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ABSTRACT 
 
Differential Algebraic Equations (DAEs) appear in many fields of physics and have a wide range of applications in 
various branches of science and engineering. Finding reliable methods to solve DAEs has been the subject of many 
investigations in recent years. In this paper, numerical solution of DAEs considered that after reduction index using 
Differential Quadrature Method (DQM). The scheme is tested for some high-index DAEs and the results 
demonstrate that the method is very straightforward and can be considered as a powerful mathematical tool.  
KEY WORDS: Differential algebraic equation, Reduction index, Schauder Bases, Tau method, Hessenberg forms, 

Differential quadrature method, DAE, DQM, Least Square method.  
 

1  INTRODUCTION 
  

Many physical problems are naturally described by a system of differential algebraic equations. These type of 
systems occur in the modelling of electrical networks, flow of incompressible fluids, optimal control, mechanical 
systems subject to constraints, power systems, chemical process simulation, computer-aided design and in many 
other applications. Finding new methods for solving DAEs has become an interesting task for mathematicians. To 
solve differential algebraic equations (DAEs), some numerical methods have been developed, using both BDF [5, 
10, 11, 12] and implicit Runge Kutta methods [1, 4, 8]. These methods are only directly suitable for low index 
problems and often require that the problem to have special structure. Although many important applications can be 
solved by these methods there is a need for more general approaches. 

Many researches also made important contributions to this method. In the DQM, derivatives of the unknown 
functions in the differential equations with respect to a coordinate direction are expressed as a linear weighted sums 
of all functional values at all grid points along that direction. The main idea of the method is to find the weighting 
coefficients using test functions whose functional values and derivative values at discrete points in the whole 
domain are known. Many authors have obtained weighting coefficients implicitly or explicitly using various test 
functions such as Legendre polynomials, Lagrange interpolation polynomials, spline functions, radial basis 
functions, harmonic functions with [11], etc. The DQM is an efficient discretization technique for obtaining accurate 
numerical solutions using small number of grid points. In this study, we apply cosine expansion based differential 
quadrature method (CDQ) defined in [6] for discretization to obtain fully discretized form of the DAEs, which are 
the system of equations. 
 
2  DAEs and reduction of index 

A system of DAEs is one that consists of ordinary differential equations (ODEs) coupled with purely algebraic 
equations, on the other hand, DAEs are everywhere singular implicit ODEs. The general form of DAEs is 

 
 ],[0,),,(0,=)),(),(( 121 TtCFttxtxF mm'   RR  (1) 

 
where 'xF  / is singular on 12 mR  [14]. Most DAEs arising in applications are in semi-explicit form and many are 
in the further restricted Hessenberg form [8]. The index-1 semi explicit DAEs is given by: 
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where yg  /  is non-singular. 
In such systems the Algebraic and differential variables are explicitly identified for higher-index DAEs as well, and 
the algebraic variables may all be eliminated using the same number of differentiations. These are called Hessenberg 
forms of the DAE and a re-given below. 
 
2.1  Hessenberg index-    
 
The index-2 Hessenberg DAEs is given by: 
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where )/)(/( yfxg   is non-singular [14]. DAEs in Hessenberg form of index   have the form 
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2.2  Reducing index 
 
We consider a linear (or linearized) model problem,  
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where jA , B  and C  are smooth functions of t , ftt 0 , nn

j tA R)( , mj ,1,=  , ntB R)( , 
nntC R)( , 2n , and CB  is nonsingular for each t  (hence the DAE has index 1m ). The inhomogeneities 

are R)(tq  and R)(tr . The DAE 6 will be transformed into an implicit DAE form by representing a simple 
formulation. For this reason, we put  
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and by substituting 7 in 6, we obtain an implicit DAE which has index m , as follows, 
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where nn
j tE R)( , mj ,1,=  , and except )(0 tE , others are singular matrices. 

 
Theorem 1: Consider DAEs (Equation 6), when it has index- 2=2, n  and 1=k . This problem is equivalent to 
the following index-1 DAE system: 
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The proof of this theorem is presented in Ref.[5]. 
 
Theorem 2: Consider DAEs (Equation 6) with index- 3=2,n  and 2=k . This problem is equivalent to the 
following index-1 DAE system:  
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such that  
 

   31211222113211311231223221=  bbbbbbbbbbbbM  
and  
 

 ].[)(= 1 qAXXCCBy '   (12) 
 
The proof is presented in Ref.[15]. 
 
By theorems 1 and 2 , the above system can be transformed to the following full rank DAE system, with n  
equations and n  unknowns,  
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 Index of 13 is equal to m . 
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3  Differential quadrature method 
 

Differential quadrature method (DQM) is a numerical method for evaluating derivatives of a sufficiently 
smooth function, proposed by Bellman and Casti in 1971. In other words, the derivatives of a smooth function are 
approximated with weighted sums of the function values at a group of so-called nodes. Suppose function )(tx  is 
sufficiently smooth on the interval ],[ ba . On the interval, N  distinct nodes are defined:  

 bttta N =<<<= 21   (14) 
 
The function values on these nodes are assumed to be  
 

 )(,(2),(1), Nxxx   (15) 
 
Based on DQM, the first and second order derivatives on each of these nodes are given by 
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The coefficients ija  and ijb  are the weighting coefficients of the first and second order derivatives with respect to 
t , respectively. Using the Lagrange interpolating functions, Shu and Richards [6] gave a convenient and recurrent 
formula for determining the derivative weighting coefficients as follows:  
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also for second derivative weighting coefficients we have  
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Where 
 ).(=)( 1,= ji

N
jiji tttM    

 
When above equations is used, there is no restriction on the choice of the nodes [6].  
 
Similarly we may obtain formulas for higher order derivatives by using the higher order weighting coefficients, 
which are expressed as )(m

ije  to avoid confusion. They are characterized by recurrence [7]  
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 Where (1)= ijij ea  and (2)= ijij eb .  
 
4  Formulating the problem 
  
Consider 12 and 13, now by theorem 1 , 2 and employing DQM we have 
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That with 1=m  we will have 
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T
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and  
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After implimentation initial conditions 22 can be expressed in the following vector matrix form 
 

bAx =  
 
Where in this equation A  is an 2)(2)(2  NN  matrix of known constants, x  is an 12)(2 N  vector of 
unknown values and b  is an 1)(2 N  vector of known values that this equation can be solve by Least Square 
method. 
 
5  Test problems 

The above result allows us to calculate some numerical solutions of differential equations. we present some 
numerical results to demonstrate the efficiency of DQM for solving the DAEs, also DQM comparisons with 
Schauder Bases [9] and Pseudospctral methods [3]. These examples are chosen such that their exact solutions are 
known.The numerical computations have been done by the software Matlab edition 2011 . 
 
Example  1:  Consider the linear index-2 semi-explicit DAEs problem: 
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and ))((=)( tsinetr t    with 1=(0)1x  and 0=(0)2x .The exact solutions of this problem are:  
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From Theorem 1, the index-2 DAEs (Equation (24)) can be converted to the index-1 DAEs: 
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with 1=(0)1x  and 0=(0)2x . 
 
Employing DQM 16 for this system equations, obtain the following system algebraic equations  
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Where ),1,=,(, Njiaij   are weighting coefficents and ),1,=)((),( 21 Niixix   are values 21, xx  in nodes 

Nttt =10= 21   .  
After implimentation initial conditions last system can be expressed in the following vector matrix form  
 bAx =  
 
Where in this equation A  is an 2)(2)(2  NN  matrix of known constants, x  is an 12)(2 N  vector of 
unknown values and b  is an 1)(2 N  vector of known values. 

 
Table  1: Numerical solution of )(1 tx  and )(2 tx  and )(ty  by Schauder Bases Tau method and DQM 

Schauder Bases Tau method   DQM   

N                        xe     ye    xe                  ye   

5  

10  
20  

  12.0 E   
 

22.4 E   

 41.7 E   

 12.1 E   

 31.0 E   

 42.2 E   

 52.0 E   

 124.1 E   

 146.6 E   

 42.4 E   

 101.1 E   
 

153.1 E   

 
The obtained approxtimate values by DQM and Schauder Bases Tau method, relative errors are reported in Table 1 . 
In this example, we use " xe " and " ye " to denote the maximum over all components of the errors in x  and y . 

Example  2: Consider the DAE is in pure index-2, for 10  t ,  
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 From the initial conditions 1=(0)1x , 1=(0)2x  we have the exact solution  
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Employing DQM 16 for system equations 26 obtain the system algebraic equations  
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After implimentation initial conditions last system can be expressed in the bAx = . This problem is solved using 
DQM and is Compared with Pseudospectral method in Table 2.  
 

Table  2: Numerical solution of )(1 tx  and )(2 tx  and )(ty  by Pseudospectral and DQM 
Pseudospectral  DQM 

N    
xe     ye    xe     ye   

5    67.0 E     67.3 E   
 

104.0 E   
 

122.2 E   

 52.1 E   

 102.1 E   

 121.3 E   

  51.2 E   

10    111.3 E      101.2 E   

15    132.0 E      111.1 E   

 
6  Conclusion 
 

We have presented a numerical method that allows some DAEs to be solved with a low computational cost. 
The use of the DQM provided for the high accuracy to the exact solution. Through example which has exact 
solution, it was found that in order to obtain accurate numerical results demonstrate DQM is efficient. 

 
REFERENCES 

 
[1] L. Jay: Specialized RungeKutta methods for index 2 differential-algebraic equations, Math. Comput. 75 (2005), 

pp. 641- 654. 

[2] J. Huang, J. Jia, and M. Minion: Arbitrary order Krylov deffered correction methods for differential algebraic 

equations, J. Comput. Phys. 221 (2007), pp. 739 -760. 

[3] F. Soltanian, S.M. Karbassi, M.M. Hosseini: Application of Hes variational iteration method for solution of 

differential-algebraic equations, Chaos, Solitons Fractals 41(1) (2009), pp. 436-445. 

[4] U.M. Ascher and L.R. Petzold: Projected implicit RungeKutta methods for differential-algebraic equations, 

SIAM J. Numerical Analysis 28 (1991), pp. 1097-1120. 

[5] U.M. Ascher,L.R. Petzold: Computer Methods for Ordinary Differential Equations and Differential Algebraic 

Equations, Philadelphia, PA, 1998. 

[6] C. Shu: Differential Quadrature Method and its Application in Engineering, Springer, Brlin, 2000. 

[7] Zhi Zong, Yingyan Zhang: Advanced Differential Quadrature Methods, CRC Press, Boca Raton ,2009. 

[8] K. E. Brenan, S. L. Campbell, L R. Petzold: Numerical solution of Initial Value Problems in Differential 

11827 



Ramezani et al., 2012 

 

Algebraic, Siam, New York, 1989. 

[9] M.Shahrezaee, M. Ramezani, L.H.Kashani, H.Kharazi: Numerical Tau Method for Solving DAEs in Banach 

Spaces with Schauder Bases. 2 (2012) 99-114. 

[10] U.M. Ascher: On symmetric schemes and differential-algebraic equations, SIAM J. Sci. Stat. Comput. 10 

(1989) 937-949. 

 [11] C.W. Gear, L.R. Petzold: ODE systems for the solution of differential-algebraic systems, SIAM J. Numer. 

Anal. 21 (1984) 716-728. 

[12]  U.M. Ascher, L.R. Petzold: Stabilityof computational methods for constrained dynamics systems, SIAM J. Sci. 

Comput. 14 (1993) 95-120. 

[13] E. Celik,E. Karaduman,M. Bayram: A numerical method to solve chemical differential algebraic equations,Int. 

J. Quant. Chem. 89 (2002) 447-451. 

[14] H. Wang and Y. Song: Regularization methods for solving differential-algebraic equations, Appl. Math. 

Comput. 119 (2001), pp. 283-296. 

[15]  E. Babolian and M.M. Hosseini : Reducing index, and pseudospectral methods for differential-algebraic 

equations, Appl. Math. Comput. 140 (2003), pp. 77-90. 

11828 


