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ABSTRACT 
 

Wiener index of a graph is defined to be the sum of the distances of each pair of vertices. Schultz index of a 
graph is sum of di(aij+dij ), where aij and dij are the ijth entry of the adjacency and distance matrices of the 
graph and di is degree of vertex i for all 1 , ( )i j V G  . Definition of Padmakar-Ivan (PI) and Szeged 
indices is based on the number of vertices and edges which are nearer to one end of a given edge than the 
other end. Topological indices of many molecules with structures near to cube has been widely studied in 
chemistry. In this paper we give explicit formulas for four topological indices(Wiener, Schultz, PI and 
Szeged) of hypercubes and their corresponding Euclidean graph, a weighted graph with weight of an edge 
is equal to Euclidean distance between its endpoints. Also some bounds have been deduced.  
KEYWORDS: Topological indices, Hypercubes, Euclidean graphs. 

 
1 INTRODUCTION 

 
Graph theory is a useful tool in many areas in mathematical chemistry. Topological indices are graph 

theoretical concepts which has a lot of applications in chemistry [9]. These indices are parameters over 
graphs of molecules which has been usually based on the concept of distance between vertices (or edges) of 
the graph [10]. The first index of this type has been introduced in 1947 by H.Wiener [1]. Several other 
indices have been defined later [10]. A lot of work has been done on the indices either from a chemical 
point of view or through purely mathematical approaches. Some relations has been found between indices 
[3], indices of some classes of graphs has been detected[8], some complexity concepts has been studied on 
chemical graphs [5] and purely mathematical work has been done on relations of Wiener index and 
matching of a graph[4]. 

Our work aims to find out explicit mathematical formulas for four important indices of hypercubes. In 
this context ( , )G V E is a graph with vertex set 1( ) { , , }nV G v v  and edge set 

1( ) { , , }mE G e e  . For simplicity we use V and E for vertex and edge set of G respectively. The 

adjacency matrix of G, written A(G), is the n-by-n matrix in which entry ija , is the number of edges in G 

with endpoints { , }i jv v  [12]. Also D(G), distance matrix of G has ijd  as its ijth entry, where ijd is the 
distance between vertices i and j [11]. All over this paper our graphs are simple and connected so entries of 
adjacency matrix are 0 or 1. In next section, we begin by the definition of four of these indices. 
 
2   Definitions 
The first topological index which introduced by Wiener was defined as follows due to the notations which 
are mentioned in last section. 
Definition 2.1 [9]  The Wiener index of a graph G is  

,

1( ) ( , )
2 u v V

W G d u v


   

where d(u, v) is the distance between vertices u and v on the shortest path between them and sum is taken 
over all pairs of vertices of G. 
 
Definition 2.2 [7]  The Schultz index of a graph G is  
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( ) ( )i ij ij
i j

MTI G d a d   

where id is degree of ith vertex in G and ija  and ijd  are entries in row i and column j of adjacency matrix 
A(G) and distance matrix D(G) of G. 
 
Definition 2.3 [14] Let e uv be an edge of G with endpoints u and v and ( | )em u G  be the number of 
vertices in G which are closer to u than v. Then the Szeged index of a graph G is 

2( ) ( | ) ( | )Z e E e eS G P m u G m v G , where sum is taken over all edges of G. 
 
     The distance from a vertex to an edge in a graph is the minimum of the distances of the vertex from the 
end-points of the edge. With respect to this we have the following definition. 
 
Definition 2.4 [13]  Let e uv be an edge of G with endpoints u and v and ( | )en u G  be the number of 
edges in G which are closer to u than v. Then, the PI index of G is 

2( ) ( ( | ) ( | ))e E e ePI G P n u G n v G  , where sum is taken over all edges of G. 
 
      Structure of many of molecules for which the indices has been studied is similar to a cube. In addition 
Euclidean distances in chemical structures are as important as lengths of paths in their graphs [6]. This 
motivates us to look for indices of hypercubes. To prepare mathematical background we need the following 
definitions. 
 
Definition 2.5 [12] An n-dimensional cube or hypercube nQ  is the simple graph whose vertices are the n-
tuples with entries in {0, 1} and whose edges are the pairs of n-tuples that differ in exactly one position. 
 
Definition 2.6 [2] Euclidean graph is a weighted graph in which the weights are equal to the Euclidean 
lengths of the edges in a specified embedding. 
 
     In this context Euclidean graph of a graph G is a new graph, denoted by GE , with vertex set 

( ) ( )GV E V G  and edge set ( ) ( ) ( )GE E V G V G   such that weight of each edge is equal to its 

Euclidean length. (Corresponding to the above definition) For simplicity we use notation nE  instead of 

nQE . 
     In what follows, we find the explicit mathematical formulas for Wiener, Shultz, PI and Szeged indices 
of hypercubes and Euclidean graphs.  
 
3   Indices of hypercubes 
At first, the Wiener index of hypercube nQ  is computed and the result expressed as an explicit 
mathematical formula. 
Theorem 3.1  Let nQ  be an n-dimensional cube. Then Wiener index of nQ is 1( ) 4n

nW Q n  . 

     Proof. Note that nQ  is vertex transitive, so for each pair u and v of vertices of nQ , sum of the distances 

of v from other vertices is equal to that of u. Now for every i, 1 i n  , if a vertex is at distance i from 

(0, ,0)v    then it must have 1 in exactly i positions. The number of such vertices is 
n
i

 
 
 

. So sum of 

distances of all vertices of nQ  from v is 
1

n

i

n
i

i

 
 
 

 . Now consider that 
1

(1 )
n

n i

i

n
x x

i

 
   

 
 . Taking 
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derivations from both sides of the equality we have 1 1

1
(1 )

n
n i

i

n
n x i x

i
 



 
   

 
 . If we put 1x   then 

1

1
2

n
n

i

n
i n

i




 
 

 
 . nQ  has 2n  vertices, therefore 1 11( ) 2 2 4

2
n n n

nW Q n n     . 

 
In the next theorem the Szeged index of hypercube nQ  is computed. 

Theorem 3.2  Szeged index of n-dimensional cube nQ  of order n is 3 22 n . 

     Proof. Let e uv be an arbitrary edge of nQ  and ( )em u  the number of the vertices of nQ  nearer to 

u than v. Since nQ  is vertex transitive then ( ) ( )e em u m v  for every edge e uv . Again vertex 

transitivity allows us to suppose that (0, ,0)u    and (1, ,0)v    without loss of generality. If a 
vertex is at distance i from u, then its distance from v could not be more than 1i   (1 i n  ). Such a 
vertex should have 1 in i coordinates other than the first one. The number of such vertices which are at 

distance i from u and at distance 1i   from v is 
1n

i
 

 
 

. So 

1 1

0 0

1 2

3 2

1 1
( ) 2

2 (2 )
2 .

n n
n

n
i i

n n

n

n n
Sz Q

i i

 

 





    
    

   




 
 

 
An explicit formula is concluded for the PI index of nQ  in the following theorem.  

Theorem 3.3  2 1( ) ( 1)2 n
nPI Q n   . 

     Proof. Let e uv be an edge of nQ  and ( )en u  be the number of edges nearer to u than v. Because of 

vertex and edge transitivity of nQ  we just need to calculate ( )en u  for (0, ,0)u    and 

(1, ,0)v   . If an edge is at distance i (1 i n  ) from u and distance 1i   from v then one of its 
endpoints should have 1 in i of its coordinates other than the first coordinate and the other endpoint should 
have exactly one extra 1 in a coordinate other than the former 1i   coordinates. So the number of such 

edges is 
1

( 1)
n

n i
i
 

  
 

. So 

1

0

1
1

0

1
1

0

1 2

2 1

1
( ) 2 2 ( 1)

1
2 ( 1)

1
2

2 ( 1)2
( 1)2 .

n
n

n
i

n
n

i

n
n

i

n n

n

n
PI Q n i

i

n
n i

i
n

i

n
n















 



 
     

 
 

   
 

 
  

 
  

 





  

 
The forth index, Schultz index, is found for nQ  in next theorem. 
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Theorem 3.4  2 2 1( ) 5 2 2n n
nMTI Q n n  . 

     Proof. We have ( ) ( )n j ij ij
i j

MTI Q d a d  . Obviously id n  for every vertex of nQ . Also 

if two vertices are adjacent then 1ija   and 1ijd  , then 2ij ija d  , otherwise ij ij ija d d  . The 

number of pair of adjacent vertices is 12 2nn    because each pair of adjacent vertices should have 
exactly one different coordinate (which is possible in n ways), this coordinate can be 0 or 1 (2 ways) and 
each of the other 1n   coordinates can be either 0 or 1( 12n  ways). Similarly the number of pair of 

vertices in distance i is 2 2i n in
i

 
 
 

 Therefore 

)

2

2 1 1

2 2 1

( ) 2( 2 2

2 2 ( 2 )
5 2 2 .

n
n n

n
i

n n n

n n

n
MTI Q n n i

i

n n n n
n n



 



  
   

  
  

 



 

 
     At the end of this section we just mention relations between some of these indices arisen easily from 
their formulas. 

2( ) ( )
n

n nSz Q W Q
n

  

and 

1( ) 8 ( ).n nPI Q W Q   
 
4    Indices of Euclidean graphs of n-dimensional cubes 
For finding our desire indices for Euclidian graph of n-dimensional cube we need a lemma which is 
mentioned following. 

Lemma 3.1  If two vertices in nQ  are at distance i from each other then their Euclidean distance is i  
and vice versa. 

     Proof. Two vertices in distance i have exactly i different coordinates, so their Euclidean distance is i . 
 
Now, by using the above lemma, we express the Wiener, Shultz, PI and Szeged indices of Euclidian graph 
of n-dimensional cube.  

Theorem 4. 2   1

1
( ) 2

n
n

n
i

n
W E i

i




 
  

 
 . 

     Proof. From the above lemma we just need to replace i with i  in theorem 1.0.1. Using Cauchy-
Schwartz inequality we have 

2 2

1 1 1
.

n n n

i i i

n n
i i

i i  

                    
    

So 

1

1
( ) 2 .

n
n

n
i

n
W E i

i




 
  

 
         (I) 

 
Theorem 4. 3   2 1( ) 2 ( ) 2n

n nMTI E nW E n   . 

     Proof. From lemma 4.1 replace i with i  in the proof of theorem 3.4 and use theorem 4.2. 
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     Inequality I, gives the following bound 

2( 1)( ) 2 2
2

n
n

nn nMTI E n n
n

        
. 

 
Theorem 4.4   PI and Szeged indices of Euclidean graph of an n-dimensional cube are equal to PI and 
Szeged indices of that n-dimensional cube respectively. 
     Proof. From lemma 4.1 it is obvious that for any edge uv in nQ  an arbitrary vertex w is nearer to u in 

nQ  if and only if it is nearer to u in nE  and hence PI and Szeged indices does not differ for nQ  and its 

Euclidean graph nE . 
 
5   Conclusion 

 
We can compute and express completely the explicit mathematical formulas for four topological 

indices, Wiener, Schultz, PI and Szeged indices, for hypercubes and Euclidean graph of n-dimensional 
hypercubes that these indices have applications in mathematical chemistry, chemometrics and nano-
computations.  
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