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ABSTRACT 
 

Cluster analysis has received attention in many scientific fields. The purpose of clustering analysis is to 
detect group data points, which are close to one another. One of the most widely used techniques for 
clustering is the K-means algorithm. The performance of K-means algorithm which converges to numerous 
local minima depends highly on initial cluster centers. In order to overcome local optima problem lots of 
studies done in clustering. A population-based method called Teaching-Learning-Based-Optimization 
(TLBO) is proposed to solve the clustering problem. TLBO is a robust and effective search algorithm. The 
most salient advantage of this algorithm is that it does not require the tuning of any kind of controlling 
parameters. The efficiency of the proposed algorithm is studied by testing on several data sets. Numerical 
results show that the proposed evolutionary optimization algorithm is robust and suitable for data 
clustering.          
KEYWORDS: Teaching-Learning-Based Optimization, Data clustering, K-means clustering, Evolutionary 

Algorithm. 
 

INTRODUCTION 
 

One of the most important techniques of unsupervised classification is clustering. In clustering objects 
with the same attributes will be grouped in a same cluster. Clustering techniques can be classified in to 
major classes: hierarchical and partitional. The hierarchical clustering can be divided into agglomerative 
and divisive. In hierarchical clustering n objects will be grouped into k clusters by minimizing some 
measure of dissimilarity in each group and maximizing the dissimilarity of different groups [1, 2, 3 and 4] 
In this paper our focus is on partitional clustering, and in particular the K-means algorithm that is one of the 
most efficient clustering algorithms. However, the K-means algorithm suffers from several drawbacks [5]. 
The objective function of the K-means algorithm may contain several local optima because it is not convex. 
Therefore the outcome of K-means algorithm heavily depends on the initial solution [6]. To overcome 
these shortcomings recently many algorithms have been developed based on evolutionary algorithms like 
GA, TS, PSO and SA [7, 8, 9, 10, 11, 12 and 13]. But problem is that most of these evolutionary algorithms 
are very slow to find optimal solution.  

In this paper Teaching-Learning-Based Optimization (TLBO), is applied to find global solutions for 
clustering problem with less computational effort and high reliability [17]. The TLBO algorithm is a new 
robust and effective evolutionary optimization algorithm. The principle idea behind TLBO is the simulation 
of teaching process in the traditional classroom. The performance of TLBO ends in two basic stages: (1) 
“teacher phase” or learning from the teacher, and (2) “learner phase” or trade off information between 
learners. The teacher is the one who promotes students’ knowledge to his or her current level. The 
implementation of TLBO does not require the assertion of any kind of controlling parameters. This causes 
the algorithm to turn into a strong one.  

In the following, the cluster analysis problem is discussed in section 2. Sections 3 introduce the 
TLBO algorithm. In section 4, the application of the proposed algorithm in clustering is presented. In 
section 5, the feasibility of the proposed algorithm is demonstrated and compared with the ACO, GA, SA, 
PSO and K-means for different data sets.  
 

1. Cluster Analysis Problem 
Clustering analysis that is an NP-complete problem to find groups in heterogeneous data by 

minimizing dissimilarity measures is one of the fundamental tools in data mining, machine learning and 
pattern classification solutions [9]. Clustering in N-dimensional Euclidean space RN is the process of 
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partitioning a given set of n points into K groups (or, clusters) based on some similarity (distance) metric 
that is Euclidean distance, which derived from the Minkowski metric (equations 1 and 2). 
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Let the set of n points {X1, X2,…, Xn} be represented by the set S and the K clusters be represented by C1, 
C2…,CK Then: 
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In this study the Euclidian metric has been used as a distance. All of clustering algorithms can be 

classified into two categories: hierarchical clustering and partitional clustering. Partitional clustering 
methods are the most popular class of center based clustering methods. The K-means algorithms, is one of 
the most widely used center based clustering algorithms. To find K centers, the problem is defined as an 
optimization performance function (minimization), Perf(X, C), defined on both the data items and the 
center locations. A popular performance function for measuring goodness of the K clustering is the total 
within-cluster variance or the total mean-square quantization error (MSE), equation 3 [12].  
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The steps of the K-means algorithm are as follow [7]: 
Step 1: Choose K cluster centers C1, C2, …, Ck randomly from n points {X1, X2,…, Xn}.   

Step 2: Assign point Xi, i=1, 2, …, n to cluster Cj, J{1, 2, …, K} if |||||||| piji CXCX  , p=1, 2, …, 
K, and j≠p.  
Step 3: Compute new cluster centers **
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where ni is the number of elements belonging to cluster Ci. 
Step 4: If termination criteria satisfied, stop otherwise continues from step 2 

Note that in case the process close not terminates at step 4 normally, then it executed for a mutation fixed 
number of iterations. Attempts to directly 
 

2. TLBO Algorithm  
The TLBO algorithm is a newly developed meta-heuristic optimization algorithm [17]. It is a 

population-based optimization algorithm that is modelled based on the transfer of knowledge to the 
classroom environment, where learners first gain knowledge from a teacher (Teacher Phase) and then from 
fellow-students (Learner Phase). The structure of the proposed algorithm can be explicated as follows: 
Teacher phase: In this phase the solution nominations are randomly distributed throughout the search 
space. Thus, the best solution will be selected amongst all and will interact the knowledge with other 
candidates. Elaborately, since a teacher, who is the most skilled person about the objective in the 
population, influences the student’s deed to take part some pre-planned aim. It is desired that the teacher 
augments the mean of his or her class information level depending on his or her experience. The teacher, 
thus, will put maximum effort into training his or her learners, but learners will acquire information 
according to the worthiness of training delivered by a teacher and the worthiness of learners in the class. 
The teacher phase is structured as follows: 
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௜௧௘௥ܯܦ = ()݀݊ܽݎ × (ܴܶ௜௧௘௥ − ௜௧௘௥ܨܶ  ௜௧௘௥) (6)ܧܯ−
 
TF is a teaching factor that is randomly determined as either 1 or 2. 
௜௧௘௥ܨܶ = 1)݀݊ݑ݋ݎ + )݀݊ܽݎ )) (7) 
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Learning Phase: As stated above, by means of interaction between each student according to 

teaching–learning process students can also increase their knowledge. So, a solution is randomly interacted 
to learn something new with other solutions in the population. If the other solutions have more knowledge 
than him or her, a solution will learn new piece of information.21 The latter way is described as follows. 
ܺ௡,௡௘௪ଶ
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The replacement process can be implemented Similar to the teacher phase as below: 
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3. Application of TLBO algorithm on Clustering 
This section introduces application of the TLBO algorithm on cluster analysis. To apply the TLBO 

algorithm on clustering the following steps should be repeated:  
Step 1: Initializing the problem and algorithm parameters 
Step 2: Establishing the initial population learners. 
Step 3: Compute the objective function. 
Step 4: Compute the mean of the population. 
Step 5: Determine the best solution (Teacher). 
Step 6: Modify solutions based on the teacher knowledge according to teacher phase. 
Step 7: Update solutions according to learner phase and Steps 3. 
Step 8: Go to Step 4 until the iteration number arrives at the maximum iteration number. 

 
4. Experimental results 
The efficiency of the TLBO algorithm on clustering has been tested on several well known datasets 

such as: four artificial data sets and six real-life data sets and compared with the ACO, PSO, SA and K-
means algorithms [14, 15 and 16]. In stochastic algorithms the effectiveness highly depends on the initial 
solutions. To overcome these drawback each algorithms performed 100 times individually with randomly 
generated initial solutions. The simulations are performed on a Core i7 2.7 GHz computer with 4 GB RAM 
memory. The software is developed using MATLAB 7.13. 
 
Artificial data sets: 

    Dataset 1: This dataset has 10 data points with two non-overlapping clusters and two dimensions. 
    Dataset 2: This dataset has 75 data points with three non-overlapping clusters and two dimensions.  
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    Dataset 3: This dataset has 95 data points with nine overlapping clusters with equal probability 
(1/19). The dataset has two dimensions and generated using a triangular distribution. The X-Y ranges for the 
nine classes are as follows: 

Class 1: [-3.3,-0.7] × [0.7, 3.3], 
Class 2: [-1.3, 1.3] × [0.7, 3.3], 
Class 3: [0.7, 3.3] × [0.7, 3.3], 
Class 4: [-3.3,-0.7] × [-1.3, 1.3], 
Class 5: [-1.3, 1.3] × [-1.3, 1.3], 
Class 6: [0.7, 3.3] × [-1.3, 1.3], 
Class 7: [-3.3,-0.7] × [-3.3,-0.7], 
Class 8: [-1.3, 1.3] × [-3.3,-0.7], 
Class 9: [0.7, 3.3] × [-3.3,-0.7]. 

Data 4: This dataset has 1000 data points with two overlapping clusters. The dataset has ten dimensions 
and generated using a triangular distribution.   

The range for class 1 is [0, 2] 10, and for class 2 is [1, 3] × [0, 2]9, with peaks at (1, 1) and (2, 1). We may 
quantify the distribution on the first axis (X) for class 1 as follow: 
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for class 1 similarly for class 2 is as follow: 
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For both class 1 & 2 the distribution on the other axes (Yi, i=1, 2, …, 9) is as follow: 
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Real-life data sets are as follows: 

Iris data (N=150, d=4, K=3): This dataset has 150 points which are random samples of three species of 
the iris flower such as: setosa, versicolor, and virginica. For each clusters we have 50 samples with 4 
dimensions [21].  

Wine data (N=178, d=13, K=3): The wine dataset is result of chemical analysis of wines in the same 
areas in Italy. The dataset has 178 points with 13 continues attributes  

Contraceptive Method Choice (N = 1473, d = 10, K = 3): This dataset is output of a survey in Indonesia 
in 1987. Points in this dataset are married women who were not pregnant or do not know that they are. The 
dataset has 178 points with 13 dimensions and 3 clusters. 

Vowel data set (N = 871, d = 3, K= 6). This dataset has 871 three dimensional points and six 
overlapping clusters[22]. 

Wisconsin breast cancer (N=683, d=9, K=2). This dataset has 683 points with nine features such as: 
clump thickness, cell size uniformity, cell shape uniformity, marginal adhesion, single epithelial cell size, 
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bare nuclei, bland chromatin, normal nucleoli, and mitoses. There are two clusters in this dataset: malignant 
(444 objects) and benign (239 objects). 

Ripley’s glass (N=214, d=9, K=6). This dataset has 214 points with nine features. The dataset has six 
different clusters which are: building windows float processed (70 objects), building windows non-float 
processed (76 objects), vehicle windows float processed (17 objects), containers (13 objects), tableware (9 
objects), and headlamps (29 objects). 

The efficiency of the proposed algorithm has been compared with other algorithms by applying them on 
above datasets. The best solution of 100 run of each algorithm, number of function evaluation and standard 
deviation of solutions obtained by applying algorithms on the datasets has been used for comparison. The 
quality of solution is considered based on the average and worst values of the clustering metric (Favg and 
Fworst). F is the performance of clustering algorithms that has been shown in equation 3. Tables 1 to 10 
present a comparison among the results of algorithms. 

 
Table 1. Result obtained by the five algorithms for 100 different runs on dataset 1 

Method Function Value Standard 
deviation 

Number of 
function 
evaluations 

Fbest Faverage Fworst 

TLBO 3.114821 3.128761 3.168349 0.013940 823 
SA 3.217832 3.382089 3.539115 0.164257 1751 
PSO 3.189459 3.351617 3.438486 0.162158 1642 
ACO 3.142375 3.163422 3.352843 0.021047 1639 
K-means 3.206981 3.350941 3.486195 0.143960 43 

 
Table 2. Result obtained by the five algorithms for 100 different runs on dataset 2 

Method Function Value Standard 
deviation 

Number of 
function 
evaluations 

Fbest Faverage Fworst 

TLBO 51.827619 51.915611 52.008617 0.087992 1,948 
SA 53.562492 53.635943 53.929748 0.073451 3,846 
PSO 52.034921 52.258617 52.516815 0.223696 3,246 
ACO 52.082746 52.212071 52.729373 0.129325 3,183 
K-means 53.872432 56.624922 59.496185 2.752490 97 

 
Table 3. Result obtained by the five algorithms for 100 different runs on dataset 3 

Method Function Value Standard 
deviation 

Number of 
function 
evaluations 

Fbest Faverage Fworst 

TLBO 963.836486 963.912484 964.016483 0.075998 3,351 
SA 966.418263 966.614089 967.397392 0.195826 8,984 
PSO 964.264831 965.016542 966.168253 0.751711 8,879 
ACO 964.739472 965.048327 966.283745 0.308855 7,836 
K-means 967.584392 968.245317 969.186242 0.660925 176 

 
Table 4. Result obtained by the five algorithms for 100 different runs on dataset 4 

Method Function Value Standar
d 
deviation 

Number of 
function 
evaluations 

Fbest Faverage Fworst 

TLBO 1247.958617 1248.012407 1248.426183 0.053790 3,631 
SA 1251.736287 1253.115831 1254.895375 1.379544 9,794 
PSO 1248.876294 1249.027819 1249.219345 0.151525 9,682 
ACO 1248.958685 1249.034036 1249.335442 0.075351 8,846 
K-means 1251.563183 1253.151574 1255.068316 1.588391 203 

 

Table 5 Result obtained by the five algorithms for 100 different runs on Iris data 
Method Function Value Standard 

deviation 
Number of 
function 
evaluations 

Fbest Faverage Fworst 

TLBO 96.6500 96.6500 96.6500 0 2,468 
SA 97.4573 99.957 102.01 2.018 5314 
PSO 96.8942 97.2328 97.8973 0.347168 4,953 
ACO 96.753 97.453 98.023 0.567 4,931 
K-means 97.333 106.05 120.45 14.6311 120 
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Table 6 Result obtained by the five algorithms for 100 different runs on Wine data 
Method Function Value Standar

d 
deviation 

Number of 
function 
evaluations 

Fbest Faverage Fworst 

TLBO 16,295.31 16,323.17 16,345.26 26.824 6,316 
SA 16,473.4825 17,521.094 18,083.251 753.084 17,264 
PSO 16,345.9670 16,417.4725 16,562.3180 85.4974 16,532 
ACO 16,346.7820 16,417.127 16,502.943 80.3731 15,473 
K-means 16,555.68 18,061 18,563.12 793.213 390 

 
Table 7 Result obtained by the five algorithms for 100 different runs on CMC data 

Method Function Value Standard 
deviation 

Number of 
function 
evaluations 

Fbest Faverage Fworst 

TLBO 5,694.2816 5,699.9281 5,700.1053 5.9382 6,865 
SA 5,849.038 5,893.4823 5,966.947 501.8672 26,829 
PSO 5,700.98530 5,820.96475 5,923.24900 46.95969737 21,456 
ACO 5,701.923 5,819.1347 5,912.4300 45.6347 20,436 
K-means 5,842.20 5,893.60 5,934.43 473.16 270 

 
Table 8 Result obtained by the five algorithms for 100different runs on Vowel data 
Method Function Value Standard 

deviation 
Number of 
function 
evaluations 

Fbest Faverage Fworst 

TLBO 148,976.0005 149,007.0010 149,200.0100 25.9637 3,484 
SA 149,468.268 162,108.5381 165,996.428 2846.23516 9,528 
PSO 149,370.4700 161,566.2810 165,986.4200 2847.08594 9,423 
ACO 149,201.632 161,431.0431 165,804.671 2746.0416 8,436 
K-means 149,422.26 15,9242.89 161,236.81 916 180 

 
Table 9 Result obtained by the five algorithms for 100different runs on Wisconsin breast cancer 

Method Function Value Standard 
deviation 

Number of 
function 
evaluations 

Fbest Faverage Fworst 

TLBO 2,964.25 2,966.72 2,970.02 2.263 3,495 
SA 2,992.53 3,086.06 3,451.38 111.0102 17,853 
PSO 2,973.50 3,050.04 3,318.88 110.8013 16,290 
ACO 2,970.49 3,046.06 3,242.01 90.50028 15,983 
K-means 2,987.19 2,987.78 2,988.24 0.38 180 

 
Table 10 Result obtained by the five algorithms for 100different runs on Ripley’s glass 

Method Function Value Standard 
deviation 

Number of 
function 
evaluations 

Fbest Faverage Fworst 

TLBO 199.53 199.66 201.31 0.125 6,501 
SA 273.27 276.21 285.93 4.976188 199,468 
PSO 270.57 275.71 283.52 4.557134 198,765 
ACO 269.72 273.46 280.08 3.584829 196,581 
K-means 215.74 12.47107 255.38 235.50 630 

 
The simulation results given in Tables 1 to 10 show that TLBO is very precise. In the other word, it 

provides the optimum value and small standard deviation in compare to those of other methods. The results 
obtained on the artificial datasets (tables 1-4) show that the proposed algorithm reaches to the best optimum 
values of in compare to other methods. Table 5 shows results on iris dataset shows that TLBO converges to 
the global optimum of 96.6500 in all of runs while the best solutions of SA, PSO, ACO and K-means are 
97.4573, 96.8942, 96.853 and 97.333, respectively. The standard deviation of the fitness function for this 
algorithm is 0, which it significantly is smaller than other methods. Table 6 shows the result of algorithms 
on the wine dataset. The optimum value is 16,295.31, which is obtained in 90% runs of TLBO algorithm. 
Noticeably other algorithms fail to attain this value even once within 100 runs. Table 7 provides the results 
of algorithms on the CMC dataset. As seen from the results of the TLBO algorithm are far superior that of 
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others. For the vowel data set, the best global solution, the worst global solution, the average and the 
standard deviation of the TLBO are 148,976.0005, 149,200.0100, 149,007.0010 and 25.9637 respectively. 
For the PSO algorithm they are 149,370.4700, 165,986.4200, 161,566.2810 and 2847.08594, respectively. 
The result of the TLBO algorithm is much better than those of other algorithms. On Wisconsin breast 
cancer dataset results given in Table 9, show that the TLBO provide the optimum value of 2,964.25 while 
the SA, PSO, ACO and K-means algorithms obtain 2,992.53, 2,973.50, 2,970.49 and 2,987.19, 
respectively. The TLBO was able to find the optimum in 95% of runs. Finally, Table 10 shows the best, 
average, worst and standard deviation values obtained by algorithms for Ripley’s glass dataset. It is found 
that the TLBO clustering algorithm is able to provide the same partition of the data points in most of runs. 
As earlier, the results of the other algorithms are in inferior to that of ours.  

In terms of the number of function evaluations, K-means needs the least number of function evaluations, 
but the results are less than satisfactory. For artificial datasets the number of function evaluation of TLBO 
algorithm is less than others except the K-means algorithm. For the iris dataset, the number of function 
evaluations of TLBO, SA, PSO, ACO and K-means are 2468, 2523, 4953, 4931 and 120, respectively. The 
number of function evaluations of TLBO for artificial datasets, Wine, CMC, Vowel, Wisconsin breast cancer 
and Ripley’s glass are 6316, 6865, 3484, 3495 and 6501, respectively. These results show that the number of 
function evaluations of TLBO is less than those of other evolutionary algorithms. Based on the obtained 
simulation results, we can conclude that the changes of the number of fitness function evaluations of the 
proposed algorithm are less than other evolutionary algorithms for all cases.  

The simulation results in the tables demonstrate that the proposed evolutionary algorithm converges to 
global optimum with a smaller standard deviation and less function evaluations and leads naturally to the 
conclusion that the TLBO algorithm is a viable and robust technique for data clustering.   
 

5. Conclusion 
 
The clustering analysis is a very important technique and has attracted much attention of many 

researchers in different areas. The K-means algorithm one of the most efficient clustering method and is 
very simple that has been applied to many engineering problems. This paper has applied a newly developed 
TLBO algorithm for solving the clustering problem. The proposed algorithm has been implemented and 
tested on several artificial and well known real, the result illustrate that the proposed TLBO optimization 
algorithm can be considered as a viable and an efficient heuristic to find optimal or near optimal solutions 
for clustering problems of allocating N objects to k clusters. The experimental results indicate that the 
proposed optimization algorithm is at least comparable to the other algorithms in terms of function 
evaluations and standard deviations.  
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