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ABSTRACT

In this paper, we study the existence of the fixed point for T — quasi-contractive type mappings in the setup of

partially ordered spaces. We also introduce 7' — generalized weakly quasi-contractive mappings and present necessary
conditions to obtain fixed point for such mappings in ordered spaces. As an application of our results, periodic points of

T — quasi-contractions is obtained. We also provide examples to illustrate the results presented herein.
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1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space. A self map f on X is said to be a Banach contraction mapping, if there
exists a number k& €[0,1) such that
d(fx, [y) < kd(x,y)
forall x,ye X .
If f is a Banach contraction mapping on a complete metric space X , then by Banach contraction
principle, f has a unique fixed point, that is, there exists one and only one x € X such that f'(x)= x. Banach

contraction principle has several applications in different branches of mathematics.

As a generalization of Banach contraction mapping, the notion of 7 — contraction mapping has been
introduced by Beiranvand et al. [3].

Let (X,d) be a metric space. A map f : X — X is called a quasi-contraction if for some constant
a €[0,1) and forevery x,y € X,

d(fx, fy) < amax{d(x,y),d(x, fx),d(y, [y),d(x, y),d(y, fx)}. ey
This concept was introduced and studied by Lj. Ciric [4], in 1974. A result of Ciric shows that every quasi-
contraction f , defined on a complete metric space has an unique fixed point and recently, in [9] and [10] some
fixed point theorems for quasi-contractive mappings in cone metric spaces have been proved.

Definition 1.1 4 mapping f : X — X is said to be a T -quasi-contraction if
d(Ifx, Ify) < a max{d (Ix,Ty),d(Ix,Ifx), d(Ty, Tfy),d(Ix, Tfy),d (Iy, Tfx)},
forall x,y e X, where a €[0,1).

If T =1 (the identity mapping on X'), then the above definition reduces to the definition of quasi-
contraction mapping.

Definition 1.2 Ler (X,d) be a metric space. A mapping f : X — X is said to be sequentially
convergent (subsequentially convergent) if for a sequence {x,} in X for which {fx,} is convergent, {x,} also

is convergent ({X, } has a convergent subsequence).

*Corresponding Author: Vahid Parvaneh Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran.
E-mail: vahid.parvaneh@kiau.ac.ir

2354



Parvaneh, 2012

Existence of fixed points in partially ordered metric spaces was first investigated in 2004 by Ran and
Reurings [14], and then by Nieto and Lopez [12].

In this paper, we establish some fixed point theorems for quasi-contractive type mappings in a partially
ordered complete metric space.

2 MAIN RESULTS

Throughout this paper, let (X,<) be a partially ordered set, F'(f)={xe X : fx = x} be the fixed
pointset of f°, (LF), ={x € X : x < fx} be the lower fixed point set of f*, and
M (Tx,Ty) = max{d(Tx,Ty),d(Tx,Tfx),d(Ty, Tfy),d (Tx,Tfy),d(Ty, Tfx)}.

We start with the following result. In fact, we show that under some appropriate conditions, every T-quasi-

1
contraction f* defined on a complete partially ordered metric space X with o € [0,5) has a fixed pointin X .

Theorem 2.1 Let (X,<,d) bea complete partially ordered metric spaceand T : X — X bean
injective, continuous subsequentially convergent mapping. If f : X — X be a nondecreasing map such that for
every elements x,y € X with X<y,

d (T, Tf) < o max {d (Tx, T), d (T, T), d (Ty, Tf),
d(Tx,Tfy),d(Ty, Ifx)}, )
1
where o € [0,5), then F(f)#¢ provided that there exists an x, € (LF),, and one of the following two
conditions is satisfied:
(a) f is continuous self map on X ;
(b) for any nondecreasing sequence {x,} in X such that x, =z as n —> oo, it follows that x, <z

forall neN.
Moreover, f has a unique fixed point iff the fixed points of f* are comparable.

Proof. Since x, € (LF'), and f  is nondecreasing, therefore f"x, < f "x, for each neN. Define

asequence {x,} in X with x, = f"x, andso x,,, = fx, forall n€N. If there exists a positive integer 7
such that x, = x,,,, then f"x,= f""'x, = ff"x, implies that f"x, is a fixed point of f . Assume that,
X, # X,,, forevery positive integer 7. Since x, , < x,, therefore by replacing x by x,_ , and y by X, in 2,

n+l

we have
d(Ix,,Tx,,,) = d(Tfx, ,, Tfx,)
<amax{d(Ix, . Tx,),d(Ix, . Ifx, ), d(Ix,, Ifx,),
d(Ix,,Tfx,),d(Ix,, Tfx, )}

=oamax{d(Tx, ,,Ix,),d(Tx, ,,Tx,),d(Ix,,Tx,,,),
d(Tx,,Tx,,,),d(Tx,,Tx,)}

<amax{d(Ix, ,Tx,),d(Ix,,Ix,,,).d(ITx, , Tx, ) +d(Ix,,Tx,,,)}

= a[d(Tx,.,,Tx,) +d(Ix,,Tx,,)],

which further implies

d(Ix,,,,Tx,) < hd(Ix,,Tx, ),

n+l?
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where /1 = Ta Obviously, 0 </ <1. Repeating the above process, we get,
-

d(Tx,,,Tx,) < hd(Tx,,Tx, ) <..< h"d(Tx,,Tx,),
forall n >1, and so for m > n, we have
d(Ix,,Ix,)<d(Tx,,Tx, ) +d(Tx,,,Tx, ) +..+d(Ix, ,Tx,)
<h"d(Tx,,Tx,)+h"'d(Tx,,Tx,) +...+ h""'d(Tx,, Tx,)
=h"(1+h+..+ h" " )d(Tx,,Tx,)

n

n+l?

< d(Tx,,Tx,).
-7 024X
It follows that limd(7x,,Tx,)=0. Since X is complete, there exists an element z € X such that
n—>0
lim7f "x, = z.
n—>0

. . . n. . n. .
As T is subsequentially convergent, so we have lim /"X, =u for some & in X, where {f"'x;} isa
1—>0

subsequence of {f"x,}. Since T is continuous, lim7Zf i X, = Tu which by uniqueness of limit, implies that
i—ow

= If f is continuous selfmap on X , then Tfu = Tu , therefore we have fu =wu.If f is not continuous,
then by the given assumption x, = fx, <u forall neN, it follows that
d(Tu,Tfue) < d(Tfs, . Tfu) +d (T, .Tu)
<a max{d(Txni ,Tu), d(Txni , foni ), d(Tu, Tfu),
d(Txni,Tfu),d(Tu,Tﬁcni)}+d(foni,Tu)
=a max{d(Txni ,Tu),d(Txni ,Txni+l),d(Tu,qu),
d(Txni ,Yﬁt),d(Tu,TxniH)} + d(Txnl.H ,Tu)
<a max{d(Txni ,Tu),d(Txni ,Txniﬂ),d(Tu,Tfu),
d(Tx, ,Tu)+d(Tu,Tfu),d(Tu,Tx, )} +d(Ix, ,,,Tu),
which, on taking the limit as il—> o0, implies that l l
d(Tu,Tfu) < ad (Tu,Tfu),
and hence d(Tu,Tfu) =0 orequivalently Tu = Tfu . So u = fu.

Suppose that fixed points of f are comparable. Let W be another fixed point of f such that w # u.
With out any loss of generality, we assume that ©# < w . Using (2), we obtain that
d(Tu,Tw) = d(Tfu,Tfw)
<amax{d(Tu,Tw),d(Tu,Tfu),d(Tw,Tfw),d (Tu,Tfw),d (Tw,Tfu)}
= a max{d(Tu,Tw),d(Tu,Tu),d (Tw,Tw),d (Tu,Tw),d(Tw,Tu)}
<od(Tu,Tw),
and hence d(Tu,Tw) = 0 which further implies that # = w as T is injective.

Remark 2.2 The conclusion of Theorem 2.1 holds if we replace the subsequential convergence assumption

of [ by sequential convergence assumption.
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Example 2.3 Let X =[0,1] be endowed with the usual ordering and let d be the usual metric on X.
Let T, f: X — X bedefined by Tx = x* and fx =x/2. Forany x,y € X with x< y,

d(fo,Tmﬁ(yz )

1 x?
<—(yP =
4(y 4)
1 2 W3 23 5o y2 2 x°
= —max —x7),—x",—y ,|x"——, -
1 {(&»v )4 20 1 (v 4)}

= amax{d(Tx,Ty),d(Tx,Tfx),d(Ty,Tfy),d (Tx,Tfy),d (Ty, Tfx)}.
Thus (2) is satisfied with o =%. Obviously, f is continuous and nondecreasing and 7 is injective,

continuous and sequentially convergent. Thus all conditions of Theorem 2.1 are satisfied. Moreover, 0 is the
unique fixed point of f.

If T = I, (the identity mapping on X) in Theorem 2.1, then we obtain the following result.

Theorem 2.4 Let (X,<,d) be an ordered complete metric space and let f: X —> X bea
nondecreasing map such that for every elements x,y € X with X<y,

d(fx, fy) < amax{d(x,y),d(x, fx),d(y, [y),d(x, fy),d(y, fx)}, 3)
where a € [0,%) . If there exists x, € X with x, < fX,, and one of the following two conditions is satisfied:

(a) f isa continuous self map on X ;
(b) for any nondecreasing sequence {x,} in X such that x, — z as n — oo, it follows x, <z for all
neN, then F(f)#¢.

Moreover, f has an unique fixed point provided that the fixed points of f are comparable.

Example 2.5 Let X =[0,1] be endowed with usual order and usual metric and f : X — X be defined
2

X
by fx=—.
y f 2

Clearly, f is continuous and nondecreasing. Let x, y € X with x < y. Then

d(fx, f) =§(y2 —x?)

1 x’
Sz(y—j)
_l _ __2_12_12_12
—4max{(y X), X 4x,y 4y,x 4y Y 4x}
=amax{d(x,y),d(x, fx),d(y, [y),d(x, fy),d(y, fx)}
= ad(y, fx).

1 1
Therefore, (3) is satisfied with o :Z< 5 Thus all the conditions of Theorem 2.6 are satisfied.

Moreover, 0 is the unique fixed point of f.
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Theorem 2.6 Let (X ,<) be a partially ordered set such that there exists a complete metric d on X
and T : X — X be an injective, continuous subsequentially convergent mapping. Let [ : X — X bea

nondecreasing map such that for every elements x,y € X with X<y,
1
d(Tfx,Tfy) SEM(Tx,Ty)—(D(M(Tx,Ty)), )

and @:[0,00) —>[0,0) is a lower semi-continuous function such that @(¢) >0 for all e (0,00) and
®(0) = 0. Then F'(f)# ¢ provided that there exists an x, € (LF'),, and one of the following two conditions

is satisfied:
(a) f is continuous self map on X ;

(b) for any nondecreasing sequence {x,} in X such that x, =z as n —> oo, it follows that x, <z

forall neN.
Moreover, f has an unique fixed point provided that the fixed points of f* are comparable.

Proof. We take the same sequence {x,} as in the proof of Theorem 2.1. If there exists a positive integer 7

then x, is a fixed point of f . Assume that, x, # X for every positive integer 7. Since

n+l °

such that x, = x,,,,

X, < x,, therefore by replacing X by x, , and y by x, in(2), we have
d(Txn 4 Txn+1) = d(fon—l 4 fon)

Ix,) (M (Tx, . Tx,)),

n—1° n—1°

SlM(Tx
2

where
M(Tx, . Tx,) = max{d(Tx, . Tx,).d(Tx, . Tfx, ,).d(Tx, . Tf,),
d(Ix, ,Tfx,),d(Tx,, Tfx, )}
=max{d(Tx, ,Tx,),d(Ix, ,,Tx,),d(Ix,,Tx,.,),
d(Tx,,Tx,.,),d(Tx,, Tx, )
<max{d(Ix, ,,Tx,),d(Ix,,Tx,,,),
d(Tx, ,Tx,) +d(Tx,, Tx,.,);
Assume that d(Tx,,Tx, ) <d(Tx
M(Tx, ,Tx,)<2d(Tx,,Tx,, ), and so
d(Tx,,,,Tx,)<d(Ix

n-12

n-1°

w1o1%,), for some positive integer 7. Then we have

n-1°

n+l? n+1’Txn) _gD(M(Txn—l’Txn))’

therefore,

oM (Tx, ,Tx,)) <0,
1> 1x,) = 0, which implies that 7x, = Tx,, orthat x, = X, , contradicting our assumption that
for each n. Therefore, d(Tx,,,,Tx,) <d(Tx,,Tx, ), forall =0 and so d(Tx,,,Tx,) is a

monotone decreasing sequence of non-negative real numbers. Hence, there exists an 7 >0 such that

limd(Tx,,,,Tx,)=r.

n-1°
that is, M (Tx

'xn # 'xn+1 4 n+l? n+l?

n+l?

From the above facts we have forall n >0,
d(Tx,,Tx, ) <M (Tx
Tx,)=1<2r.

Ix,)<d(Tx,Tx,,)+d(Ix, ,Tx,),

n-1° n—1°

so we have, 7 < lim M (Tx

n-1°

Taking the upper limit as # — o0 in the above inequality, and since ¢ is Ls.c., we have
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r<r—o(),

so we have » = = (). Hence

Tx,)=0. )

limd(7x,.,,
Next we show that {7, } is a Cauchy sequence. If not, then there exists &> 0 for which we can find
subsequences  {7x,,} and {Tx,,,} of {Tx,} such that n(k) is the smallest index for which
n(k)>m(k)>k and
d(Tx,,)> T, 1)) Z €. (6)

This means that,

d(Tx,,)> T, 501) < €. @)

From 6 and triangle inequality
& < d(Tx, ), T, 1) < A(TX, 0005 T, 001 ) + A (T 5001, T 1)
<g+ d(Txn(k)_1 ,Txn(k)).

Letting £ — 00 and using 7 we can conclude that
lim d(Tx,, ), T, 1)) = €. 8)
k—o

Moreover, from
| d(Txn(k)+1 > Txm(k)) - d(Txn(k) > Txm(k)) < d(Txn(k)+1 > Txn(k))
and

| d(Txm(k)+1 ,Txn(k)) - d(Txm(k) ,Txn(k)) I< d(Txm(k)+1 ,Txm(k))

and

| d(Txm(k)+1 > Txn(k)+1) - d(Txm(k) o IX, kyan )< d(Txm(k)+1 > Txm(k))

and using 5 and 8 we get

ggdakmwmfnm) =£gdakmmﬂhwm) o
= 11(133 A(Tx, 15 T 1y00) = E-

As {x,} is nondecreasing and n(k)>m(k), from2
d(Txn(k)+1 ) Txnz(k)+1) = d(fon(k) ) fom(k))

1
< EM(Txn(k) I%,00) =M (Tx, ), TX,, 1))

1
< Emax{d(Txn(k),Txm(k)),d(Txn(k),fon(k)),d(Txm(k),fom(k)),

d(Txn(k) ) fom(k))’ d(Txm(k) ) fon(k) )}
- (D(max{d(Txn(k) > Txm(k))’ d(Txm(k) > fom(k))})

1
= EmaX (T, 10y T, AT 1) T )05 A (T s X 1))
d(Txn(k) ) Txm(k)+1 ), d(Txm(k) ) Txn(k)+1 )}
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- (D(max{d(Txn(k) > Txm(k))’ d(Txm(k) b s
where

M(Txn(k) ,Txm(k)) = max{d(Txn(k),Txm(k)), d(Txn(k),fon(k)),d(Txm(k),fom(k)),
d(Txn(k)’fom(k))’d(Txm(k)’fon(k))}
= maX{d(Txn(k) ) Txm(k) ), d(Txn(k) ) Txn(k)+1 ), d(Txm(k) ) Txm(k)+1 ),
d(Txn(k) o IX 141 )’d(Txm(k) o IX 411 )}

Making kK — 00 and taking into account 9, we have
1
£<2()-0)
and from this inequality @(&)= 0. By our assumption about ¢ , we have & =0 which is a contradiction. So,

{Tx,} is a Cauchy sequence.

Since X is complete, there exists an element z € X such that Jim 7f "x0 =z. As T is subsequentially
n—>0

convergent, so we have lim f X, =u for some % in X, where {f "x,} is a subsequence of {f"x,}. Since
i—>00
T is continuous, [im7f i X, = Tu which by uniqueness of limit, implies that 7u = z.
i—00

If f is continuous selfmap on X', then Tfu = Tu , therefore we have fu =u.If f is not continuous,

then by the given assumption x, = f i Xy <u forall ne N, and it follows that

d(fo”i Jfu)=d(Tx, ,,,Tfu) < %M(Txni ,Tu)—(D(M(Txni ,Tu))

.+l
"

where

M(Txni ,Tu) = max{d(Txni ,Tu), d(Txni ,foni ), d(Tu,Tfu),
d(Tx, | Tfi),d(Tu, Tfs, )}
= max{d(Txni ,Tu),d(Txni ,Txniﬂ),d(Tu,Tfu),

d(Ix, ,Tfu),d(Tu,Tx, .,)},

which, on taking the limit as 7 — o<l> implies that l
d(Tu,Tfu) S%d(Tu,Tfu)—(o(d(Tu,Tfu)),

and hence d(Tu,Tfu) =0 orequivalently Tu = Tfu . So u = fu.
3 Periodic point results

Clearly, a fixed point of f is also a fixed point of f" , for every n € N, thatis, F(f)c F(f").

1
However, the converse is false. For example, the mapping f :R — R, defined by fx = E—x has an unique

1
fixed point 1 but every x € R, is a fixed point of f*.1f F(f)=F(f") for every n €N, then f is said to

have property P . For more details, we refer to [16] and references mentioned therein.
Recently, the study of Periodic points for contraction mappings has been considered by many authors, for
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1 . .
instance, every quasi-contraction f : X — X with the constant @ € [0,5), where X is a cone metric space,

has the property P ([10], Theorem 3.1.) and, if (X,d) be a cone metric space, and T -Hardy-Rogers contraction
f:X > X satisfies some appropriate conditions, then f* has property P ([6], Corollary 3.3.)

Definition 3.1 /1] Let (X,<) be a partially ordered set. A mapping f is called dominating on X if
x < fx foreach x in X .

Example 3.2 /1] Let X =[0,1] be endowed with usual ordering. Let f : X — X be defined by
1 1

x=x5, then xng = fx forall x€ X. Thus [ is a dominating map.
g map

Example 3.3 /1] Let X =[0,0) be endowed with usual ordering. Let [ : X — X be defined by
fx= \/;for x €[0,1) and fx=x" for x €[l,2), forany n €N, then forall x€ X, x < fx, thatis f is

a dominating map.

We have the following result:
Theorem 3.4 Let (X,<,d) bea partially ordered complete metric spaceand T : X — X bean

injective mapping. Let [ : X — X is a nondecreasing mapping such that for all x € X with x < fx, we have
d(Tfx, Tf *x) < 2d (Tx, Tfx), (10)
where A €[0,1). Then f has the property P provided that F'(f) is nonempty and f is dominating on
F(f™).
Proof. Let u € F(f") forsome n>1.Now we show that # = fir. Since f is dominating on F'(f"),
therefore u < fu which implies that f° "y < f"u as f isnondecreasing . Using (10), we obtain that
d(Tu,Tfu) = d(TfF""u, T > f"'u)
<SAd(TF"'u, Tf "u) = Ad (T u, TF > £ u).
Repeating the above process, we get
d(Tu,Tfu) < A"d(Tu,Tfu),
which on taking the limit as # —> 00, implies that d (Tu,Tfu) =0 or equivalently 7u = Tfu . So u € F(f).

Theorem 3.5 Let X, T and [ be asin Theorem 2.1. If f is dominatingon X , then f satisfies
property P .
Proof. From Theorem 2.1, F'(f') # & . We shall prove that (10) is satisfied for all x < fx . Indeed, f is
dominating so that x < fx. Also, fx < f’x ,as f is nondecreasing . Using (2), we have
d(TFe, T ) = d(TF, T
< oo max{d(Tx, Tfx),d(Tx, Tfx),d (Tfx, Tf *x),
(T, T ), d(Tfx, T}
< oo max{d(Tx, Tfx),d (Tfx, Tf *x), d(Tx, Tfx) + d (Tfx, Tf *x)}

= ad (Tx, Tfx) + d (Tfx, Tf *x)],
that is,
d(Tfx, Tf *x) < 2d (Tx, Tfx),
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(04
where 1 = o Obviously, A €[0,1) . By Theorem 3.4, f has property P .
-
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