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ABSTRACT 
 
Airport efficiency with data envelopment analysis (DEA) is one of the common research studies 
in the last decade. DEA is a nonparametric method in operations research which has been 
provided some significant tools to estimate the performance evaluation, efficiency and 
productivity of homogenous decision making units (DMUs) such as firms, factories and 
organizations. Although, the conventional DEA models (radial or non-radial) have been usually 
applied in airport efficiency studies, those models are not almost always able to distinguish 
between efficient DMUs and technical efficient ones. Recently, Arash Method (AM) was 
proposed in DEA to improve the previous DEA techniques and remove their shortcomings to 
arrange both inefficient and technical efficient DMUs together. In this paper, the importance of 
using AM in DEA to assess the efficiency of airports is illustrated. The method is examined with 
a numerical example of 17 airports with four inputs (apron, number of baggage belts, check-in-
counter and boarding gates) and three outputs (passenger movements, aircraft operations and 
cargo). The results characterize how the neglect in differences between efficiency and technical 
efficiency definitions can introduce a weak performer as a strong one which does the jobs right. 
KEYWORDS: Data envelopment analysis, Technical efficiency, Efficiency, Arash Method, 
Airport. 

 
1. INTRODUCTION 

 
Air transport industry has been experienced a rapid growth worldwide in the recent years. 

One of the most efficient sectors which utilize the resources and infrastructure in air transport 
industry is Airports which involve high expenditures such related areas as traffic control, terminals 
and runways to provide the aircraft operations, cargo handle and passenger movements. Moreover, 
any attempt to make the airports and other aviation facilities more efficient, by employing 
appropriate and scientifically approved methods, can be interested for governments and private 
sectors to decrease general expenses for maintenance the airports. Fortunately, data envelopment 
analysis (DEA) has been provided a nonparametric technique with multiple inputs and outputs to 
measure the efficiency of homogeneous decision making units (DMUs) such as airports. It 
proposed by Charnes et al. [1] based on the earlier work of Farrell [2] and it has dramatically 
improved in the last three decades. Moreover, there are many researches in airport industry with 
applying the radial DEA models such as CCR [1] and BCC [3] and a few studies with non-radial 
models such as SBM [4]. However, those radial and non-radial DEA models are not able to 
distinguish between efficient DMUs and technical efficient ones. Although, some super-efficiency 
models [5] such as AP model [6] were proposed to raise the shortcomings of conventional DEA 
models and characterize the differences between technical efficient DMUs, they are not 
significantly able to arrange both technical efficient and inefficient DMUs concurrently [7]. 
Therefore, Khezrimotlagh et al. [7] proposed a significant method called Arash Method (AM) to 
remove those shortcomings and improve the capabilities of DEA to assess the performance 
evaluation of decision making units. Their proposed method is not only able to distinguish 
between efficient and technical efficient DMUs, but also it arranges both technical efficient and 
inefficient DMUs simultaneously. Indeed, AM measures the real efficiency scores for DMUs by 
estimating the instabilities of their scores where a little error happens in those input data. In this 
study, a numerical example of 17 airports with four inputs and three outputs is considered to 
characterize the importance of using AM to assess the efficiency score of airports in comparison 
with using the conventional DEA models. The rest of this article is organized in four sections. 
Section 2 is the background on airports efficiency and the preliminary note on data envelopment 
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analysis methods. A numerical example is proposed in Section 3 and the paper is concluded in 
Section 4. The simulations are also performed with Microsoft Excel Solver due to have the simple 
linear and nonlinear programming models. 
 
2. Airport efficiency and DEA 

The conventional DEA models have been used in a number of previous airport efficiency 
researches in the last decade. The outputs in most of previous studies were usually considered as 
aircraft movement, passenger movement and cargo handled which characterize the main 
transportation services supported by airport operations. However, the inputs were selected with 
variety of physical infrastructure of the airports such as terminal area, number of check-in 
counters, number of baggage belts, number of boarding gates, apron capacity, number of runways 
and aircraft parking and so on. Some recent reviews of the airport efficiency literature can be 
found in [8-10]. On the other hand, most of those studies considered technical efficiency to assess 
the performance evaluation of airports such as the studies by Gillen and Lall [11], Parker [12], Pets 
et al. [13], Martin and Roman [14], Fernandes and Pacheco [15], Yoshida et al. [16], Yu [17], 
Pathomsiri and Haghani [18], Guedes et al. [19], Hong and Kim [20], Barros and Dieke [21], Fung 
et al [22], Tapiador et al. [23], Tovar and Martin-Cejas [8], Abrate and Erbetta [9] and Lozano and 
Gutierrez [10].  

A DMU is called technical efficient if and only if the performances of other DMUs do not 
show that some of its inputs or outputs can be improved without worsening some of its other 
inputs or outputs. This definition is called Pareto-Koopmans definition in DEA and unfortunately 
it is wrongly interpreted as efficiency i.e., doing the jobs right, where there is no any units price or 
costs information for data. Khezrimotlagh et al. [7] recently illustrated that the definition of 
Pareto-Koopmans in DEA is only able to characterize the technical efficient DMUs and a technical 
efficient DMU may neither be efficient nor be more efficient than an inefficient one. They 
proposed a significant method to distinguish between efficient and technical efficient DMUs 
where the weights, units price or costs information of DMUs are not available and defined that an 
efficient DMU is a technical efficient DMU which has the best performer in comparison with other 
technical efficient DMUs, i.e., it has the best combination of inputs and outputs among other 
DMUs or the ratio of its produced output to its used input (output/input) among other DMUs does 
not much change where a very little error happens in its data. Their proposed definition does not 
depend to the weights or units price of data and it is the same as the definition of efficiency in 
economics where costs information are available. In order to illustrate the models, let us assume 
that there are 푛 DMUs (DMU , 푖 = 1,2, … ,푛) with 푚 nonnegative inputs (푥 , 푗 = 1,2, … ,푚) and 푝 
nonnegative outputs (푦 ,푘 = 1,2, … ,푝) for each DMU which at least one of its inputs and one of 
its outputs are not zero. The CCR and SBM in constant returns to scale (CRS) are as following 
where DMU  (푙 = 1,2, … , 푛) is evaluated. 

 
CCR: 
휃∗ = min 	휃, 
Subject to 
∑ 휆 푥 + 푠 = 휃푥 , ∀푗,  
∑ 휆 푦 − 푠 = 푦 , ∀푘,  
휆 ≥ 0,			∀푖, 
푠 ≥ 0,			∀푗, 
푠 ≥ 0,			∀푘. 
 
Targets: 

푥∗ = 휃∗푥 − 푠 ∗,∀푗,
푦∗ = 푦 + 푠 ∗,∀푘.

 

SBM: 

휌∗ = min
1− (1/푚) 	∑ 푠 /푥
1 + (1/푝) 	∑ 푠 /푦

 

Subject to 
∑ 휆 푥 + 푠 = 푥 , ∀푗,  
∑ 휆 푦 − 푠 = 푦 , ∀푘,  
휆 ≥ 0,			∀푖, 
푠 ≥ 0,			∀푗, 
푠 ≥ 0,			∀푘. 
 
Targets: 

푥∗ = 푥 − 푠 ∗,∀푗,
푦∗ = 푦 + 푠 ∗,∀푘.

 

 
The constant returns to scale means a proportionate increase in inputs results in the same 

proportionate increase in output. The CCR has two stages, first minimizing 휃 and second 
maximizing the slacks 푠  (potential reduction of input) and 푠  (potential increase of output), for 
푗 = 1,2, … ,푚, and 푘 = 1,2, … , 푝. The following notations are also used in the models: 
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푛 number of DMUs, 
푚 number of inputs, 
푖 index of DMUs, 
푗 index of inputs, 
푘 index of outputs, 
푙 index of specific DMU whose efficiency is being assessed, 
푥  observed amount of input 푗 of DMU , 
푦  observed amount of output 푘 of DMU , 
휆  multipliers used for computing linear combinations of DMUs’ inputs and outputs, 
푠  non-negative slack or potential reduction of input 푗 of DMU , 
푠  non-negative slack or potential increase of output 푘 of DMU , 
푤  positive specified weight or price for input 푗 of DMU , 
푤  positive specified weight or price for output 푘 of DMU , 
휃∗ the optimal efficiency score of a DMU in input-oriented approach of CCR, 
휆∗ optimal multipliers to identify the reference sets for a DMU, 푖 = 1,2, … , 푛, 
푠 ∗ optimal slack to identify an excess utilization of input 푗 of DMU , 
푠 ∗ optimal slack to identify a shortage utilization of output 푘 of DMU , 
푥∗  target of input 푗 of DMU  after evaluation, 
푦∗  target of output 푘 of DMU  after evaluation. 

 
The CCR and SBM by adding the convexity constraints, i.e., ∑ 휆 = 1, become BCC and 

SBM VRS (variable returns to scale). CCR and BCC are radial models which were proposed by 
Charnes et al. [1] and Banker et al. [3], respectively. Moreover, SBM is a non-radial model which 
was suggested by Tone [4]. SBM measures a ratio of the average inputs decrease to the average 
output increase and suggests improving both inputs and outputs simultaneously. Since SBM 
similar to other conventional DEA models is not able to distinguish between technical efficient 
DMUs, Khezrimotlagh et al. [7] proposed the flexible method called, Arash Method (AM), to 
identify the efficient DMUs among the technical efficient ones where the weights of data are not 
available. The 휺-AM is as following where DMU  (푙 = 1,2, … ,푛) is evaluated and 휺 =
(휀 , 휀 , … , 휀 ),  휀 ≥ 0. 

 
휺-AM: 
max 	∑ 푤 푠 + ∑ 푤 푠 , 
Subject to 
∑ 휆 푥 + 푠 = 푥 + 휀 /푤 ,∀푗, 
∑ 휆 푦 − 푠 = 푦 , ∀푘,  
휆 ≥ 0,			∀푖, 
푠 ≥ 0,			∀푗, 
푠 ≥ 0,			∀푘. 

Targets: 
푥∗ = 푥 + 휀 /푤 − 푠 ∗,∀푗,
푦∗ = 푦 + 푠 ∗,∀푘,

 

 
Score: 

퐴∗ =
∑ 푤 푦 /∑ 푤 푥
∑ 푤 푦∗ /∑ 푤 푥∗

. 

 
In AM when the weights 푤  and 푤  are not available they defined as following, where 푁  

and 푀  can be selected in positive real numbers set or even zero through the goals of each DMU 
for its resources and productions. 

 

푤 =
푁 푥 = 0
1/푥 푥 ≠ 0     and   푤 = 푀 푦 = 0

1/푦 푦 ≠ 0. 

 
Moreover, it is usually defined that 휺 = (휀, 휀, … , 휀), and when 휀 > 0 and 퐴∗ < 1 for a DMU, 

the linear 휺-AM suggests it to change its input and output values to the new 휺-AM target and 
otherwise i.e., when 퐴∗ ≥ 1, 휺-AM warns that the DMU should not accept the new targets of 휺-
AM, because it may decrease its efficiency score. Khezrimotlagh et al. [24] also proposed the 
following definition 

 
Definition: A technical efficient DMU is efficient with 휀-degree of freedom in inputs if 퐴∗ −
퐴∗ ≤ 훿. Otherwise, it is inefficient with 휀-degree of freedom in inputs. The proposed amount for 훿 
is 10 휀 or 휀/푚. 
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3. Discussion with a numerical example 
Let us consider the DMUs in Table 1 which represent 17 airports labelled A01 to A17 with 

four inputs such as apron capacity, number of baggage belts, check-in-counter and boarding gates 
and three outputs such as passenger movements, aircraft operations and cargo. 

 

Table 1: The example of 17 airports with four inputs and three outputs.  

DMU Input1 Input2 Input3 Input4 Output1 Output2 Output3 
A01 31 9 42 16 8893749 76816 4930928 
A02 121 19 143 65 30008152 327636 93397869 
A03 17 3 18 7 3614223 33436 502407 
A04 9 3 13 5 1381560 46534 309873 
A05 43 16 85 30 13076252 127769 5125898 
A06 5 4 18 5 1645886 18136 6921 
A07 86 16 204 68 22408302 190280 22442448 
A08 5 3 8 5 1385157 24894 5931 
A09 16 5 37 16 4025601 65295 23180961 
A10 18 2 7 3 173607 12348 30343616 
A11 23 1 1 1 19568 9212 12 
A12 5 2 13 5 1175328 21362 1382556 
A13 5 1 4 2 308313 10696 430375 
A14 23 6 42 10 3870600 58565 11530230 
A15 35 8 42 18 4969113 87906 13067720 
A16 21 7 36 12 3876062 58573 3417746 
A17 34 8 34 10 4424880 44044 3197021 
 

Table 2 depicts the scores of CCR, SBM, 0-AM, 0.0001-AM, 0.001-AM and 0.01-AM in 
constant returns to scale (CRS). There are 11 technical efficient DMUs (A01 to A11) which 
characterized by applying CCR, SBM and 0-AM, and other DMUs are inefficient. There are no 
any differences between the scores of SBM and 0-AM for the inefficient DMUs in this example 
and 0-AM similar to other conventional DEA models is not able to identify the differences 
between technical efficient DMUs. However, 0.0001-AM clearly shows that only one ten 
thousandth errors in each input are enough to characterize the instability of the efficiency of 
technical efficient DMUs as the fifth column of Table 2 illustrates it. In fact, A02 and A09 are two 
technical efficient DMUs which have the best combination of their data in comparison with other 
technical efficient DMUs.  

Moreover, 0.0001-AM identifies that the technical efficient DMU A11 can be more 
inefficient than all inefficient DMUs, because only 0.0001 errors in its input values fail its 
efficiency score to 0.0629 which is the worst score among all DMUs’ scores. This outcome clearly 
represents the differences between technical efficiency and efficiency definition in DEA and 
identifies the advantages and capabilities of AM in comparison with other conventional DEA 
models to characterize those distinctions. Moreover, it warns that the Pareto-Koopmans definition 
in DEA should not wrongly interpreted as the definition of efficiency or doing the jobs right where 
there are no any weights or costs information.  

 
Table 2: The score of conventional DEA models and Arash Method in CRS.  

DMU CCR SBM 0-AM 0.0001-AM 0.001-AM 0.01-AM 
A01 1.0000 1.0000 1.0000 0.9992 0.9918 0.9240 
A02 1.0000 1.0000 1.0000 1.0000 0.9998 0.9975 
A03 1.0000 1.0000 1.0000 0.9735 0.7852 0.2605 
A04 1.0000 1.0000 1.0000 0.9974 0.9743 0.7927 
A05 1.0000 1.0000 1.0000 0.9985 0.9850 0.8680 
A06 1.0000 1.0000 1.0000 0.8711 0.4032 0.0633 
A07 1.0000 1.0000 1.0000 0.9953 0.9541 0.6493 
A08 1.0000 1.0000 1.0000 0.9087 0.4989 0.0909 
A09 1.0000 1.0000 1.0000 1.0000 0.9998 0.9979 
A10 1.0000 1.0000 1.0000 0.9997 0.9972 0.9725 
A11 1.0000 1.0000 1.0000 0.0629 0.0067 0.0007 
A12 0.9529 0.4203 0.4203 0.4202 0.4184 0.4094 
A13 0.7360 0.1739 0.1739 0.1738 0.1737 0.1723 
A14 0.9399 0.6475 0.6475 0.6474 0.6463 0.6360 
A15 0.7316 0.5411 0.5411 0.5411 0.5408 0.5378 
A16 0.7791 0.2875 0.2875 0.2875 0.2871 0.2838 
A17 0.8435 0.2495 0.2495 0.2494 0.2489 0.2440 
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In addition, 0.0001-AM strongly arranges both technical efficient and inefficient DMUs 

together. The sixth and seventh columns of Table 2 depict the 0.001-AM and 0.01-AM scores for 
DMUs which demonstrate the differences between other technical efficient DMUs obviously. For 
instance, only one thousandth errors in input values of technical efficient DMU A08 fail its rank to 
13th level after the rank of inefficient DMUs A14, A15 and A12. 

 
 Table 3: The score of conventional DEA models and Arash Method in VRS. 

DMU BCC SBM 0-AM 0.0001-AM 0.001-AM 0.01-AM 
A01 1.0000 1.0000 1.0000 0.9993 0.9935 0.9386 
A02 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
A03 1.0000 1.0000 1.0000 0.9957 0.9583 0.6983 
A04 1.0000 1.0000 1.0000 0.9975 0.9757 0.8018 
A05 1.0000 1.0000 1.0000 0.9987 0.9872 0.8850 
A06 1.0000 1.0000 1.0000 0.9381 0.6025 0.1318 
A07 1.0000 1.0000 1.0000 0.9957 0.9578 0.6742 
A08 1.0000 1.0000 1.0000 0.9359 0.5936 0.1280 
A09 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992 
A10 1.0000 1.0000 1.0000 0.9997 0.9972 0.9726 
A11 1.0000 1.0000 1.0000 0.0665 0.0071 0.0007 
A12 1.0000 1.0000 1.0000 0.9998 0.9977 0.9774 
A13 1.0000 1.0000 1.0000 0.9991 0.9914 0.9209 
A14 0.9453 0.6759 0.6759 0.6758 0.6747 0.6636 
A15 0.7684 0.5431 0.5431 0.5431 0.5428 0.5398 
A16 0.7795 0.2967 0.2967 0.2967 0.2962 0.2916 
A17 0.8568 0.2497 0.2497 0.2496 0.2491 0.2438 

 
The above discussions can be similarly examined in variable returns to scale by adding the 

convexity constraint, i.e., ∑ 휆 = 1, to the constraints of those models. For example, Table 3 
depicts the scores of BCC, SBM, 0-AM, 0.0001-AM, 0.001-AM and 0.01-AM in variable returns 
to scale (VRS). From the table, only four DMUs A14, A15, A16 and A17 are inefficient and other 
DMUs are technical efficient. Likewise, A11 has the worst combination of its input and output 
data in comparison with all other DMUs due to this fact that just 0.0001 errors in its input data fail 
its efficiency score to 0.0665.  

Furthermore, from the columns six and seven, A02 in variable returns to scale technology has 
the best combination of its data among other DMUs even if 0.01 errors happened in its input 
values and it is absolutely efficient. 

 
4. Conclusion 

 
This study clearly illustrates that the technical efficient DMUs may not do the jobs right and 

they should be exactly examined to find the efficient ones. Although, there are many researchers in 
airport efficiency with using DEA, they did not almost always characterize the differences 
between technical efficient DMUs and their performances in comparison with inefficient ones. In 
other words, there may be some inefficient DMUs which are more efficient than some technical 
efficient ones, but the conventional DEA models are not almost always able to identify those 
differences. Therefore, this study illustrates the importance of using the new method in DEA 
called Arash method (AM) to characterize the efficient DMUs among the technical efficient ones. 
The study examines the Arash Method for 17 airports with four inputs and three outputs. The 
outcomes clearly demonstrate how the neglect in differences between efficiency and technical 
efficiency definitions can introduce a weak performer as a strong one which does the jobs right. 
Moreover, the study suggests using AM to assess the performance evaluation of airports and 
concurrently arrange both technical efficient and inefficient airports together. 
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