrow \infty} \log \left(1-\alpha^{(\mathrm{N})_{2 \mid 2}}\left(\Phi_{\mathrm{N}}^{2}\right)\right)+{ }_{N \rightarrow \infty} \lim _{N \rightarrow \infty} \log \left(1-\alpha^{(\mathrm{N})}{ }_{3 \mid 3}\left(\Phi_{\mathrm{N}}^{3}\right)\right)$,
According to (16.b), (16.e) and (17) we obtain that:
$\mathrm{E}_{2 \mid 1}^{* 2}=\mathrm{E}_{2 \mid 1}\left(\varphi^{2}\right)$,
$\mathrm{E}_{2 \mid 3}^{* 2}(\varphi)=\mathrm{E}_{2 \mid 3}\left(\varphi^{2}\right)$,
There (16.e) is consequence of (15). According to Theorem (1) there exist LAO sequences of tests $\varphi^{1 *}, \varphi^{2 *}$ and $\varphi^{3 *}$ for the first, the second and the three such that the elements of the matrices $\mathrm{E}\left(\varphi^{1 *}\right), \mathrm{E}\left(\varphi^{2 *}\right)$ and $\mathrm{E}\left(\varphi^{3 *}\right)$ are determined according to (13). We consider the sequence of tests φ^{*}, which is composed of the three of sequences of tests $\varphi^{1 *}, \varphi^{2 *}$ and $\varphi^{3 *}$, also we will show that φ^{*} is LAO and other elements of the matrix $\mathrm{E}\left(\varphi^{*}\right)$ are determined according to (13).
From (15), (16) and remark (1) it follows that the requirements of Lemma are fulfilled. With using Lemma we can deduce that the reliability matrix $\mathrm{E}\left(\varphi^{*}\right)$ can be obtained from matrices $\mathrm{E}\left(\varphi^{1 *}\right), \mathrm{E}\left(\varphi^{2 *}\right)$ and $\mathrm{E}\left(\varphi^{3 *}\right)$ as in (10).
Now we show that the compound test Φ^{*} for three Markov chains is LAO, that it is optimal. Suppose that for given $E_{1,1,1 \mid 3,1,1}, E_{1,1,1 \mid 1,3,1}, E_{1,1,1 \mid 1,1,3}, E_{2,2,2 \mid 3,2,2}, E_{2,2,2 \mid 2,3,2}$ and $E_{2,2,2 \mid 2,2,3}$, there exist a test $\Phi^{\prime} \in \mathcal{A}$ with matrix $\mathrm{E}\left(\Phi^{\prime}\right)$, such that it has at least one element exceeding the respective element of the matrix $\mathrm{E}\left(\Phi^{*}\right)$.
This contradicts to the fact, that LAO tests have been used for the Markov chains $\mathrm{X}^{1}, \mathrm{X}^{1}$ and X^{3}.
b) When one of the inequalities (15) is violated, we see, some of elements in the matrix $\mathrm{E}\left(\Phi^{*}\right)$ must be equal to zero.
c) When $\Phi \in \mathcal{B}$, then from (15.e) and remark (1) it follows that the elements $\mathrm{E}_{\mathrm{m}^{\prime}, \mathrm{m}^{\prime}, \mathrm{m}^{\prime} \mid 3,3,3}=0$.

REFERENCES

[1]Ahlswede R. F. and Haroutunian E. A. "On logarithmically asymptotically optimal testing of hypotheses and identification". Lecture Notes in Computer Science, vol.4123." General Theory of Information Transfer and Combinations", Springer, pp. 462 - 478, 2006.
[2] I. Csiszar and P. Shields. "Information Theory and statistics: a Tutorial", Fundementals and Trends in Communications and Information theory, vol. 1, no. 4, 2004.
[3] I. Csiszar and J. korner. "Information Theory: Coding Theorem for Discrete Memory less Systems", Academic press, New York, 1981.
[4] I. Csiszar. "Method of types", IEEE Trans. Inform. Theoty, vol. 44. no. 6. pp. 2505 - 2523, 1998.
[5] Dembo A. Zeitouni O. "Large Deviations Techniques and Application", Jons and Bartlet. Publishers, London, 1993.
[6]Haroutunian E. A and Grgorian N. "On reliability approach for testing distributions for pair of Markov chains ", Mathematical Problems of Computer Sciences, vol. 29, pp. 86-96,2007.
[7]Haroutunian E. A. "On asymptotically optimal testing of hypotheses concerning Markov chain", (in Russian). Izvestia Acad. Nauk Armenian SSR. Seria Mathem. Vol. 22, no. 1. pp. 76-80, 1988.
[8]Haroutunian E. A, Haroutunian M.E and Haroutunian A. N. "On reliability criteria in Information Theory and in Statistical Hypothesis Testing", Foundations and Trends in communications and Information Theory, vol. 4, no.2-3, 2007.
[9] Kullback S. "Information Theory and Statistics ", Wiley, New York, 1959.
[10] Natarajan S. "Large Deviation, hypotheses testing, and source coding for finite Markov chain", IEEE Trance. Inform. Theory, vol. 31, no. 3, pp. 360-365, 1985.
[11] Navaei. L., "Application of LDT to many hypotheses optimal testing for Markov chain", Mathematical problems of computer Science, vol. 31, pp. 73-78, 2008.
[12] Haroutunian E.A. and Navaei. L., "On statistical identification of Markov chain distribution subject to the reliability criterian", Mathematical problems of computer Science, vol. 32, 2009.
[13] Navaei.L., "Large deviations techniques for error exponents to many hypotheses LAO testing", Journal of Modern Applied Statistical Methods, USA, vol. 6, no. 3. pp.487-491, 2007.
[14] R. F. Ahlswede and E. A. Haroutunian, "Testing of hypotheses and identification ", Electronic Notes on Discrete Mathematics, vol. 21, pp. 185-189, 2005.
[15] E. A. Haroutunian and P. M. Hakobyan, "On logarithmically asymptotically optimal hypothesis testing of three
Distributions for of independent objects", Mathematical problems of computer Science vol. 24, pp. 76-81, 2005.

[^0]: *Corresponding author: Leader Navaei, Payame Noor University, 19395-4697,Tehran, I.R. of Iran. Email: leadernavaei@yahoo.com

