Fixed and Periodic Point Results for T - Quasi-Contractions in a Partially Ordered Metric Space

Vahid Parvaneh *
Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran.

Abstract

In this paper, we study the existence of the fixed point for T - quasi-contractive type mappings in the setup of partially ordered spaces. We also introduce T - generalized weakly quasi-contractive mappings and present necessary conditions to obtain fixed point for such mappings in ordered spaces. As an application of our results, periodic points of T - quasi-contractions is obtained. We also provide examples to illustrate the results presented herein.

KEYWORDS: Fixed Point, Quasi-Contraction, Periodic Point, Ordered Metric Space, Complete Metric Space.

1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space. A self map f on X is said to be a Banach contraction mapping, if there exists a number $k \in[0,1)$ such that

$$
d(f x, f y) \leq k d(x, y)
$$

for all $x, y \in X$.
If f is a Banach contraction mapping on a complete metric space X, then by Banach contraction principle, f has a unique fixed point, that is, there exists one and only one $x \in X$ such that $f(x)=x$. Banach contraction principle has several applications in different branches of mathematics.

As a generalization of Banach contraction mapping, the notion of T-contraction mapping has been introduced by Beiranvand et al. [3].

Let (X, d) be a metric space. A map $f: X \rightarrow X$ is called a quasi-contraction if for some constant $\alpha \in[0,1)$ and for every $x, y \in X$,

$$
\begin{equation*}
d(f x, f y) \leq \alpha \max \{d(x, y), d(x, f x), d(y, f y), d(x, f y), d(y, f x)\} . \tag{1}
\end{equation*}
$$

This concept was introduced and studied by Lj. Ciric [4], in 1974. A result of Ciric shows that every quasicontraction f, defined on a complete metric space has an unique fixed point and recently, in [9] and [10] some fixed point theorems for quasi-contractive mappings in cone metric spaces have been proved.

Definition 1.1 A mapping $f: X \rightarrow X$ is said to be a T-quasi-contraction if

$$
d(T f x, T f y) \leq \alpha \max \{d(T x, T y), d(T x, T f x), d(T y, T f y), d(T x, T f y), d(T y, T f x)\},
$$

for all $x, y \in X$, where $\alpha \in[0,1)$.
If $T=I$ (the identity mapping on X), then the above definition reduces to the definition of quasicontraction mapping.

Definition 1.2 Let (X, d) be a metric space. A mapping $f: X \rightarrow X$ is said to be sequentially convergent (subsequentially convergent) iffor a sequence $\left\{x_{n}\right\}$ in X for which $\left\{x_{n}\right\}$ is convergent, $\left\{x_{n}\right\}$ also is convergent ($\left\{x_{n}\right\}$ has a convergent subsequence).

[^0]Existence of fixed points in partially ordered metric spaces was first investigated in 2004 by Ran and Reurings [14], and then by Nieto and Lopez [12].

In this paper, we establish some fixed point theorems for quasi-contractive type mappings in a partially ordered complete metric space.

2 MAIN RESULTS

Throughout this paper, let (X, \leq) be a partially ordered set, $F(f)=\{x \in X: f x=x\}$ be the fixed point set of $f,(L F)_{f}=\{x \in X: x \leq f x\}$ be the lower fixed point set of f, and

$$
M(T x, T y)=\max \{d(T x, T y), d(T x, T f x), d(T y, T f y), d(T x, T f y), d(T y, T f x)\}
$$

We start with the following result. In fact, we show that under some appropriate conditions, every T-quasicontraction f defined on a complete partially ordered metric space X with $\alpha \in\left[0, \frac{1}{2}\right)$ has a fixed point in X.

Theorem 2.1 Let (X, \leq, d) be a complete partially ordered metric space and $T: X \rightarrow X$ be an injective, continuous subsequentially convergent mapping. If $f: X \rightarrow X$ be a nondecreasing map such that for every elements $x, y \in X$ with $x \leq y$,

$$
\begin{gather*}
d(T f x, T f y) \leq \alpha \max \{d(T x, T y), d(T x, T f x), d(T y, T f y) \\
d(T x, T f y), d(T y, T f x)\} \tag{2}
\end{gather*}
$$

where $\alpha \in\left[0, \frac{1}{2}\right.$), then $F(f) \neq \phi$ provided that there exists an $x_{0} \in(L F)_{f}$, and one of the following two conditions is satisfied:
(a) f is continuous self map on X;
(b) for any nondecreasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$, it follows that $x_{n} \leq z$ for all $n \in \mathbf{N}$.

Moreover, f has a unique fixed point iff the fixed points of f are comparable.

Proof. Since $x_{0} \in(L F)_{f}$ and f is nondecreasing, therefore $f^{n} x_{0} \leq f^{n+1} x_{0}$ for each $n \in \mathrm{~N}$. Define a sequence $\left\{x_{n}\right\}$ in X with $x_{n}=f^{n} x_{0}$ and so $x_{n+1}=f x_{n}$ for all $n \in \mathrm{~N}$. If there exists a positive integer n such that $x_{n}=x_{n+1}$, then $f^{n} x_{0}=f^{n+1} x_{0}=f f^{n} x_{0}$ implies that $f^{n} x_{0}$ is a fixed point of f. Assume that, $x_{n} \neq x_{n+1}$ for every positive integer n. Since $x_{n-1} \leq x_{n}$, therefore by replacing x by x_{n-1} and y by x_{n} in 2 , we have

$$
\begin{aligned}
& d\left(T x_{n}, T x_{n+1}\right)=d\left(T f x_{n-1}, T f x_{n}\right) \\
& \leq \alpha \max \left\{d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n-1}, T f x_{n-1}\right), d\left(T x_{n}, T f x_{n}\right),\right. \\
& \left.\quad d\left(T x_{n-1}, T f x_{n}\right), d\left(T x_{n}, T f x_{n-1}\right)\right\} \\
& =\alpha \max \left\{d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n}, T x_{n+1}\right),\right. \\
& \left.\quad d\left(T x_{n-1}, T x_{n+1}\right), d\left(T x_{n}, T x_{n}\right)\right\} \\
& \leq \alpha \max \left\{d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n}, T x_{n+1}\right), d\left(T x_{n-1}, T x_{n}\right)+d\left(T x_{n}, T x_{n+1}\right)\right\} \\
& =\alpha\left[d\left(T x_{n-1}, T x_{n}\right)+d\left(T x_{n}, T x_{n+1}\right)\right],
\end{aligned}
$$

which further implies

$$
d\left(T x_{n+1}, T x_{n}\right) \leq h d\left(T x_{n}, T x_{n-1}\right)
$$

where $h=\frac{\alpha}{1-\alpha}$. Obviously, $0 \leq h<1$. Repeating the above process, we get,

$$
d\left(T x_{n+1}, T x_{n}\right) \leq h d\left(T x_{n}, T x_{n-1}\right) \leq \ldots \leq h^{n} d\left(T x_{1}, T x_{0}\right)
$$

for all $n \geq 1$, and so for $m>n$, we have

$$
\begin{aligned}
& d\left(T x_{n}, T x_{m}\right) \leq d\left(T x_{n}, T x_{n+1}\right)+d\left(T x_{n+1}, T x_{n+2}\right)+\ldots+d\left(T x_{m-1}, T x_{m}\right) \\
& \leq h^{n} d\left(T x_{0}, T x_{1}\right)+h^{n+1} d\left(T x_{0}, T x_{1}\right)+\ldots+h^{m-1} d\left(T x_{0}, T x_{1}\right) \\
& =h^{n}\left(1+h+\ldots+h^{m-n-1}\right) d\left(T x_{0}, T x_{1}\right) \\
& \leq \frac{h^{n}}{1-h} d\left(T x_{0}, T x_{1}\right) .
\end{aligned}
$$

It follows that $\lim _{n \rightarrow \infty} d\left(T x_{n}, T x_{m}\right)=0$. Since X is complete, there exists an element $z \in X$ such that $\lim _{n \rightarrow \infty} T f^{n} x_{0}=z$.

As T is subsequentially convergent, so we have $\lim _{i \rightarrow \infty} f^{n_{i}} x_{0}=u$ for some u in X, where $\left\{f^{n_{i}} x_{0}\right\}$ is a subsequence of $\left\{f^{n} x_{0}\right\}$. Since T is continuous, $\lim _{i \rightarrow \infty} T f^{n_{i}} x_{0}=T u$ which by uniqueness of limit, implies that $T u=z$.

If f is continuous selfmap on X, then $T f u=T u$, therefore we have $f u=u$. If f is not continuous, then by the given assumption $x_{n_{i}}=f^{n_{i}} x_{0} \leq u$ for all $n \in \mathrm{~N}$, it follows that

$$
\begin{aligned}
& d(T u, T f u) \leq d\left(T f x_{n_{i}}, T f u\right)+d\left(T f x_{n_{i}}, T u\right) \\
& \leq \alpha \max \left\{d\left(T x_{n_{i}}, T u\right), d\left(T x_{n_{i}}, T f x_{n_{i}}\right), d(T u, T f u)\right. \\
& \left.\quad d\left(T x_{n_{i}}, T f u\right), d\left(T u, T f x_{n_{i}}\right)\right\}+d\left(T f x_{n_{i}}, T u\right) \\
& =\alpha \max \left\{d\left(T x_{n_{i}}, T u\right), d\left(T x_{n_{i}}, T x_{n_{i}+1}\right), d(T u, T f u)\right. \\
& \left.\quad d\left(T x_{n_{i}}, T f u\right), d\left(T u, T x_{n_{i}+1}\right)\right\}+d\left(T x_{n_{i}+1}, T u\right) \\
& \leq \alpha \max \left\{d\left(T x_{n_{i}}, T u\right), d\left(T x_{n_{i}}, T x_{n_{i}+1}\right), d(T u, T f u)\right. \\
& \left.\quad d\left(T x_{n_{i}}, T u\right)+d(T u, T f u), d\left(T u, T x_{n_{i}+1}\right)\right\}+d\left(T x_{n_{i}+1}, T u\right)
\end{aligned}
$$

which, on taking the limit as $i \rightarrow \infty$, implies that

$$
d(T u, T f u) \leq \alpha d(T u, T f u)
$$

and hence $d(T u, T f u)=0$ or equivalently $T u=T f u$. So $u=f u$.
Suppose that fixed points of f are comparable. Let w be another fixed point of f such that $w \neq u$. With out any loss of generality, we assume that $u \leq w$. Using (2), we obtain that

$$
\begin{aligned}
& d(T u, T w)=d(T f u, T f w) \\
& \quad \leq \alpha \max \{d(T u, T w), d(T u, T f u), d(T w, T f w), d(T u, T f w), d(T w, T f u)\} \\
& \quad=\alpha \max \{d(T u, T w), d(T u, T u), d(T w, T w), d(T u, T w), d(T w, T u)\} \\
& \quad \leq \alpha d(T u, T w)
\end{aligned}
$$

and hence $d(T u, T w)=0$ which further implies that $u=w$ as T is injective.
Remark 2.2 The conclusion of Theorem 2.1 holds if we replace the subsequential convergence assumption of f by sequential convergence assumption.

Example 2.3 Let $X=[0,1]$ be endowed with the usual ordering and let d be the usual metric on X. Let $T, f: X \rightarrow X$ be defined by $T x=x^{2}$ and $f x=x / 2$. For any $x, y \in X$ with $x \leq y$,

$$
\begin{aligned}
& d(T f x, T f y)=\frac{1}{4}\left(y^{2}-x^{2}\right) \\
& \quad \leq \frac{1}{4}\left(y^{2}-\frac{x^{2}}{4}\right) \\
& \quad=\frac{1}{4} \max \left\{\left(y^{2}-x^{2}\right), \frac{3}{4} x^{2}, \frac{3}{4} y^{2},\left|x^{2}-\frac{y^{2}}{4}\right|,\left(y^{2}-\frac{x^{2}}{4}\right)\right\} \\
& \quad=\alpha \max \{d(T x, T y), d(T x, T f x), d(T y, T f y), d(T x, T f y), d(T y, T f x)\}
\end{aligned}
$$

Thus (2) is satisfied with $\alpha=\frac{1}{4}$. Obviously, f is continuous and nondecreasing and T is injective, continuous and sequentially convergent. Thus all conditions of Theorem 2.1 are satisfied. Moreover, 0 is the unique fixed point of f.

If $T=I_{X}$ (the identity mapping on X) in Theorem 2.1, then we obtain the following result.
Theorem 2.4 Let (X, \leq, d) be an ordered complete metric space and let $f: X \rightarrow X$ be a nondecreasing map such that for every elements $x, y \in X$ with $x \leq y$,

$$
\begin{equation*}
d(f x, f y) \leq \alpha \max \{d(x, y), d(x, f x), d(y, f y), d(x, f y), d(y, f x)\} \tag{3}
\end{equation*}
$$

where $\alpha \in\left[0, \frac{1}{2}\right.$). If there exists $x_{0} \in X$ with $x_{0} \leq f x_{0}$, and one of the following two conditions is satisfied:
(a) f is a continuous self map on X;
(b) for any nondecreasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$, it follows $x_{n} \leq z$ for all $n \in \mathrm{~N}$, then $F(f) \neq \phi$.

Moreover, f has an unique fixed point provided that the fixed points of f are comparable.
Example 2.5 Let $X=[0,1]$ be endowed with usual order and usual metric and $f: X \rightarrow X$ be defined by $f x=\frac{x^{2}}{4}$.

Clearly, f is continuous and nondecreasing. Let $x, y \in X$ with $x \leq y$. Then

$$
\begin{aligned}
& d(f x, f y)=\frac{1}{4}\left(y^{2}-x^{2}\right) \\
& \quad \leq \frac{1}{4}\left(y-\frac{x^{2}}{4}\right) \\
& \quad=\frac{1}{4} \max \left\{(y-x), x-\frac{1}{4} x^{2}, y-\frac{1}{4} y^{2},\left|x-\frac{1}{4} y^{2}\right|, y-\frac{1}{4} x^{2}\right\} \\
& \quad=\alpha \max \{d(x, y), d(x, f x), d(y, f y), d(x, f y), d(y, f x)\} \\
& \quad=\alpha d(y, f x)
\end{aligned}
$$

Therefore, (3) is satisfied with $\alpha=\frac{1}{4}<\frac{1}{2}$. Thus all the conditions of Theorem 2.6 are satisfied. Moreover, 0 is the unique fixed point of f.

Theorem 2.6 Let (X, \leq) be a partially ordered set such that there exists a complete metric d on X and $T: X \rightarrow X$ be an injective, continuous subsequentially convergent mapping. Let $f: X \rightarrow X$ be a nondecreasing map such that for every elements $x, y \in X$ with $x \leq y$,

$$
\begin{equation*}
d(T f x, T f y) \leq \frac{1}{2} M(T x, T y)-\varphi(M(T x, T y)) \tag{4}
\end{equation*}
$$

and $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a lower semi-continuous function such that $\varphi(t)>0$ for all $t \in(0, \infty)$ and $\varphi(0)=0$. Then $F(f) \neq \phi$ provided that there exists an $x_{0} \in(L F)_{f}$, and one of the following two conditions is satisfied:
(a) f is continuous self map on X;
(b) for any nondecreasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$, it follows that $x_{n} \leq z$ for all $n \in \mathbf{N}$.

Moreover, f has an unique fixed point provided that the fixed points of f are comparable.
Proof. We take the same sequence $\left\{x_{n}\right\}$ as in the proof of Theorem 2.1. If there exists a positive integer n such that $x_{n}=x_{n+1}$, then x_{n} is a fixed point of f. Assume that, $x_{n} \neq x_{n+1}$, for every positive integer n. Since $x_{n-1} \leq x_{n}$, therefore by replacing x by x_{n-1} and y by x_{n} in (2), we have

$$
\begin{aligned}
& d\left(T x_{n}, T x_{n+1}\right)=d\left(T f x_{n-1}, T f x_{n}\right) \\
& \quad \leq \frac{1}{2} M\left(T x_{n-1}, T x_{n}\right)-\varphi\left(M\left(T x_{n-1}, T x_{n}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& M\left(T x_{n-1}, T x_{n}\right)=\max \left\{d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n-1}, T f x_{n-1}\right), d\left(T x_{n}, T f x_{n}\right),\right. \\
& \left.\quad d\left(T x_{n-1}, T f x_{n}\right), d\left(T x_{n}, T f x_{n-1}\right)\right\} \\
& = \\
& \quad \max \left\{d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n}, T x_{n+1}\right),\right. \\
& \left.\quad d\left(T x_{n-1}, T x_{n+1}\right), d\left(T x_{n}, T x_{n}\right)\right\} \\
& \leq \max \left\{d\left(T x_{n-1}, T x_{n}\right), d\left(T x_{n}, T x_{n+1}\right),\right. \\
& \left.\quad d\left(T x_{n-1}, T x_{n}\right)+d\left(T x_{n}, T x_{n+1}\right)\right\}
\end{aligned}
$$

Assume that $d\left(T x_{n}, T x_{n-1}\right) \leq d\left(T x_{n+1}, T x_{n}\right)$, for some positive integer n. Then we have $M\left(T x_{n-1}, T x_{n}\right) \leq 2 d\left(T x_{n}, T x_{n+1}\right)$, and so

$$
d\left(T x_{n+1}, T x_{n}\right) \leq d\left(T x_{n+1}, T x_{n}\right)-\varphi\left(M\left(T x_{n-1}, T x_{n}\right)\right)
$$

therefore,

$$
\varphi\left(M\left(T x_{n-1}, T x_{n}\right)\right) \leq 0
$$

that is, $M\left(T x_{n-1}, T x_{n}\right)=0$, which implies that $T x_{n}=T x_{n+1}$ or that $x_{n}=x_{n+1}$, contradicting our assumption that $x_{n} \neq x_{n+1}$, for each n. Therefore, $d\left(T x_{n+1}, T x_{n}\right)<d\left(T x_{n}, T x_{n-1}\right)$, for all $n \geq 0$ and so $d\left(T x_{n+1}, T x_{n}\right)$ is a monotone decreasing sequence of non-negative real numbers. Hence, there exists an $r \geq 0$ such that $\lim _{n} d\left(T x_{n+1}, T x_{n}\right)=r$.

From the above facts we have for all $n \geq 0$,

$$
d\left(T x_{n}, T x_{n+1}\right) \leq M\left(T x_{n-1}, T x_{n}\right) \leq d\left(T x_{n}, T x_{n+1}\right)+d\left(T x_{n-1}, T x_{n}\right)
$$

so we have, $r \leq \lim _{n} M\left(T x_{n-1}, T x_{n}\right)=l \leq 2 r$.
Taking the upper limit as $n \rightarrow \infty$ in the above inequality, and since φ is 1.s.c., we have

$$
r \leq r-\varphi(l)
$$

so we have $r=l=0$. Hence

$$
\begin{equation*}
\lim _{n} d\left(T x_{n+1}, T x_{n}\right)=0 \tag{5}
\end{equation*}
$$

Next we show that $\left\{T x_{n}\right\}$ is a Cauchy sequence. If not, then there exists $\varepsilon>0$ for which we can find subsequences $\left\{T x_{m(k)}\right\}$ and $\left\{T x_{n(k)}\right\}$ of $\left\{T x_{n}\right\}$ such that $n(k)$ is the smallest index for which $n(k)>m(k)>k$ and

$$
\begin{equation*}
d\left(T x_{m(k)}, T x_{n(k)}\right) \geq \varepsilon . \tag{6}
\end{equation*}
$$

This means that,

$$
\begin{equation*}
d\left(T x_{m(k)}, T x_{n(k)-1}\right)<\varepsilon . \tag{7}
\end{equation*}
$$

From 6 and triangle inequality

$$
\begin{aligned}
& \varepsilon \leq d\left(T x_{m(k)}, T x_{n(k)}\right) \leq d\left(T x_{m(k)}, T x_{n(k)-1}\right)+d\left(T x_{n(k)-1}, T x_{n(k)}\right) \\
& \quad<\varepsilon+d\left(T x_{n(k)-1}, T x_{n(k)}\right) .
\end{aligned}
$$

Letting $k \rightarrow \infty$ and using 7 we can conclude that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(T x_{m(k)}, T x_{n(k)}\right)=\varepsilon \tag{8}
\end{equation*}
$$

Moreover, from

$$
\left|d\left(T x_{n(k)+1}, T x_{m(k)}\right)-d\left(T x_{n(k)}, T x_{m(k)}\right)\right| \leq d\left(T x_{n(k)+1}, T x_{n(k)}\right)
$$

and

$$
\left|d\left(T x_{m(k)+1}, T x_{n(k)}\right)-d\left(T x_{m(k)}, T x_{n(k)}\right)\right| \leq d\left(T x_{m(k)+1}, T x_{m(k)}\right)
$$

and

$$
\left|d\left(T x_{m(k)+1}, T x_{n(k)+1}\right)-d\left(T x_{m(k)}, T x_{n(k)+1}\right)\right| \leq d\left(T x_{m(k)+1}, T x_{m(k)}\right)
$$

and using 5 and 8 we get

$$
\begin{array}{r}
\lim _{k \rightarrow \infty} d\left(T x_{m(k)+1}, T x_{n(k)}\right) \quad=\lim _{k \rightarrow \infty} d\left(T x_{m(k)}, T x_{n(k)+1}\right) \tag{9}\\
=\lim _{k \rightarrow \infty} d\left(T x_{m(k)+1}, T x_{n(k)+1}\right)=\varepsilon .
\end{array}
$$

As $\left\{x_{n}\right\}$ is nondecreasing and $n(k)>m(k)$, from 2

$$
\begin{aligned}
& d\left(T x_{n(k)+1}, T x_{m(k)+1}\right)=d\left(T f x_{n(k)}, T f x_{m(k)}\right) \\
& \leq \\
& \frac{1}{2} M\left(T x_{n(k)}, T x_{m(k)}\right)-\varphi\left(M\left(T x_{n(k)}, T x_{m(k)}\right)\right) \\
& \leq \frac{1}{2} \max \left\{d\left(T x_{n(k)}, T x_{m(k)}\right), d\left(T x_{n(k)}, T f x_{n(k)}\right), d\left(T x_{m(k)}, T f x_{m(k)}\right),\right. \\
& \left.\quad d\left(T x_{n(k)}, T f x_{m(k)}\right), d\left(T x_{m(k)}, T f x_{n(k)}\right)\right\} \\
& -\varphi\left(\max \left\{d\left(T x_{n(k)}, T x_{m(k)}\right), d\left(T x_{m(k)}, T x_{m(k)}\right)\right\}\right) \\
& =\frac{1}{2} \max \left\{d\left(T x_{n(k)}, T x_{m(k)}\right), d\left(T x_{n(k)}, T x_{n(k)+1}\right), d\left(T x_{m(k)}, T x_{m(k)+1}\right),\right. \\
& \left.\quad d\left(T x_{n(k)}, T x_{m(k)+1}\right), d\left(T x_{m(k)}, T x_{n(k)+1}\right)\right\}
\end{aligned}
$$

$$
-\varphi\left(\max \left\{d\left(T x_{n(k)}, T x_{m(k)}\right), d\left(T x_{m(k)}, T x_{m(k)+1}\right)\right\}\right)
$$

where

$$
\begin{aligned}
M\left(T x_{n(k)},\right. & \left.T x_{m(k)}\right)=\max \left\{d\left(T x_{n(k)}, T x_{m(k)}\right), d\left(T x_{n(k)}, T f x_{n(k)}\right), d\left(T x_{m(k)}, T f x_{m(k)}\right),\right. \\
& \left.d\left(T x_{n(k)}, T f x_{m(k)}\right), d\left(T x_{m(k)}, T f x_{n(k)}\right)\right\} \\
= & \max \left\{d\left(T x_{n(k)}, T x_{m(k)}\right), d\left(T x_{n(k)}, T x_{n(k)+1}\right), d\left(T x_{m(k)}, T x_{m(k)+1}\right),\right. \\
& \left.d\left(T x_{n(k)}, T x_{m(k)+1}\right), d\left(T x_{m(k)}, T x_{n(k)+1}\right)\right\} .
\end{aligned}
$$

Making $k \rightarrow \infty$ and taking into account 9 , we have

$$
\varepsilon \leq \frac{1}{2}(\varepsilon)-\varphi(\varepsilon)
$$

and from this inequality $\varphi(\varepsilon)=0$. By our assumption about φ, we have $\varepsilon=0$ which is a contradiction. So, $\left\{T x_{n}\right\}$ is a Cauchy sequence.

Since X is complete, there exists an element $z \in X$ such that $\lim _{n \rightarrow \infty} T f^{n} x_{0}=z$. As T is subsequentially convergent, so we have $\lim _{i \rightarrow \infty} f^{n_{i}} x_{0}=u$ for some u in X, where $\left\{f^{n_{i}} x_{0}\right\}$ is a subsequence of $\left\{f^{n} x_{0}\right\}$. Since T is continuous, $\lim _{i \rightarrow \infty} T f^{n_{i}} x_{0}=T u$ which by uniqueness of limit, implies that $T u=z$.

If f is continuous selfmap on X, then $T f u=T u$, therefore we have $f u=u$. If f is not continuous, then by the given assumption $x_{n_{i}}=f^{n_{i}} x_{0} \leq u$ for all $n \in \mathrm{~N}$, and it follows that

$$
d\left(T f x_{n_{i}}, T f u\right)=d\left(T x_{n_{i}+1}, T f u\right) \leq \frac{1}{2} M\left(T x_{n_{i}}, T u\right)-\varphi\left(M\left(T x_{n_{i}}, T u\right)\right)
$$

where

$$
\begin{gathered}
M\left(T x_{n_{i}}, T u\right)=\max \left\{d\left(T x_{n_{i}}, T u\right), d\left(T x_{n_{i}}, T f x_{n_{i}}\right), d(T u, T f u),\right. \\
\left.\quad d\left(T x_{n_{i}}, T f u\right), d\left(T u, T f x_{n_{i}}\right)\right\} \\
=\max \left\{d\left(T x_{n_{i}}, T u\right), d\left(T x_{n_{i}}, T x_{n_{i}+1}\right), d(T u, T f u),\right. \\
\left.\quad d\left(T x_{n_{i}}, T f u\right), d\left(T u, T x_{n_{i}+1}\right)\right\},
\end{gathered}
$$

which, on taking the limit as $i \rightarrow \infty$, implies that

$$
d(T u, T f u) \leq \frac{1}{2} d(T u, T f u)-\varphi(d(T u, T f u))
$$

and hence $d(T u, T f u)=0$ or equivalently $T u=T f u$. So $u=f u$.

3 Periodic point results

Clearly, a fixed point of f is also a fixed point of f^{n}, for every $n \in \mathrm{~N}$, that is, $F(f) \subset F\left(f^{n}\right)$. However, the converse is false. For example, the mapping $f: \mathrm{R} \rightarrow \mathrm{R}$, defined by $f x=\frac{1}{2}-x$ has an unique fixed point $\frac{1}{4}$, but every $x \in \mathrm{R}$, is a fixed point of f^{2}. If $F(f)=F\left(f^{n}\right)$ for every $n \in \mathrm{~N}$, then f is said to have property P. For more details, we refer to [16] and references mentioned therein.

Recently, the study of Periodic points for contraction mappings has been considered by many authors, for
instance, every quasi-contraction $f: X \rightarrow X$ with the constant $\alpha \in\left[0, \frac{1}{2}\right.$), where X is a cone metric space, has the property P ([10], Theorem 3.1.) and, if (X, d) be a cone metric space, and T -Hardy-Rogers contraction $f: X \rightarrow X$ satisfies some appropriate conditions, then f has property P ([6], Corollary 3.3.)

Definition 3.1 [1] Let (X, \leq) be a partially ordered set. A mapping f is called dominating on X if $x \leq f x$ for each x in X.

Example 3.2 [1] Let $X=[0,1]$ be endowed with usual ordering. Let $f: X \rightarrow X$ be defined by $f x=x^{\frac{1}{3}}$, then $x \leq x^{\frac{1}{3}}=f x$ for all $x \in X$. Thus f is a dominating map.

Example 3.3 [1] Let $X=[0, \infty)$ be endowed with usual ordering. Let $f: X \rightarrow X$ be defined by $f x=\sqrt[n]{x}$ for $x \in[0,1)$ and $f x=x^{n}$ for $x \in[1, \infty)$, for any $n \in \mathrm{~N}$, then for all $x \in X, x \leq f x$, that is f is a dominating map.

We have the following result:
Theorem 3.4 Let (X, \leq, d) be a partially ordered complete metric space and $T: X \rightarrow X$ be an injective mapping. Let $f: X \rightarrow X$ is a nondecreasing mapping such that for all $x \in X$ with $x \leq f x$, we have $d\left(T f x, T f^{2} x\right) \leq \lambda d(T x, T f x)$,
where $\lambda \in[0,1)$. Then f has the property P provided that $F(f)$ is nonempty and f is dominating on $F\left(f^{n}\right)$.

Proof. Let $u \in F\left(f^{n}\right)$ for some $n>1$. Now we show that $u=f u$. Since f is dominating on $F\left(f^{n}\right)$, therefore $u \leq f u$ which implies that $f^{n-1} u \leq f^{n} u$ as f is nondecreasing. Using (10), we obtain that

$$
\begin{aligned}
& d(T u, T f u)=d\left(T f f^{n-1} u, T f^{2} f^{n-1} u\right) \\
& \quad \leq \lambda d\left(T f^{n-1} u, T f^{n} u\right)=\lambda d\left(T f f^{n-2} u, T f^{2} f^{n-2} u\right)
\end{aligned}
$$

Repeating the above process, we get

$$
d(T u, T f u) \leq \lambda^{n} d(T u, T f u)
$$

which on taking the limit as $n \rightarrow \infty$, implies that $d(T u, T f u)=0$ or equivalently $T u=T f u$. So $u \in F(f)$.
Theorem 3.5 Let X, T and f be as in Theorem 2.1. If f is dominating on X, then f satisfies property P.

Proof. From Theorem 2.1, $F(f) \neq \varnothing$. We shall prove that (10) is satisfied for all $x \leq f x$. Indeed, f is dominating so that $x \leq f x$. Also, $f x \leq f^{2} x$, as f is nondecreasing. Using (2), we have

$$
\begin{aligned}
& d\left(T f x, T f^{2} x\right)=d(T f x, T f f x) \\
& \leq \alpha \max \left\{d(T x, T f x), d(T x, T f x), d\left(T f x, T f^{2} x\right)\right. \\
& \left.\quad d\left(T x, T f^{2} x\right), d(T f x, T f x)\right\} \\
& \leq \alpha \max \left\{d(T x, T f x), d\left(T f x, T f^{2} x\right), d(T x, T f x)+d\left(T f x, T f^{2} x\right)\right\} \\
& \left.=\alpha d(T x, T f x)+d\left(T f x, T f^{2} x\right)\right]
\end{aligned}
$$

that is,

$$
d\left(T f x, T f^{2} x\right) \leq \lambda d(T x, T f x)
$$

where $\lambda=\frac{\alpha}{1-\alpha}$. Obviously, $\lambda \in[0,1)$. By Theorem 3.4, f has property P.

REFERENCES

[1] M. Abbas, T. Nazir and S. Radenovi c^{\prime}, (2011).Common fixed points of four maps in partially ordered metric spaces, Applied Mathematics Letters, 24, 1520--1526.
[2] M. Abbas and B. E. Rhoades, (2009) .Fixed and periodic point results in cone metric spaces, Applied Mathematics Letters, 22 511--515.
[3] A. Beiranvand, S. Moradi, M. Omid and H. Pazandeh, Two fixed point theorem for special mappings, arxiv:0903.1504 v1 [math.FA].
[4] Lj. B. C^{\prime} iri c' , (1974) .A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45,267--273.
[5] P. N. Dhutta and B. S. Choudhury, (2008), A generalization of contraction principle in metric spaces, Fixed Point Theory Appl., Article ID 406368.
[6] M. Filipovi c', Lj. Paunovi c', S. Radenovi c' and M. Rajovi c', (2011).Remarks on "Cone metric spaces and fixed point theorems of T-Kannan and T-Chatterjea contractive mappings", Mathematical and Computer Modelling, 54 1467--1472.
[7] J. Harjani, B. Lopez and K. Sadarangani, (2011), Fixed point theorems for weakly C-contractive mappings in ordered metric spaces, Computers and Mathematics with Applications, 61 (4), 790--796.
[8] J. Harjani and K. Sadarangani, (2010), Generalized contractions in partially ordered metric spaces and applications to ordianry differential equations, Nonlinear Anal., 72 (3-4) ,1188-1197.
[9] D. Ili c' and V. Rakocevi c' , (2008) ,Quasi-contraction on a cone metric space, Appl. Math. Lett., doi:10.1016/j.aml.2008.08.011.
[10] Z. Kadelburg, S. Radenovi c', and V. Rakocevi c', (2009). Remarks on "Quasi-contraction on a cone metric space", Applied Mathematics Letters, 22 , 1674-1679.
[11] H. K. Nashine and B. Samet, (2011). Fixed point results for mappings satisfying (ψ, φ)-weakly contractive condition in partially ordered metric spaces, Nonlinear Analysis, 74, 2201--2209.
[12] J. J. Nieto and R. R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223--239.
[13] S. Radenovi c' and Z. Kadelburg, (2010).Generalized weak contractions in partially ordered metric spaces, Computers and Mathematics with Applications, 60, 1776--1783.
[14] A. C. M. Ran and M. C. B. Reurings, (2004), A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc., $132,1435-1443$.
[15] B. E. Rhoades, (2001). Some theorems on weakly contractive maps, Nonlinear Analysis, 47(4), 2683--2693.
[16] G. S. Jeong and B. E. Rhoades, (2005), Maps for which $F(T)=F\left(T^{n}\right)$, Fixed Point Theory Appl., 6 87--131.

[^0]: *Corresponding Author: Vahid Parvaneh, Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran.
 E-mail: vahid.parvaneh@kiau.ac.ir

