

J. Basic. Appl. Sci. Res., 2(12)12809-12821, 2012

© 2012, TextRoad Publication

ISSN 2090-4304
Journal of Basic and Applied

Scientific Research
www.textroad.com

*Corresponding Author: Parisa Mohammadi, Department of Computer Engineering, Science and Research Branch, Islamic Azad University,
Ardabil, Iran. E.mail: Mohammadi_PM@yahoo.com, Tel: (++98)451-3367346

Global ID Assignment in Wireless Sensor Network by Using Huffman Algorithm

Parisa Mohammadi*1, Dr Shahram Jamali2

1Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Ardabil, Iran.
2Department of Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.

ABSTRACT

A sensor network consists of a set of battery-powered nodes, which collaborate to perform sensing tasks in given environment. It
may contain node or more base stations to collect sensed data and possibly relay it a central processing and storage system. These
networks are characterized by scarcity of resources, in particular the available energy. We present a Huffman algorithm to solve
the unique ID assignment problem. The propos is based on Huffman codes as unique and short ID for nodes. As we know codes
generated using this algorithm has some characteristics that makes it a good choice for addressing (prefix free, compressed) and
some characteristics that makes it not to be considered as perfect choice (the length of these codes are not fixed). In this paper we
have program c++ to simulate an area with a large number of sensors and put our desired way of addressing in it (using Huffman
codes). And organizing nodes in a tree structure. This tree structure is used to compute the size of the network. Then we make a
Huffman tree for unique Ids are assigned using the minimum number of bites. And evaluate its performance and compare results
by tree cast method.The oure result show weak signal makes the network’s tree deeper and the Huffman method is less bits
needed for ID assignment rather the Tree Cast method and the depth of tree doesn’t have a big influence on the length of IDs in
the Huffman method.Globally unique IDs are useful in providing many network functions, e.g. configuration, monitoring or
individual nodes, and various security mechanisms.
KEY WORDS: ID Assignment, Sensor networks, Huffman algorithm

1. INTRODUCTION

The communication range of individual sensor nodes is generally limited, and communication is often carried out in a multi-
hop manner. There is a need to have a unique identifier in the header of every unicast packet. In fact, routing protocols need to
uniquely identify the final destination as any node in the network can be a potential destination. Several routing protocols use
attribute-based routing and therefore can use attributes as global identifiers. However, even these protocols require the existence of
unique Ids at a local level. This is the case for directed diffusion [1] and geographical routing protocols such as [2]. Network-wide
unique Ids are beneficial for administrative tasks requiring reliability, such as configuration and monitoring of individual nodes,
and download of binary code or data aggregation descriptions to sensor nodes [3] network-wide unique Ids are also required when
security is needed in sensor network [4]. Several MAC protocols requiring the pre-existence of network-wide unique IDs have also
been proposed for sensor network [5]. Assumption of the pre-existence of network-wide IDs in not realistic in the case of sensor
networks. The pre-existence of network-wide global IDs requires hard-coding these IDs on nodes prior to the deployment. This is
costly in terms of time and effort when a network contains thousands to hundreds of thousands of nodes. Another alternative is to
have MAC addresses that are unique for every manufactured sensor node, as is the case for Ethernet cards [6].This is not a
desirable approach because of coordination it requires and the fact these IDs would have to be lengthy and therefore costly to use
in packet headers. An obvious ID assignment strategy is to have each node randomly choose an ID such that probability of any
two nodes choosing the same ID is very low. However, for this probability to be low, we need the IDs to be very long, which is
again costly in terms of energy [7]. Any ID assignment solution should produce the shortest possible addresses because sensor
networks are energy-constrained. The usage of the minimum number of bites required is motivated by the need to limit the size of
transmitted packets, in particular the header. In fact, communication is usually the main source of energy drain in a sensor node
[8]. We also do not assume the existence of any specific communication protocol. In this paper related work is discussed in
section 2. In section 3 introduce Huffman algorithm for unique is assignment ,in section 4 performance evaluation , in section 5
comparison tree cast method with Huffman method , in section 5 include simulation results, in section 6 include weak points of our
proposed algorithm and section 7 include conclusion.

2. Related Works

In general, network-wide unique addresses are not needed to identify the destination node of a specific packet in sensor
networks. In fact, attribute-based addressing fits better with the specificities of sensor networks [9]. In this case, an attribute such
as node location and sensor type is used to identify the final destination. However. Different nodes can have the same attribute
value. in particular in the same neighborhood. Thus. There is a need to uniquely identify the next hop node during packet routing
[10]. Furthermore. It is possible that two neighboring nodes have the same attributes. For instance, it is likely that some nodes will

12809

Mohammadi and Jamali, 2012

have the same location in a dense sensor network. In addition. The number of bits required to represent attribute information (for
example the node geographical coordinates) may be large rendering this approach less attractive from a communication energy
point of view [11].In [12]. The authors propose an algorithm that assigns globally unique IDs. Like our algorithm, it uses a tree
structure to guarantee the uniqueness of each ID. The algorithm is similar to the first phase of our algorithm. It starts with the sink
node broadcasting a message that contains its ID and a parameter b given the size in bits of one-hop ID. Successive nodes choose a
parent node among their neighbors that already have an ID. The node then randomly chooses an ID of size b bits and relays on its
parent to guarantee no other node has chosen the same ID. The node then appends its chosen ID to the ID of its parent to create a
unique ID. The main difference between this algorithm and ours is that it does not use the network size to minimize the size of
node IDs. Our algorithm. in contrast. Not only assigns unique IDs but also guarantees that these IDs are of minimum length. This
is a considerable advantage considering that sensor networks are energy-sensitive. the authors propose a local ID assignment
scheme where address conflicts are resolved in a Reactive way. Nodes randomly choose an address that is likely to be unique
within a 2-hop neighborhood. No conflict resolution is performed until nodes need to enter in a communication. For instance,
interest broadcasting in directed diffusion can be used to resolve conflicts. In this case, the sink node discovers the existence of
identical IDs between its immediate neighbors. The conflicting nodes are notified and choose new IDs. Each node that forwards
the interest message uses the response messages to detect ID conflicts among its neighbors. The delaying can help save energy by
avoiding any unnecessary conflicted solution. In particular, if two neighbors have the choose the same local ID but are never active
at the same time, resolving such a conflict amounts to a waste of energy resources. However, resolving ID conflicts reactively can
be problematic if the sensor network requires time-sensitive exchange of information, since messages can be delayed to resolve an
ID conflict. In [13]. The initialization has the objective of transitioning from this unstructured state to a structured network and the
establishment of a MAC protocol to allow efficient information dissemination. An important way to structure sensor nodes into a
network is through the use of clustering techniques [16, 15, 14]. Many of the clustering algorithms that have been proposed for
sensor networks assume the pre-existence of unique node IDs. For example, in the approach proposed in [14] a newly active node
that wants to join the network waits for messages from neighboring dominators (cluster heads) before trying to become a
dominator. A unique ID is needed to distinguish between the different dominators in the neighborhood. The ID assignment
algorithm proposed here can be used as part of the overall network initialization phase. In this way, the initialization does not need
to require the pre-existence of node IDs. Like the work in [14], our approach does not assume that all nodes wake-up at the same
time. We also do not assume the existence of a specific collision avoidance protocol. As “Santashil PalChaudhuri” described in
“Tree Cast [17]: A global addressing and Stateless Routing Architecture for Sensor Networks” article, In this scheme nodes are
organized in a tree structure and are assigned addresses according to their position in the tree. Sink node acts as the root tree. Child
nodes parent node assign addresses to its descendant children. Child node randomly generates its own address notifies the
conflicting the child node. If the generated local address of a node is approved by the parent, the node builds its own address by
appending the parent address with its own address. Tree Cast differs from other approaches in a way that in this scheme addresses
not only identify a node uniquely in the network, but also supports data routing depending on addresses. Routing based on
assigned addresses is regarded as stateless routing since nodes do not preserve or maintain any state or routing history. when we
have just one sink node, we can assign a null for its address and the nodes in the higher levels get the longer addresses. In that
method, it is assumed that we are aware of the density of sensors within the simulation area and using this density we can set the
number of bits in each level. But I think such assumption could lead to some unexpected errors in our addressing. Because in that
method we calculate density of sensors by dividing the number of node to the area of land but there is no information about
the uniformity of the distribution of the nodes. Here we describe this problem with a simple example:

Suppose we have an area of 1000 square meters and the number of nodes is 1000 sensors. So the density of nodes is 1 node per
square meter. If the signal access zone of a sensor is 10 meters, the maximum number of nodes in the signal zone of sink node will be
10x10x3.14x1 (density) = 314 and we could use 9 bits for each level of addressing. Now imagine that we have the same density of
nodes and the distribution of nodes is not uniform and the central area is much dense than the other parts. So it is possible that all the
1000 nodes are in the signal area of the sink node. We calculated 9 bits per level while here we cannot use 9 bits for addressing 1000
nodes connected to the sink node. In such situation using density number for calculating length of address cannot work and instead of
density number we should use the number of nodes. In the example we described, having 1000 nodes, if we set 10 bits for addresses
(10 bit is enough for maximum 1024 nodes) there will be no error in cases that there is no uniformity in the distribution. So using Tree
Cast addressing method we should use the number of nodes not the density for making sure that we have enough size for addressing.

3. Unique ID assignment with Huffman algorithm

Our algorithm creates a 400x400 meters square as a virtual area of 16 hectares flat field. At the next step it produces a fixed
node at the center of this square (x=200,y=200) that serves as the only sink node for our network. This program has designed to
create a number of nodes ranging from 1 to 800. Also created nodes in random locations but we have implemented our work in it
to distribute nodes with a uniform density within the square. After we created the nodes, one of the important steps of our work
starts. The every single node finds a node in its neighborhoods that has the strongest signal and has a temporary address and if it
finds such a node, sets that node as its parent. To find such a node, every node in the network broadcasts a signal to show its
existence and then gathers signals from other nodes in its signal area. At first no node has an address but the sink node. Because of
this at the first level of algorithm, the nodes neighboring to the sink node (in its signal access range) make a link with sink node
and set the sink as their parent. In this part, sink node starts sending messages to each linked node and asks them to choose a

12810

J. Basic. Appl. Sci. Res., 2(12)12809-12821, 2012

temporary ID [18] for themselves. After receiving such message, connected nodes, randomly choose an ID and send it to sink node
to confirm. If the ID is confirmed by the sink node, it sends a confirm message back to them and then the connected nodes append
this chosen ID to the ID of their parent (the sink node) and make their own temporary ID. Then the sink node and the connected
nodes update their parameters (e.g. its parent, its level, and its children). Sink node is at the level of zero and its children are in a
level higher than it (Level one). To make our program more flexible, we have defined a variable that indicates the power of
wireless signal of each node (the accessible radio range for nodes) and the program ask the user to set this variable. This variable is
one of the key features of a wireless sensor and in the process of making a tree for our network, it has a big influence for the depth
of the tree (the weaker the signal, the deeper the tree). We run this algorithm for every node in the network and every node finds
the best parent for itself and at the end we have and interconnected balanced tree of linked nodes. The root of this tree is the sink
node and a large number of the nodes are leaves of this tree. Due to the random location of nodes, if we set the signal power to a
very low amount, it is possible that some nodes would be in an area with no nodes in signal access zone. At the end of this
procedure such nodes remain unreachable and isolated from the network’s tree. Besides in the cases that some nodes lose their
battery and die, we can run this procedure and evaluate how losing a node (or nodes) could affect the accessibility and
performance of the whole network. This tree of nodes is used to set temporary IDs for nodes. After assignment temporary ID, our
algorithm to calculate the number of sub tree [18] for each node. After that we use this parameter to make a Huffman tree. Using
Huffman codes we will reach out much less overhead for IDs. After using the sub tree number parameter of the sensor nodes and
implements Huffman algorithm on this tree and makes Huffman codes for each node. These codes will be considered as the
permanent address of each node in the network. When we generated Huffman codes, we can use the temporary IDs to reach out the
deepest nodes and set its new permanent ID. And then set the permanent IDs for the nodes in a level less than those nodes and so
on until the sink node.
void Huffman ()
{for(all the nodes in the network tree)

 calculate distance to the root;
make (V_List); // list of nodes
while (V_List is not empty)

{sort (V_List based on the distance of each node to the root);

 make a Virtual node;
find (two smallest nodes in the V_List);
make(a HuffTree with Virtual node in the root and two smallest nodes left and right child of it);
put the sum of two children in the Virtual node;
remove two smallest nodes and add Virtual node to the V_List;
sort (V_List);} // end of while

for (all the edges in the HuffTree)
{label left edges with 0;

label right edges with 1;}
for (all the leaves in the HuffTree)

traverse from root to the leaves and write the label of edges in the path; }
void Huffman ()
{for(all the nodes in the network tree)

 calculate distance to the root;
make (V_List); // list of nodes
while (V_List is not empty)
{

 sort (V_List based on the distance of each node to the root);
 make a Virtual node;
find (two smallest nodes in the V_List);
make(a HuffTree with Virtual node in the root and two smallest nodes left and right child of it);
put the sum of two children in the Virtual node;
remove two smallest nodes and add Virtual node to the V_List;
sort (V_List);

} // end of while
for (all the edges in the HuffTree)
{

 label left edges with 0;
label right edges with 1;

}
for (all the leaves in the HuffTree)

traverse from root to the leaves and write the label of edges in the path; }

12811

Mohammadi and Jamali, 2012

4. Performance Evaluation
At this section we will compare our results (that we have got from Huffman code addressing) with the results that we get

from the Tree Cast method. But here we show a simple network of sensors to make our descriptions more clear. In these figures we
show how efficient the algorithm of Huffman coding is in comparison to the Tree Cast method. In this example we have a tree of
10 nodes. Using Tree Cast method we will need 120 bits of addresses in whole tree. If each one of the sensor nodes sends a data
message to the root, we will have an average of 12 bits overhead (as address bits) for each message. Figure 1,2,3 and 4 shows
methods steps.

Using Huffman codes we will reach out much less overhead for addresses. Figure 4 shows that for our sample network, we
need only 38 bits of address for whole network and if all the nodes send a data message to the root, we will have an average of 3.8
bits overhead (as address bits) for each message. That is dramatically less than the Tree Cast method.

5. SIMULATION RESULTS

We ran this algorithm multiple times with different values of signal power and with different number of nodes and we

calculated the results for the Tree Cast method and the method we have developed and the results were amazing. The results of the
program are the average number of bits needed for addressing a network of sensors. Here are our results:

Figure 2

Figure 3 Figure 4

Figure 1 (using Tree Cast method for addressing)

12812

J. Basic. Appl. Sci. Res., 2(12)12809-12821, 2012

Table 1 shows the results for networks that the number of nodes is in the range of 690 to 750.

Number of runs Number of nodes The average needed Bits
using Huffman algorithm

The average Bits needed using Tree
Cast method and with uniform

distribution

The average Bits needed using Tree Cast
method and without uniformity in

distribution

Average
Density of nodes

Depth of the network
tree

Signal Zone
(meters)

5

705 11.32 19.24 38.48 0.004 7 50
711 11.38 19.81 39.63 0.004 7 50
719 11.37 19.4 38.8 0.004 7 50
729 11.37 19.13 38.26 0.004 7 50
734 11.34 19.34 38.68 0.004 7 50

Average 719.6 11.356 19.384 38.77

5

706 10.89 16.9 28.18 0.004 5 70
709 10.79 16.98 28.3 0.004 5 70
710 10.71 16.79 27.99 0.004 5 70
711 10.79 16.91 28.18 0.004 5 70
730 11 17.1 28.5 0.004 5 70

Average 713.2 10.836 16.936 28.23

5

697 10.67 16.08 22.97 0.004 4 90
700 10.67 16.03 22.9 0.004 4 90
710 10.7 15.71 22.45 0.004 4 90
715 10.7 15.82 22.6 0.004 4 90
717 10.69 15.66 22.29 0.004 4 90

Average 707.8 10.686 15.86 22.642

5

697 10.72 15.16 18.95 0.004 3 110
703 10.72 15.27 1909 0.004 3 110
716 10.73 15.05 18.81 0.004 3 110
719 10.72 15.22.. 19.03 0.004 3 110
727 10.75 15.27 19.09 0.004 3 110

Average 712.4 10.728 15.194 18.994

5

708 10.65 13.92 17.4 0.004 3 130
713 10.88 13.36 16.7 0.004 3 130
720 10.93 13.51 16.89 0.004 3 130
725 10.87 13.34 16.67 0.004 3 130
738 10.95 13.52 16.91 0.004 3 130

Average 720.8 10.856 13.53 16.914

5

708 10.65 13.92 17.4 0.004 3 130
713 10.88 13.36 16.7 0.004 3 130
720 10.93 13.51 16.89 0.004 3 130
725 10.87 13.34 16.67 0.004 3 130
738 10.95 13.52 16.91 0.004 3 130

Average 720.8 10.856 13.53 16.914

5

683 10.81 12.68 14.08 0.004 2 170
684 10.81 12.65 14.08 0.004 2 170
707 10.82 12.79 14.21 0.004 2 170
714 10.82 12.95 14.38 0.004 2 170
736 10.83 13.05 14.5 0.004 2 170

Average 704.8 10.818 12.824 14.25

Table 2 shows the results for networks that the number of nodes is in the range of 530 to 590.

Number of runs Number of
nodes

The average needed Bits
using Huffman algorithm

The average Bits needed using Tree
Cast method and with uniform

distribution

The average Bits needed using Tree Cast
method and without uniformity in

distribution

Average Density of
nodes

Depth of the
network tree

Signal Zone
(meters)

5

533 10.65 19.68 39.36 0.003 7 50
547 11 20.15 40.29 0.003 7 50
558 10.8 19.75 39.5 0.003 7 50
559 10.93 19.81 39.62 0.003 7 50
564 10.87 19.18 38.37 0.003 7 50

Average 552.2 10.85 19.714 39.428

5

539 10.51 16.94 28.24 0.003 5 70
545 10.56 19.92 28.2 0.003 5 70
549 10.54 17.19 28.65 0.003 5 70
549 10.53 17.11 28.52 0.003 5 70
558 10.54 17.35 28.92 0.003 5 70

Average 548 10.536 17.702 28.506

5

543 10.56 16.27 23.24 0.003 4 90
544 10.56 16.08 22.98 0.003 4 90
547 10.61 15.87 22.67 0.003 4 90
555 10.58 15.75 22.5 0.003 4 90
568 10.6 15.96 22.8 0.003 4 90

Average 551.4 10.582 15.986 22.838

5

541 10.08 13.22 18.89 0.003 3 110
549 10.23 13.18 18.83 0.003 3 110
557 10.26 13.37 19.1 0.003 3 110
557 10.22 13.37 19.1 0.003 3 110
558 10.21 13.27 18.96 0.003 3 110

Average 552.4 10.2 13.282 18.976
5 538 10.76 13.62 17.03 0.003 3 130

12813

Mohammadi and Jamali, 2012

551 10.76 13.65 17.06 0.003 3 130
552 10.76 13.38 16.72 0.003 3 130
563 10.75 13.48 16.76 0.003 3 130
565 10.74 13.41 16.76 0.003 3 130

Average 553.8 10.754 13.508 16.866

5

554 10.71 12.36 15.45 0.003 2 150
561 10.7 12.41 15.51 0.003 2 150
568 10.76 12.37 15.46 0.003 2 150
572 10.72 12.39 15.49 0.003 2 150
573 10.77 12.5 15.62 0.003 2 150

Average 565.6 10.732 12.406 15.506

5

554 10.52 12.77 14.19 0.003 2 170
555 10.52 12.68 14.09 0.003 2 170
557 10.56 12.85 14.27 0.003 2 170
561 10.6 12.88 14.31 0.003 2 170
566 10.55 12.96 14.4 0.003 2 170

Average 558.6 10.55 12.828 14.252

Table 3 shows the results for networks that the number of nodes is in the range of 370 to 430.

Number of runs Number of
nodes

The average needed Bits
using Huffman algorithm

The average Bits needed using Tree
Cast method and with uniform

distribution

The average Bits needed using Tree Cast
method and without uniformity in

distribution

Average Density of
nodes

Depth of the
network tree

Signal Zone
(meters)

5

395 10.26 16.46 41.14 0.002 7 50
397 10.24 16.28 40.71 0.002 7 50
399 10.24 15.98 39.95 0.002 8 50
401 10.26 15.81 39.53 0.002 7 50
402 10.24 15.78 39.45 0.002 7 50

Average 398.8 10.248 16.062 40.156

5

386 10.1 14.15 28.29 0.002 5 70
388 10.15 14.57 29.15 0.002 5 70
397 10.29 14.21 28.41 0.002 5 70
404 10.25 14.84 29.68 0.002 5 70
412 10.34 15.02 30.04 0.002 5 70

Average 397.4 10.226 14.558 29.114

5

390 9.66 13.58 22.64 0.002 4 90
391 9.63 13.17 21.94 0.002 4 90
395 9.64 14.19 23.65 0.002 4 90
401 9.65 13.63 22.72 0.002 4 90
407 9.65 13.46 22.43 0.002 4 90

Average 396.8 9.646 13.606 22.676

5

388 9.65 13.31 19.02 0.002 3 110
388 9.7 13.33 19.05 0.002 3 110
390 9.68 13.35 19.08 0.002 3 110
391 9.7 13.43 19.18 0.002 3 110
401 9.71 13.34 19.05 0.002 3 110

Average 391.6 9.688 13.352 19.076

5

384 9.96 11.65 16.64 0.002 3 130
385 10.06 11.64 16.62 0.002 3 130
388 9.72 11.76 16.8 0.002 3 130
393 9.73 11.97 17.1 0.002 3 130
405 9.7 11.86 16.94 0.002 3 130

Average 391 9.834 11.776 16.82

5

370 9.81 12.32 15.41 0.002 2 150
385 9.89 12.55 15.69 0.002 2 150
394 9.89 12.39 15.48 0.002 2 150
399 9.96 12.41 15.51 0.002 2 150
407 9.95 12.17 15.21 0.002 2 150

Average 391 9.9 12.368 15.46

5

379 9.8 11.57 14.46 0.002 2 170
382 9.82 11.52 14.4 0.002 2 170
398 9.81 11.62 14.52 0.002 2 170
404 9.82 11.41 14.26 0.002 2 170
407 9.85 11.38 14.23 0.002 2 170

Average 394 9.82 11.5 14.374

Table 4 shows the results for networks that the number of nodes is in the range of 210 to 270.

Number of runs Number of
nodes

The average needed Bits
using Huffman algorithm

The average Bits needed using Tree
Cast method and with uniform

distribution

The average Bits needed using Tree Cast
method and without uniformity in distribution

Average Density
of nodes

Depth of the
network tree

Signal Zone
(meters)

5

217 9.05 12.92 43.06 0.001 8 50
221 9.01 13.05 43.48 0.001 8 50
236 9.13 13.23 44.11 0.001 8 50
239 9.11 13.13 43.77 0.001 8 50
243 9.12 13.19 43.05 0.001 8 50

Average 231.2 9.084 13.104 43.494
5 227 9.29 11.81 29.52 0.001 5 70

12814

J. Basic. Appl. Sci. Res., 2(12)12809-12821, 2012

234 9.25 12.05 30.13 0.001 5 70
237 9.3 11.34 28.35 0.001 5 70
240 9.31 11.73 29.33 0.001 5 70
248 9.33 11.69 29.23 0.001 5 70

Average 237.2 9.296 11.724 29.312

5

219 8.64 11.42 22.83 0.001 4 90
228 8.74 11.47 22.94 0.001 4 90
232 8.87 11.4 22.8 0.001 4 90
245 9.15 11.57 23.14 0.001 4 90

Average 229.4 8.812 11.396 22.79

5

223 8.68 11.3 18.83 0.001 3 110
224 8.68 11.52 19.2 0.001 3 110
233 8.73 12.05 20.09 0.001 3 110
235 8.71 11.39 18.98 0.001 3 110
236 8.67 11.4 19.32 0.001 3 110

Average 230.2 8.694 11.532 19.284

5

239 8.72 9.89 16.49 0.001 3 130
240 8.72 10.13 16.88 0.001 3 130
240 8.74 10.33 17.21 0.001 3 130
241 8.73 10.38 17.3 0.001 3 130
265 9.7 10.19 16.98 0.001 3 130

Average 245 8.922 10.184 16.972

5

233 9.25 10.79 15.41 0.001 2 150
235 9.31 10.81 15.45 0.001 2 150
242 9.4 10.85 15.5 0.001 2 150
242 8.74 11.51 16.45 0.001 2 150
244 9.32 10.59 15.12 0.001 2 150

Average 239.2 9.204 10.91 15.586

5

217 8.98 10.13 14.47 0.001 2 170
220 8.89 9.61 13.73 0.001 2 170
232 9.02 9.78 13.97 0.001 2 170
237 9.15 9.95 14.22 0.001 2 170
241 9.2 10.2 14.56 0.001 2 170

Average 229.4 9.048 9.934 14.19

Table 5 and figure 5 show the average results based on the signal power of sensors for a number of sensors ranging from
690-750.

690-750
The average needed Bits using

Huffman algorithm
The average Bits needed using Tree Cast method and with

uniform distribution
The average Bits needed using Tree Cast method and without

uniformity in distribution Depth of the network tree Signal Zone
(meters)

10.818 12.824 14.25 2 170
10.84 13.93 15.476 2 150
10.856 13.53 16.914 3 130
10.728 15.194 18.994 3 110
10.686 15.86 22.642 4 90
10.836 16.936 28.23 5 70
11.356 19.384 38.77 7 50

12815

Mohammadi and Jamali, 2012

Table 6 and figure 6 show the average results based on the signal power of sensors for a number of sensors ranging from
530-590.

530-590
The average needed Bits using

Huffman algorithm
The average Bits needed using Tree Cast method and with

uniform distribution
The average Bits needed using Tree Cast method and without

uniformity in distribution Depth of the network tree Signal Zone
(meters)

10.55 12.828 14.252 2 170
10.732 12.406 15.506 2 150
10.754 13.508 16.866 3 130
10.2 13.282 18.976 3 110

10.582 15.986 22.838 4 90
10.536 17.702 28.506 5 70
10.85 19.714 39.428 7 50

Table 7 and figure 7 show the average results based on the signal power of sensors for a number of sensors ranging from
370-430.

370-430
The average needed Bits using

Huffman algorithm
The average Bits needed using Tree Cast method and with

uniform distribution
The average Bits needed using Tree Cast method and without

uniformity in distribution Depth of the network tree Signal Zone
(meters)

9.82 11.5 14.374 2 170
9.9 12.368 15.46 2 150

9.834 11.776 16.82 3 130
9.688 13.352 19.076 3 110
9.646 13.606 22.676 4 90
10.226 14.558 29.114 5 70
10.248 16.062 40.156 7 50

Huffman

Tree Cast with uniform distribution

Tree Cast without uniformity distribution

Huffman
Tree Cast with uniform distribution
Tree Cast without uniformity distribution

12816

J. Basic. Appl. Sci. Res., 2(12)12809-12821, 2012

Table 8 and figure 8 show the average results based on the signal power of sensors for a number of sensors ranging from
210-270.

210-270
The average needed Bits using

Huffman algorithm
The average Bits needed using Tree Cast method and with

uniform distribution
The average Bits needed using Tree Cast method and without

uniformity in distribution Depth of the network tree Signal Zone
(meters)

9.048 9.934 14.19 2 170
9.204 10.91 15.586 2 150
8.922 10.184 16.972 3 130
8.694 11.532 19.284 3 110
8.812 11.396 22.79 4 90
9.296 11.724 29.312 5 70
9.084 13.104 43.494 8 50

Table 9 to 15 and figures 9 to 15 show the effect of number of nodes on the length of bits we need for addressing using Tree Cast
method and the method we have proposed while the power of signals are fixed to a certain value We assume there signal power of
sensors is fixed .

Huffman

Tree Cast with uniform distribution

Tree Cast without uniformity

distribution

Huffman

Tree Cast with uniform distribution

Tree Cast without uniformity distribution

12817

Mohammadi and Jamali, 2012

The signal’s access zone is 130 meters

Average number of nodes
we’ve tested

The average needed Bits using
Huffman algorithm

The average Bits needed using Tree Cast
method and with uniform distribution

The average Bits needed using Tree Cast method
and without uniformity in distribution

Depth of the network
tree

720.8 10.856 13.53 16.914 3
553.8 10.754 13.508 16.866 3
391 9.834 11.776 16.82 3
245 8.922 10.184 16.972 3

The signal’s access zone is 110 meters

Average number of nodes
we’ve tested

The average needed Bits using
Huffman algorithm

The average Bits needed using Tree Cast
method and with uniform distribution

The average Bits needed using Tree Cast method
and without uniformity in distribution

Depth of the network
tree

712.4 10.728 15.194 18.994 3
552.4 10.2 13.282 18.976 3
391.6 9.688 13.352 19.076 3
230.2 8.694 11.532 19.284 3

The signal’s access zone is 90 meters

Average number of nodes
we’ve tested

The average needed Bits using
Huffman algorithm

The average Bits needed using Tree Cast
method and with uniform distribution

The average Bits needed using Tree Cast
method and without uniformity in distribution

Depth of the network
tree

707.8 10.686 15.86 22.642 4
551.4 10.582 15.986 22.838 4
396.8 9.646 13.606 22.676 4
229.4 8.812 11.396 22.79 4

The signal’s access zone is 150 meters
Average number of nodes

we’ve tested
The average needed Bits using

Huffman algorithm
The average Bits needed using Tree Cast
method and with uniform distribution

The average Bits needed using Tree Cast method
and without uniformity in distribution

Depth of the network
tree

718 10.84 13.93 15.476 2
565.6 10.732 12.406 15.506 2
391 9.9 12.368 15.46 2

239.2 9.204 10.91 15.586 2

The signal’s access zone is 170 meters
Average number of nodes we’ve

tested
The average needed Bits using

Huffman algorithm
The average Bits needed using Tree Cast method and

with uniform distribution
The average Bits needed using Tree Cast method and

without uniformity in distribution Depth of the network tree

704.8 10.818 12.824 14.25 2
558.6 10.55 12.828 14.252 2
394 9.82 11.5 14.374 2

229.4 9.048 9.934 14.19 2

Huffman

Tree Cast with uniform distribution

Tree Cast without uniformity distribution

12818

J. Basic. Appl. Sci. Res., 2(12)12809-12821, 2012

The signal’s access zone is 70 meters
Average number of nodes

we’ve tested
The average needed Bits using

Huffman algorithm
The average Bits needed using Tree Cast
method and with uniform distribution

The average Bits needed using Tree Cast method
and without uniformity in distribution

Depth of the
network tree

713.2 10.836 16.936 28.23 5
548 10.536 17.702 28.506 5

397.4 10.226 14.558 29.114 5
237.2 9.296 11.724 29.312 5

The signal’s access zone is 50 meters

Average number of nodes
we’ve tested

The average needed Bits using
Huffman algorithm

The average Bits needed using Tree Cast
method and with uniform distribution

The average Bits needed using Tree Cast method
and without uniformity in distribution

Depth of the
network tree

719.6 11.356 19.384 38.77 7
552.2 10.85 19.714 39.428 7
398.8 10.248 16.062 40.156 7
231.2 9.084 13.104 43.494 8

Huffman

Tree Cast with uniform distribution

Tree Cast without uniformity distribution

Huffman

Tree Cast with uniform distribution

Tree Cast without uniformity distribution

Huffman

Tree Cast with uniform distribution

Tree Cast without uniformity distribution

12819

Mohammadi and Jamali, 2012

As the diagrams show, the weak signal makes the network’s tree deeper and the result is more bits needed for addressing in the
Tree Cast method but the depth of tree doesn’t have a big influence on the length of addresses in the Huffman method.

 7. Conclusion

We presented a solution global ID assignment problem in sensor networks. Our solution of using Huffman code to assign

unique identifiers for the nodes of a sensor network can save energy used by the sensors, In the first organizing nodes in a tree
structure. This tree structure is used to compute the size of the network. Then we make a Huffman tree for unique Ids are assigned
using the minimum number of bites. And evaluate its performance and compare results with tree cast method.

REFERENCES

[1] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a scalable and robust commu- nication paradigm for

sensor networks,” in Proceedings of the 6th annual international conference on Mobile computing and networking, pp. 56–67,

August 2000.

[2] D. E. Y. Yu, R. Govindan, “Geographical and energy aware routing: A recursive data dissemination protocol for wireless

sensor networks,” Tech. Rep. TR-01-0023, UCLA/CSD, 2001.

[3] A. Dunkels, J. Alonso, and T. Voight, “Making tcp/ip viable for wireless sensor networks,” in European Workshop on Wireless

Sensor Networks (EWSN), 2004.

[4] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks: Attacks and countermea-sures,” in IEEE International

Workshop on Sensor Network Protocols and Applications, 2003.

[5] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol for wireless sensor net- works,” in INFOCOM, 2002.

[6] A. S. Tanenbaum, Computer Networks. Englewood Cliffs, 1989.

[7] J. R. Smith, “Distributing identity,” IEEE Robotics and Automation Magazine, Vol.6, No.1, March 1999.

[8] C. Schurgers, G. Kulkarni, and M. B. Srivastava, “Distributed on-demand address assignment in wireless sensor networks,”

IEEE Transactions on Parallel and Distributed Systems, Vol.13, No.10, October 2002.

 [9] D. Estrin, J. Heidemann, and S. Kumar, “Next century challenges: Scalable coordination in sensor networks,” in MOBICOM,

1999.

Huffman

Tree Cast with uniform distribution

Tree Cast without uniformity distribution

12820

J. Basic. Appl. Sci. Res., 2(12)12809-12821, 2012

[10] M. Ali and Z. A. Uzmi, “An energy efficient node address naming scheme for wireless sensor networks,” in INCC, 2004.

[11] H. Zhou, M. W. Mutka, and L. M. Ni, “Reactive id assignment for wireless sensor networks,” International Journal of

Wireless Information Networks, Vol.13, No.4, October 2006

[12] M. Ali and Z. A. Uzmi, .An energy ef_cient node address naming scheme for wireless sensor networks,. in INCC,2004

 [13] S. Motegi, K. Yoshihara, and H. Horiuchi, .Implementation and evaluation of on-demand address allocation for event-driven sensor

network,. in Proceeding of the Symposium on Applications and the Internet (SAINT’05), 2005.

[14] F. Kuhn, T. Moscibroda, and R. Wattenhofer, .Initializing newly deployed ad hoc and sensor networks,. In Proceedings of the 10th annual

international conference on Mobile computing and networking (MobiCom’04), 2004.

 [15] M. Kochhal, L. Schwiebert, and S. Gupta, .Role-based hierarchical self organization for wireless ad hoc sensor networks,. in

Proceedings of the Second ACM International Workshop on Wireless Sensor Networks and Applications (WSNA’03), 2003.

[16] K. Sohrabi, V. Ailawadhi, J. Gao, and G. Pottie, .Protocols for self organization of a wireless sensor network,. Personal

Communication Magazine, vol. 7, 2000.

 [17] S. PalChaudhuri, S. Du, A. K. Saha and D. B. Johnson, "TreeCast: A Stateless Addressing and Routing Architecture for Sensor

Networks", Proc. of the 18th IPDPS International Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks

(WMAN 2004), p. 221a, Santa Fe, New Mexico, April 2004.

[18] E. Ould-Ahmed-Vall, D. M. Blough, B. S. Heck and G. F. Riley, "Distributed Global Identification for Sensor Networks",

Technical Report 2005, Georgia Tech, 2005.

12821

