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ABSTRACT 

 
Traditionally, the EAs have been developed for single-objective problems (SOPs) and thereforethey are not so 
suitable for problems coming from engineering practice where we usuallydeal with multi-objective, constrained and 
often mixed integer-continuous optimizationproblems (CMOPs). Solutions for all the three phenomena are 
presented: multi-objective naturecan be solved by Pareto-optimality approaches, constraints by penalty functions 
and differenttypes of variables by an appropriate encoding. Several other possibilities are discussed inthe text as 
well.This paper is devoted to the application of the presented optimization methods to thedesign of reinforced 
concrete frames. Generally, this task is multi-modal, multi-objective andhighly constrained. To solve this problem as 
a whole, it is shown that this inevitably leads toan integer formulation of the problem and hence presented qualities 
of multi-objective EvolutionaryAlgorithms are utilized. As an illustrative result, typical example is solved and 
thePareto-fronts in terms of the total price of a structure against its deflection are depicted.  
KEYWORDS: evolutionary algorithm, Single Optimization, and Multi-Objective Optimization, structural design. 
 

1- INTRODUCTION 
 

In optimization problems, a structure is defined by a set of sizes, dimensions or cross sections. These are 
combined to achieve the desired optimality criteria. Within this area two main groups of structures can be 
distinguished. 
Discrete structures.Here pin and rigid jointed structures can occur. In the case of steel structures in particular, 
nearly all possible optimization problems have been subjected to some form of investigation. To list a few 
successfully solved problems, optimization of structures with semi-rigid connections[1], optimization against 
buckling [2] or a finding minimum weight in connection with a minimum number of steel profiles used in a design 
[3] can be found in the corresponding literature. Many small-size examples from this area serve as benchmarks for 
different types of optimization algorithms, with the 10-bar truss some research being the most often cited ones. 
Again, here all variables are selected from the pre-defined discrete admissible set. But this is not exactly the case of 
reinforced concrete frame structures which are more likely to be part of the next group of structures: 
Continuum structures.This group contains beam-like structures defined by continuous variables, which are not 
known in advance in contrast to the previous case. The basic example is a beam with moments of inertia defined as a 
continuous variable [4]. 

All reinforced concrete optimization tasks, where the area of reinforcing steel is an unknown, will be the 
proper representatives of this group, too. Once again, available optimization methods are gradient based 
Mathematical Programming, Optimality Criteria algorithms, hard-kill methodsAs a consequence of the definitions 
introduced above, we can distinguish one additional form of structural optimization. If a design variable - the size of 
a member or the material property 
- can reach zero value, i.e. it is not necessary in the structure and can be removed, thenthis type of optimization is 
often called Layout Optimization. The cornerstone of this approach is the so-called ground structure, which defines 
all possible positions of nodes and the set of all possible members/connections among these nodes. Then the goal is 
the removal of inefficient members to obtain an optimal structure. If coordinates of nodes are also unknown, this 
form becomes part of topology optimization. Therefore the layout optimization can be seen as the connection point 
between the previously cited two kinds of optimization. 

An interesting feature in solving this form of optimization is the possibility of failure of hard-kill methods. In 
some cases a weak member is removed although it is necessary for the efficiency of the static scheme, see [5] for 
more detailed discussion. 
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Constrained Multi-objective Optimization Problem: A general CMOP includes a set of n parameters (decision 
variables), a set of k objective functions, and a set of m constraints. 
The optimization goal is to 

 
݊௘and݊௜  are the numbers of equalities and inequalities, respectively, ݔ  is the decision vector, ݕ is the objective 
vector, ܺ  is denoted as the decision space and ܻ is called the objective space. Note that the set of all feasible 
solutions, i.e. all solutions ݔ for which these conditions are satisfied, is denoted ௙ܺ  and its image in the objective 
space is referred to as ݕ௙  , i.e. ݕ= f( ௙ܺ ). Also note that we assume minimization hereafter, the statements for 
maximization or combined minimization/maximization are similar. 
 

2- MATERIAL AND METHOD 
 

In this section we explain the proposed method. The starting point must be ata higher level, in the area of global 
stochastic optimization methods. The term “global” standshereafter for the ability to find the global optimum in the 
case of an infinite number of iterations. 
Evolutionary algorithms are blind random search (euphemistically called Monte Carlo simulation)[6-9].What mainly 
distinguishes Evolutionary Algorithms from others is the fact that they employa set of possible solutions, often 
called population, instead of only one single search point.Therefore a new terminology must be introduced. The 
notation in this work is derived from the Evolution Strategies (ESs) [10] and can be probably extended to 
allEvolutionary Algorithms. 
Evolutionary Algorithm’s notation.Let ߤbe the number of independently stored possible solutions for the given 
optimization problem (OP) that form a population P(୲); tstands for time or number of cycles. Then, if in every cycle 
of the EA, usually called generation, λnew solutions are created, this algorithm will be denoted (ߤ +  .EA-(ߣ	
Moreover, (ߤ + ݐ)ܲ stands for selection of a new population for the next cycle(ߣ + 1)from the union of ߤ	 +
,	ߤ) solutions andߣ	  members, respectively. Next, threetypes of operators usuallyߣ denotes selection only from (ߣ
constitute the core of the algorithm: 

 
Where the operator ݎ݌݋௜

௝	{࢚࢛࢘࢓,ࢉࢋ, ௧ܫ ,denotes an output of j solutions from ݅inputindividuals{࢒ࢋ࢙ is a potential 
solution for a given problemand ܫ௜௧ is a set of݅possiblesolutions in time or generation ݐ. The final scheme of an 
appropriate algorithm is thecombination of the above mentioned operatorsoprand is repeated until some 
stoppingcriterion, usually the maximum number of function calls, is met. 
To show the versatility of the proposed terminology and to highlight differences amongevolutionary and single-
point optimization methods, a number of (previously mentioned) verydifferent and well-known optimization 
algorithms are classified according to the introducedscheme. Also note that all of the below mentioned algorithms 
are for the SOP only. 
Gradient methods from the Mathematical Programming group are the best examples of thealgorithm. They contain 
only one operator ݔ௧ାଵ = (࢚࢞)૚૚࢚࢛࢓	 = ࢚࢞ +  is the step in the࢚ࢻ is a direction of the descent and࢚ࢊwhere ,࢚ࢊ࢚ࢻ
direction ࢚ࢊ . Since the step ࢚ࢊ is assumed to be in a descent direction, the selection is redundant. Hence the 
generalgradient-based algorithms can be written as 

)ோ஺஽ீݐ݌݋ ௧ାଵܫ ) 	= ૚૚൫࢚࢛࢓ ௧ܫ ൯	
Simulated Annealing (SA) is another traditional optimization method, which will be the bestexample of (1+1)-
algorithm. Again, with μ = 1, the only operator is mutation, in thiscase some random function. The actual 
implementation of the mutation operator is notimportant, it must be only ensured that each point in the space is 
visited at least once inthe infinite number of runs. The core of this algorithm is a selection process 
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Figure 1: The cross-over operator. 

 
where the energy difference is given byΔܧ	 = 	݂(ܾ) − ݂(ܽ), Tis the artificial temperaturedetermined by the so-
called cooling schedule, usually in the form 
ܶ ≈ బ்

ூ௡௧
providedܶ0is sufficiently large, see e.g. [11], and finally, ݑ	~ܷ(·,·)is a realizationof a uniformly distributed 

random variable from a given domain. The beautyof this algorithm is a non-zero probability p that enables 
replacement of a better solutionwith a worse one. Therefore, the whole algorithm can be written in the following 

formݐ݌݋ௌ஺( ௧ାଵܫ ) 	= ૚૚൫࢚࢛࢓)૚૛࢒ࢋ࢙ ௧ܫ ൯, ࢚ࡵ ) 
Simple Genetic Algorithms (SGAs) are often cited as the oldest Evolutionary Algorithms,even though the 
Evolution Strategies (ESs) are actually older, see below. The reason whyis that SGAs had been predicted (but not 
discovered yet) by J. Holland in [Holland, 1975]during his work on Cellular Automata. Later on, the topic was 
studied in more detail, includingthe proofs of convergence. Especially a book by D. E. Goldberg [Goldberg, 1989] is 
the most popular publication that deals with this topic. The SGAs follow an analogy of processes that occur in living 
nature within the evolution of live organisms during a period of many millions of years. Simple genetic algorithms 
treat individual solutions, here called chromozomes, as binary strings. This kind of representation seems to be very 
convenient9 for optimization problems coming from a combinatoric area (e.g., the traveling salesman problem). 
Based on binary coding, the cross-over and mutation operators have usually the following form. Firstly, the cross-
over operator chooses two chromozomes, so-called parents, and then creates their two descendants (children) using 
the following operation: it selects a position inside the binary string and starting from this position exchanges the 
remaining parts of the two chromosomes. Secondly, the mutation randomly alters one or more bits in the binary 
strings of new solutions. The next specific feature of the SGA is the selection for a reproduction cycle at the 
beginningof the algorithm. New solutions are created with cross-over or are copied into a newpopulation. This can 
be classified as a (ߤ +  algorithm. Therefore, the scheme of thealgorithm is-(ߣ
 

 
 
where the “elitist” set ܫof the ߣ ≤  cardinality is usually called the mating pool.Although the codings, operators andߤ
proofs of convergence were initially based on thebinary basis, nowadays real-encoded and other alphabets based 
genetic algorithms Gashave proved their reliability and are widely used for solutions of real-world problems. 
Multi-objective Evolutionary Algorithms: As mentioned earlier, the group of EAs seems to be suitable for solving 
multi-objective problems (MOP). The reason is that the use of a population of possible solutions can easily cover a 
searched Pareto optimal set. Referring to [12], two generations of Multi-objective Evolutionary Algorithms 
(MOEAs) can be distinguished. In the case of the first one, to evaluate each individual its distance (or Pareto 
dominance) to already found or a-priori known Pareto optimal set is used. This relatively simple idea was firstly 
implemented in 1984 by David Schaffer in his Vector Evaluated Genetic Algorithm (VEGA) [Schaffer, 1984]. The 
core of this first group is built upon algorithms like the Multi-Objective Genetic Algorithm (MOGA) [13], the 
Niched-Pareto Genetic Algorithm (NPGA), presented e.g. in [14], and also the Nondominated Sorting Genetic 
Algorithm (NSGA) [15]. The second generation of MOEAs is characterized by the idea of elitism which is usually 
implemented in the form of externally stored solutions from an already found Pareto optimal set11. This group is 
represented by algorithms like the Strength Pareto Evolutionary Algorithm (SPEA) [16] and especially its second 
version SPEA2 [17]. It is also worth to mention the second version of the NSGA algorithm - NSGA II [18], the 
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Micro Genetic Algorithm (MGA), see e.g. [18] or [19], and finally, the Pareto Archived Evolution Strategy (PAES) 
[20]. 

From a general point of view, two conflicting objectives in solving multi-objective problemsare often cited: the 
exploration and the exploitation. The first one deals with the level of diversityin a population and the second with 
the convergence to the Pareto optimal set. The formerone must be solved inevitably using evolution of a population 
and therefore will be solved as a part of the current Evolutionary Algorithm. In spite of this, exploration should be 
the basic ability of all EAs and hence fulfillment of this criterion should always be ensured. Therefore the important 
(but not unique) characteristic of any MOEA will be its ability to get close to an optimal set. As mentioned 
previously, the convergence to the desired Pareto optimal set is in the most modern algorithms tackled by a set of 
elitist solutions. And following ideas presented in [21], the approach used in many of the previously mentioned 
multi-objective algorithmscan be generalized for any SOP Evolutionary Algorithm. Particularly, for the 
SPEAalgorithm, the management of an elitist set obtained from ANY − EA can be written as 

, 
This area is still unexplored and many applications and research results on this subject arepublished every 

month. Note also, that the No free lunch theorem is valid here too, see [22-23] for more details. 
To conclude this section, it must be emphasized that the difference between single and multi-objective. 

optimization is not only at the programming level, but also in the system of gathering information from an output. 
While in the case of the single-objective optimization, the designer is forced to use usually one global optimum 
found by any algorithm, in the second case there is a set of different solutions and the designer must decide and 
choose the appropriate structure. 

This domain of research is called Decision Making and is usually solved by algorithms from Operational 
Research. For a small review on Decision Making concerning evolutionary multiobjective optimization (EMOO), 
see e.g. [24]. 
Note on multi-modal optimization: Themulti-modal optimization term is usually used for problems with a several 
number of localminima. Such a response (or landscape) is typical for engineering problems, where 
especiallyconstraints can cause a local valley on the path to the global optimum. The problem of being trapped in a 
local minimum, in the EAs area called the premature convergence, goes throughout all optimization algorithms, 
starting from gradient optimizers and ending in EvolutionaryAlgorithms. Even when using the Simulated Annealing 
method such a situation can frequentlyemerge. At this point, several optimization problems can be distinguished. 
The most commonand in this situation the “minimal” task is searching for the exactly one global optimum. Onthe 
opposite side, and therefore here called “maximal” problem, is finding all local optima fora given multi-modal 
function. However, the requirement from engineering practice will be typicallya combination of these extreme cases. 
The traditional “in-direct” solution for the minimalproblem is restarting a search from a different point in gradient 
methods or a new search witha different starting population in Evolutionary Algorithms. In the Simulated Annealing 
method,except re-starting, also re-annealing (change of temperature) can be used for the same purposes. As a 
“direct” solution we understand themanagement of previously discovered local minima and some procedure for 
avoiding the nextvisit in these points. This is done by the so-called niching algorithms, which store the foundlocal 
optima and penalize solutions in their close neighborhood. These methods are also usedfor the maximal case, where 
one needs to discover all sub-optimal solutions. A comprehensive review and many suggestions on the maximal case 
can be found in [25]. For the minimal case different solutions exist, concerning this topic the most recent work of A. 
Kuˇcerov´a [Hrstka and Kuˇcerov´a, 2004] looks promising. Nevertheless, the existence of a huge number of multi-
modal solvers leads to an idea that the No free lunch theorem can be extended to these methodologies, too. This can 
be supported. 

Last but not least, let us note that the multi-modal behavior in engineering problems ismainly caused by single-
objectivization [26], i.e. by the combination of different,usually conflicting, objectives into only one. This is so 
inappropriate intervention intothe process of finding an optimal solution that the multi-objectivemethodology 
presented abovein and later seems to be rather a necessity than a choice. 
Handling of constraints: Thus far we have supposed that the optimal solution is chosen from the feasible set of 
solutions. In the case of constrained optimization there arises the need to tackle theproblem of promising solutions 
that, unfortunately, violate some constraints. In the literatureseveral strategies can be found, but we will limit our 
attention only to methods that are easilyapplicable to the Evolutionary Algorithms nature and have proved their 
reliability for engineeringoptimization tasks. Note that traditional methods come from the SOParea and thereforethe 
adopted notation will be for one objective function only. 
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2.3.1 Death penalty approach 
The term “death penalty” stands for the rejection of an infeasible solution from a search process.The advantage 

of this strategy is its easiness, the disadvantage can occur in problems, where thefeasible domain is not convex or is 
divided into a number of disjoint parts. Also in the case ofhighly constrained problems, where the problem of 
finding the first feasible solution can arise,this method usually fails. To overcome these obstacles, the “death 
penalty” is often combinedwith repair or problem-dependent search operators. 
 
Penalty function methods: Note that in the present work we use only exteriorpenalty functions which penalize 
infeasiblesolutions, which is in contrast with the interior penalty approach that penalizes feasiblesolutions near the 
boundary of a feasible domain. The former one admits infeasible solutionsduring the whole optimization process 
and therefore cannot ensure the feasibility of the foundoptimum. On the other hand, the big advantage is that the 
optimization can start everywhere. 
Therefore this procedure is much more flexible than the other one. The latter works only withfeasible vectors, 
therefore the found optimum as well as intermediate solutions always fulfillthe given conditions. The disadvantages 
are clear - this procedure cannot work with equalityconstraints (because it is almost impossible not to violate them) 
and must start in the feasiblearea. 
The exterior penalty approach is one of the most often used approaches for handling constraints,especially within 
the Evolutionary Algorithms community. The basic idea is to movethe solution from the infeasible to feasible space 
by adding some value to the objective function,i.e. 

(ݔ)	݂݂ 	= +	(ݔ)݂	  (ݔ)ܳ	
whereQ is equal to zero if the solution is feasible or equals some positive value (inminimizationproblems) otherwise. 
The value of Q can be defined on the three different bases: 
1. An individual is penalized only for its unfeasibility, with its distance from the feasible setplaying no role. 
2. The value can be defined as a measure of distance from the feasible domain or 
3. As a price or energy spent to repair such a solution.In practice, the definition of a penalty function can take 
several forms. In a general form, themost common implementation can be written as 

 
whereߙand ߚare usually constants equal to 1 or 2. In the case that the function ߣ(߬)does notchange in time, it is 
called static, in the opposite case dynamic. In the latter case, the function isusually assumed to be increasing with 
respect to “time” or “temperature” ߬to ensure feasibilityin the last stages of the optimization process. The not-so-
strict requirements on penaltyfunctions enable formulation of a problem-dependent penalty function or different 
engineeringlikeforms of penalty terms andhence increase the popularity of this approach. 
 
 

3- RESULT AND DISCUSSION 
 

We demonstrate the aforementioned design procedure on the benchmark problems, already considered in. In 
particular, different statically determined structures are examined. 
 

 
Figure 2: First example - a cantilever beam. 

 
A cantilever beam: a cantilever beam, see Fig. 2, with the 4.0 meter span was studied. A concrete model with 
cylindrical ultimate strength equal to 20 MPa (Class C 16/20) was considered with steel model with the 410 MPa 
yield stress (Class V 10 425). The cantilever was loaded with two loading cases: ( ܰଵଵ =1800 kN, ܰଶଵ =100 kN) 
and ( ܰଵଶ =300 kN, ܰଶଶ =100 kN). 

The theoretical cover of steel reinforcement was set to 0.05 m and the supposed diameter of shear 
reinforcement was 0.06 m. In the design procedure, the beam width was restricted to ܾ ∈	 {0.3, 0.35, 0.4, 0.45}m 
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while the heights ℎ ∈ 	 {0.4, 0.5, 0.6}mwere considered. The longitudinal reinforcement profiles were selected from 
the list ∅ ∈ 	 {10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36}	݉݉. The individual unit prices appearing in Eq. (4.10) were 
considered ܲܿ= 2, 500 CZK/m3, ܲ25 =ݏ CZK/kg and ܲ250 ,1 =ܿܣ CZK/m2, respectively.  
 

 
Figure 3: Pareto-front and Pareto sets 

 
Figure 4: Steel profilesࢊ 

 

 
 

Figure 5: The width ࢈and the heightࢎ, 
 

 
Figure 6: The number of steel bars n and the amount of steel ࢙࢝. 
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Finally, the integration step ∆ݔ	 = 	0.25m was considered for the deflection analysis. The results are shown in 
Fig. (3-6). It can be seen that there are 39 non-dominated solutions, which are characterized by the maximal value of 
the height of the beam h and by non-monotonously increasing amount of steel, see Fig. 6. It is also important, that 
solutions are not created by the small steel profiles which are probably not able to sustain applied internal forces. It 
can be seen that there are 39 non-dominated solutions, which are characterized by the maximal value of the height of 
the beam h and by non-monotonously increasing amount of steel, see Fig. 6. It is also important, that solutions are 
not created by the small steel profiles which are probably not able to sustain applied internal forces. 

The results of the SPEA algorithm have revealed that there are 39, 30 and 29 non-dominated solutions for the 
cantilever and simply supported beam problems, respectively. The trade-off surfaces for both problems appear in 
Fig. 3. It is clearly visible that even for these rather elementary design tasks, both Pareto-optimal fronts are non-
convex and non-smooth due to the discrete nature of the optimization problem. This fact justifies the choice of the 
selected optimization strategy and suggests its applicability to more complex structural design problems. 
 

1- Conclusion 
 

The proposed paper brings an insight into global optimization methods applied to several Structural design 
tasks. To describe problems, which are usually encountered in engineering practice as well as science, basic notation 
and classification is introduced. Namely, the Global and Structural optimizations are presented and the latter one is 
divided into four categories, which, hopefully, cover all structural optimization tasks from the structural design area. 
Next, a new classification for Evolutionary Algorithms (EAs) is presented. It is based on the well-known notation 
developed for the Evolution Strategies (ESs) and appropriately modified for single- as well as multi-objective 
optimization algorithms. The leading idea is that every EA can be described by a combination of three basic 
operations, namely recombination, mutation and selection mechanisms. Based on this notation, the most popular 
algorithms from the Global optimization area are introduced and described. 

The paper is devoted to the application of the presented optimization methods to the design of reinforced 
concrete frames. Generally, this task is multi-modal, multi-objective and highly constrained. To solve this problem 
as a whole, it is shown that this inevitably leads to an integer formulation of the problem and hence presented 
qualities of Evolutionary Algorithms are utilized. As an illustrative result, typical examples are solved and the 
Pareto-fronts in terms of the total price of a structure against its deflection are depicted. A new system of 
visualization is also presented as an addition to the multi-objective optimization domain. 
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