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ABSTRACT 
 
A typical GA solves unconstrained optimization problems, so that a traditional GA method was presented 
in which penalty functions have been utilized as the selection criterion of surviving individuals to apply GA 
for constrained problems. Sensitivity of the convergence properties of this method to the penalty parameter 
makes the try for a recently new method on title of “Modified Genetic Algorithm (MGA)”, with a special 
selection criterion to overcome this sensitivity difficulty; but this new method is not general to apply in any 
optimization problem; thus, in this paper, a method has been proposed to generalize the recent modified 
GA. Furthermore, in this method, the cost of iteration has been minimized by selecting a suitable 
termination check. In this paper, it also has been tried to compare the mentioned generalized modified GA 
with the particle swarm optimization (PSO) method. The last section of the article consists of application of 
this method in some famous optimization problems and a MDO (multidisciplinary design optimization) in 
aerospace field. 
KEYWORDS: Genetic Algorithm; Functional Constraint; Optimization; PSO 
 

1. INTRODUCTION 
 
In the design of today's increasingly complex engineering systems, the designer is increasingly 

dependent on computationally expensive computer analysis and simulation codes [1]. Physics, Biology, 
Economy or Sociology often have to deal with the classical problem of optimization [2]. 

The apparent billion years triumph of biological evolution has inspired computer scientists to 
implement, analyze, and utilize similar methods to solve e.g. optimization problems that are known or seem 
to be computationally hard and/or complex. This has led to the study of genetic algorithms (GA) and other 
evolutionary methods in global optimization and related engineering fields[3]. 

Genetic Algorithm(GA) is inspired by the mechanism of natural selection which is coined as 
“survival of the fittest”. The basic principles of GA were first proposed by Holland, now GA has become 
an important research field of multiple disciplines[4]. 

John Holland is often considered the inventor of Genetic Algorithms. The name genetic algorithm 
originates from biology, because in the method populations are generated, best ones are selected, crossover 
in genes and mutation occurs. Genetic algorithms can be described as being global search methods. They 
are optimization algorithms, which do not require information about derivatives(gradients)[5]. 

Perhaps the most attractive features of genetic algorithms are on one hand their simplicity, which 
makes it easy to implement and tailor them to practical problems and on the other and their ability to solve 
hard problems. The other prominent feature is that GAs are general. They are quite independent of the 
details of the object problems. 

GAs operate on a population of potential solutions applying the principle of survival of the fittest to 
produce successively better approximations to a solution[6]. 

Genetic algorithms are widely used for unconstrained optimization problems with general agreement 
about the fundamentals of the implementation. But their application to constrained optimization problems 
remain sun settled. However, many optimization problems, especially those in engineering design, are 
highly constrained. For such problems, it is necessary to find global optima not violating any constraint. In 
general, constraints may be linear or non-linear, and equality or inequality in type[7]. 

Traditionally, external penalty functions have been used to convert a constrained optimization 
problem into an unconstrained problem for GA-based optimization. This approach requires the somewhat 
arbitrary selection of penalty draw-down coefficients. [8]Convergence of this conventional method is 
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sensitive to the penalty parameter. If the penalty parameter is substantially larger than its optimum value, 
which cannot be estimated a priori, the individuals tend to prematurely converge on a local minimum. On 
the other hand, if the penalty parameter is smaller than its optimum value, the individuals probably cannot 
converge on a feasible region. Thus, in a method called modified GA (MGA), some remedies have been 
applied in the selection process to eliminate the difficulty of the penalty function method for GAs[9]. 

Nevertheless, the mentioned modified GA is not general to cover any problem with any number of 
optimization variables. Thus, in the method proposed in this paper, which has been called generalized 
modified GA (GMGA), some modifications have been applied in comparison with that modified GA to 
cover any optimization problem. Furthermore, in this method, accuracy of the problem is on control and the 
cost of GA iteration can be minimized as it is possible.  

A functional constraint is an implicit or explicit function of one or more optimization variables that 
restricts the valuation of the optimization variables.  

Through application to some famous optimization problems, validation of the proposed method in this 
study is demonstrated. Furthermore, the proposed method is applied to a MDO application, and the 
effectiveness of the proposed method for a practical problem is confirmed.  

In this paper, the mentioned GMGA is compared with the particle swarm optimization (PSO) method.  
 
1- Genetic Algorithms  

The limited utility of standard search algorithms in our problem of interest led to the development of 
a random ‘genetic’ type search[10]. 

Genetic Algorithm (GA), which borrows the idea of Darwinian principle of natural selection, is a 
powerful global search and optimization method. 

Genetic algorithms for optimization are non-derivative, non-descent, random-search procedures for 
functional minimization, and their algorithmic structure is based on biological concepts[11]. 
 
1-1- Basic Form of Genetic Algorithm 

The several kinds of evolutionary algorithms are distinguished by the problems to which they are 
applied, the codings by which their chromosomes represent candidate solutions, the operators they apply to 
those chromosomes, and how they perform and use selection. Genetic algorithms(GAs) are most often 
applied to problems of combinatorial optimization, whose solutions they encode as strings of symbols[12]. 

A simple genetic algorithm composes of five operators: evaluation, selection, crossover, mutation, 
and sampling. The evaluation operator assigns a fitting score to a “gene” (represented by a vector of real 
numbers or binary ones) in the population. Superior gene should be granted better fitting score than inferior 
counterparts[13]. 

t := 0; 
Compute initial population 0B ; 
WHILEstopping condition not fulfilledDO 
BEGIN 
Selectindividuals for reproduction; 
Createoffsprings by crossing individuals; 
Eventuallymutate some individuals; 
Computenew generation 
END 
 

As obvious from the above algorithm, the transition from one generation to the next consists of four basic 
components: 
Selection: Mechanism for selecting individuals (strings) for reproduction according to their fitness 
(objective function value)[14]. This operator is crucial for the performance of the GA, since it may lead the 
algorithm to premature convergence and limited search scope (or genetic diversity) by repeatedly choosing 
very strong individuals with similar genetic code[15]. 
Crossover: Method of merging the genetic information of two individuals; if the coding is chosen 
properly, two good parents produce good children. 
Mutation: In real evolution, the genetic material can by changed randomly by erroneous reproduction or 
other deformations of genes, e.g. by gamma radiation. In genetic algorithms, mutation can berealized as a 
random deformation of the strings with a certain probability. The positive effect is preservation of genetic 
diversity and, asan effect, that local maxima can be avoided. 
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Sampling: Procedure which computes a new generation from the previous one and its off springs. 
The four above stages differ from a kind of GA to another, so that there are several kinds of GA. The 
examples for crossover part are as: Uniform crossover[16], One-Point crossover and Two-Point crossover, 
and also selection part is as: tournament selection. However, GAs are classified in two main category: 
Real-Coded and Binary-Coded GA. In the initial formulation of genetic algorithms(GAs), the search space 
solutions are coded using the binary alphabet; however, other coding types, such as real coding, have also 
been taken into account to deal with the representation of the problem[17]. Real-coded genetic algorithms 
(RCGAs) attract attention as numerical optimization methods for nonlinear systems[18]. 
 
1-2- Conventional GA with Adaptive Penalty Functions [8] 

Most applications of genetic algorithms (GAs) in handling constraints use a straightforward penalty 
function method[19]. 

The genetic algorithm (GA) has been receiving increasing use as a global search and optimization 
methodology, and GA applications now extend to aerospace optimization problems.  

The GA is well suited to unconstrained optimization, yet most “real-world” engineering design problems 
involve constrained optimization. To remedy this, it has been common practice to use external penalty 
functions to transform a constrained objective function into an unconstrained fitness function as bellow:  

     



CONN

i
i XPXXf

1
    (1) 

Nomenclature 
c : penalty draw-down coefficient   Xf :  fitness function  n:  generation number

 CONN :number of constraints   XP : penalty function  X : design 

variable vector  X : objective function   : standard deviation of fitness  2 : 

variance of fitness  Xg : constraint function  , 0)( Xg  
 
1-2-1 Penalty Function Forms  

When penalty functions were first applied to genetic algorithms for constrained optimization, the 
external quadratic penalty function was used because of its tradition of use with calculus-based 
unconstrained optimization techniques. This was used as one of three penalty function forms investigated in 
this study and provided the baseline approach. This penalty function is generally expressed as: 

    2,0max XgcP iii     (2) 
The continuous derivative requirement of calculus-based methods does not exist in the GA-based 

optimization approach, so the second penalty function form investigated in this study was an external linear 
penalty function. This form is simply: 

   XgcP iii ,0max    (3) 
Further, the GA has no requirement for objective function continuity. Because of this, an external 

step-linear functional form was the also investigated in this study. This form uses the draw-down 
coefficient to determine the step size and is expressed as: 

  






Xgc
P

ii
i 1

0
else
if   0Xg i   (4) 

 
1-2-2 Draw-Down Coefficient Strategies 

Choosing the draw-down coefficient values, ic , for a penalty function is often arbitrary. A fundamental 
tradeoff to be considered when using a penalty function lies in the proper choice of the draw-down coefficient. 
A small coefficient will impose a smaller penalty than a large coefficient for the same magnitude of constraint 
violation. In the GA, a large penalty (resulting in a poor fitness) can quickly eliminate infeasible solutions 
from the search. These infeasible solutions may contain building blocks, or schema,1 that are key elements of 
the optimal solution; therefore, it may be beneficial to allow infeasible designs to survive in pursuit of the 
optimum. Conversely, using a small draw-down coefficient may allow the survival of infeasible designs to the 
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extent that the population converges at an infeasible point as the optimal fitness solution. Clearly, a 
compromise must be struck between these two extremes. The goal of an adaptive penalty function is to change 
the value of the draw-down coefficient during the search allowing exploration of infeasible regions to find 
optimal building blocks, while preserving the feasibility of the final solution. 

Two basic forms of draw-down coefficient strategies have been identified in a previous study: 
generation number-based and population fitness-based. These strategies have been amended and used for 
this work. 
First, a constant draw-down coefficient provided a reference to the traditional approach. 
    c = 2  (constant valued)   (5) 
 

The generation number-based strategies increase the value of the draw-down coefficient with 
successive generations. These strategies are expressed as: 
 

    c = n  (linear increase)    (6) 
 

    c = 2n  (quadratic increase)   (7) 
 

    c = n2  (exponential increase)   (8) 
 

Fitness-based strategies are meant to increase the penalty coefficient when the population fit nesses 
are diverse, causing the population to move toward an optimal feasible design; and to decrease the 
coefficient when the population begins to become homogeneous, allowing some infeasible designs with 
important design information to survive. These forms use the standard deviation and variance of the 
population’s fitness values and are: 
 
    c =   (standard deviation)   (9) 
 

    c = 2  (variance)    (10) 
 

These six strategies for draw-down coefficients were applied to two mathematical test functions and 
an engineering design problem. Performance of the different strategies were measured in terms of the best 
feasible solutions discovered by the GA and in terms of computational cost as measured by the number of 
generations required to reach a stopping criterion. 
 
1-3- Modified Genetic Algorithm[9] 

The real-coded GA, in which the variables vector X (all the optimization variables gathered in one 
vector called variables vector) is regarded as the gene of each individual, is used in this method. The 
algorithm of this approach is outlined as follows. 
 
1-3-1 Initialization  

The initial PN  population of the variables is prepared at random. Each variable is determined by the 
uniform random numbers.  
 
1-3-2 Crossover  

Multi parental unimodal normal distribution crossover (UNDX-m) is used as the crossover model. 
This model achieves an efficient global search. The algorithm of UNDX-m is as follows:  2m  parents 

 2)1( ,, m
PP XX  are selected at random. The median point of the first  1m  parents is defined as GX  

; i.e.. 

    





1

1

)(

1
1 m

j

j
PG X

m
X     (11) 

 

The difference vectors of each parent are defined as  
 

   G
j

P
j XXd  )()(ˆ  , )2,,1(  mj   (12) 
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Let D̂  be the length of the component of )2(ˆ md  orthogonal to )()1( ˆ,,ˆ mdd  . Moreover, let 
)()1( ˆ,,ˆ mnee   be the orthonormal basis of the subspace orthogonal to )()1( ˆ,,ˆ mdd  . Generate children 

 C
i

C NiX ,,1)(   by the equation  

   





mn

j

j
j

m

j

j
jG

i
C evDdwXX

1

)(

1

)()( ˆˆˆ ,( 3n ) (13) 

Where n is the length of the variables vector X and jw , jv  are random numbers that conform to the normal 

distribution with 0 mean and variance of 2
w , 2

v  respectively. w , v are specified by the value 
determined by following equations. Note that m is valued by the user depending on the problem and the 
value of n (m must be less than n). 

   
mw
1

  , 
)2)((2

)1(3





mmn
m

v  (14) 

 

1-3-3 Selection 
Select the surviving individuals from  2m  parents and CN  children based on some criteria. In 

this step of the GA, a fitness function is usually used as a criterion of selection. In order to handle the 
constraints, a penalty function has been used frequently as part of the fitness function, of the form  
 

    )()()( XrEXFXFr     (15) 

   



IE m

i
i

m

i
i XHXGXE

11
)](,0max[)()(   (16) 

 

where   0XG (with Em dimension) and   0XH (with Im dimension) are the functional 

constraint vectors of the problem, furthermore and  XE  denote the penalty parameter and the constraint 
error, respectively. Because the optimal value of r cannot be estimated a priori, r is usually specified as an 
arbitrarily large value so that the global minimum of the penalty function (15) becomes that of the original 
constrained problem. However, the individuals tend to converge on a local minimum in the case of large r, 
because the contribution of the objective function to the penalty function with large r is small, speciallyin 
the early stages of evolution (i.e., when the constraint error of each individual is large).  
 

Step 1 
Rank the generated CN  children in ascending order on the penalty function. Set the rank parameter 1i  
 

Step 2 
Carry out the selection with respect to the i th child )(i

CX : if there are some parents )( j
PX  that satisfy both  

 

       )()( j
P

i
C XFXF      (17) 

       )()( j
Pr

i
Cr XFXF      (18) 

 

Replace the nearest parent )(n
PX  with )(i

CX ,  i.e., 
2

)()( i
C

n
P XX   is minimum among the 

parents that satisfy both requirements (17) and (18)  . If the replacement was performed,or CNi  , or 
there are no parents that satisfy (18), go to step 3. Otherwise, set 1 ii  and repeat step 2. 
 

Step 3 
Newly rank the children in ascending order on the objective function and set the rank parameter 1k . 
 

Step 4 
Carry out the selection with respect to the k th child )(k

CX : if there are some parents )( j
PX  that satisfy  
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       )()( j
Pr

k
Cr XFXF      (19) 

 

replace the nearest parent )(n
PX  with )(k

CX . If the replacement was performed, or CNk  , go to 
termination check step. Otherwise, set 1 kk  and repeat step 4. 
 
1-3-4 Termination Check  

If the generation number (crossover and selection introduced above, correspond to one generation) 
equals the specified number GN , terminate the algorithm. Otherwise return to crossover step. (End)  

No mutation scheme is performed in the above GA, because UNDX-m crossover also plays the role 
of mutation, i.e., random perturbation of the problem variable vector.  
 
2- Generalized Modified GA 

The method introduced in thesection (1-3) is applied for optimization problems with more than three 
variables because of its kind of crossover. The proposed method in this section is general for any kind of 
optimization problem. In this method some theory correction has been occurred comparing with the 
modified GA mentioned above.  
 
2-1 Initialization  

This part of the proposed method is the same as modified GA, presented in section (2-3-1), i.e., in this 
method, the initial PN  population of the variables is also prepared at random.  
 
2-2 Crossover  

If the number of optimization variables was more than three, the UNDX-m model of crossover is used; 
otherwise, for problems with less than three optimization variables, a UNDX model is applied. Therefore, a 
multi selectable crossover is proposed to cover the optimization problems with any number of variables.  
 
UNDX Crossover 

When optimizing function has epistasis among parameters the UNDX generates children near the 
linesegment connecting two parents so that the children lie on the valley where the parents locate (Fig.1). 
The mathematical description can be written as follows: where 1c and 2c are children, 1p and 2p are 
parents and m is the middle point of parents.  





l

k
kk ezezmc

2
111 , 




l

k
kk ezezmc

2
112   (20) 

 
 2

11 ,0~ Nz     ,     2
2,0~ Nz k  lk ,,2      ,    11 d      ,    ld 22     

   
      221 ppm      (21) 

  12121 ppppe   , ji ee  jinji param  ;,,0,   (22) 
 

1d is the distance between parents and 2d isthe distance 

between the third parent 3p (randomly selected)and the 

line connecting 1p to 2p .  2
11 ,0~ Nz  and 

 2
2,0~ Nzk  lk ,,2   are normal distributed 

random numbers. and  are constants given by the 
user. 
 

        Figure1:UNDX Crossover 
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2-3 Selection 
In the modified GA, the surviving individuals are selected from  2m parents and CN children 

based on its selection criteria, but in this proposed method, surviving individuals have been selected 
from PN parents and CN children based on the same selection criteria as that of the modified GA, i.e., all 
the surviving parents of each generation in the population have been participated with their children in the 
selection. By this, all the surviving individuals in the population are given the chance of selection, so that 
the possibility of creating feasible individuals with the best value of fitness becomes greater than before.  
 
2-4 Termination Check  

In the modified GA, by monitoring the results of a trial run, the maximum generation number GN was 
determined as the value for which further improvement of the average of the penalty function could be 

regarded as negligible. For getting an appropriate GN , the problem must be pre-optimized and this requires 
to have enough information on problem and to spend more cost. In this proposed method, the termination 
criterion is the differential error between the optimal point of present generation and that of the previous 
one, i.e., this error must be less than an accuracy value given by user. By this technique, the termination of 
algorithm is on control, i.e., the optimum can be achieved with problem required accuracy. Furthermore, 
this termination criterion makes the cost of algorithm iteration be decreased.  
 
3- Optimization through Particle Swam Intelligence[20-23] 

Particle Swarm Optimization (PSO) is a population based stochastic optimization technique developed 
by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bird flocking or fish schooling.  
PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The 
system is initialized with a population of random solutions and searches for optima by updating generations. 
However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential 
solutions, called particles, fly through the problem space by following the current optimum particles. 

Each particle keeps track of its coordinates in the problem space which are associated with the best 
solution (fitness) it has achieved so far. (The fitness value is also stored.) This value is called pbest. 
Another "best" value that is tracked by the particle swarm optimizer is the best value, obtained so far by 
any particle in the neighbors of the particle. This location is called lbest. When a particle takes all the 
population as its topological neighbors, the best value is a global best and is called gbest. 

The particle swarm optimization concept consists of, at each time step, changing the velocity of 
(accelerating) each particle toward its pbest and lbest locations (local version of PSO). Acceleration is 
weighted by a random term, with separate random numbers being generated for acceleration toward pbest 
and lbest locations.  

In past several years, PSO has been successfully applied in many research and application areas. It is 
demonstrated that PSO gets better results in a faster, cheaper way compared with other methods.   

Another reason that PSO is attractive is that there are few parameters to adjust. One version, with 
slight variations, works well in a wide variety of applications. Particle swarm optimization has been used 
for approaches that can be used across a wide range of applications, as well as for specific applications 
focused on a specific requirement.  
Vik+1 = wVik +c1 rand1(…) x (pbesti-sik) + c2 rand2(…) x (gbest-sik) …..  (23) 

where, 
vik  : velocity of  agent i at iteration k,                                                                                                   
w: weighting function,                                                                                                                                                                         
cj : weighting factor,                                                                                                                         
rand : uniformly distributed random number between 0 and 1,                                                                              
sik : current position of agent i at iteration k,                                                                                                    
pbesti : pbest of agent i,                                                                                                                            
gbest: gbest of the group. 
 

The following weighting function is usually utilized in (23) 
w = wMax-[(wMax-wMin) x iter]/maxIter      (24) 

where 
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wMax= initial weight, 
wMin = final weight, 
maxIter = maximum iteration number, 
iter = current iteration number.  

 

sik+1 = sik + Vik+1   (25)   

 
 

Figure 2 : PSO Algorithm Flow Chart 
 

4- Application Examples 
In this section, some optimization problems have been presented which use the “Generalized 

Modified GA” method as the optimization operator.  
 
4-1- One-dimensional Optimization Problem 
A Constrained Problem 

A simple one-dimensional math problem was studied, because the solution for this problem is easy to 
determine and visualize. The problem was simply: 
 

  min   2
1 xxf   

  subject to 2x  
 

Solution Based on Conventional GA with Adaptive Penalty Functions: 
 

Table 1 
Penalty Function Type   External Quadratic External Linear External Step-Linear 

Draw-Down Strategy   Optimal 1f  Optimal x  Optimal 1f  Optimal x  Optimal 1f  Optimal x  

Constant 4.0157 2.0039 6.5092 2.5513 4.0157 2.0039 
Generation Linear Increase 5.3672 2.3167 4.0157 2.0039 4.0157 2.0039 

Generation Quadratic Increase 4.1739 2.0430 4.9238 2.2190 4.0157 2.0039 
Generation Exponential Increase 4.0944 2.0235 4.0157 2.0039 4.0157 2.0039 
Fitness-Based Standard Deviation 4.0157 2.0039 4.0157 2.0039 4.1739 2.0430 

Fitness-Based Variance 4.3352 2.0821 4.0944 2.0235 4.0157 2.0039 
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Figure 3. A surface plot 
of the function 2f  

Solution Based on Generalized Modified GA:  
Table 2 

Optimal 1f  Optimal x  Accuracy Maximum Generation Number 

4.108943 2.027053 210
 

12 

4.009286 2.002320 310
 

29 

4.000019 2.000005 510
 

74 

4.000001 2.000000 610
 

Maximum 
Accuracy 

176 

 

4-2- Two-dimensional Optimization Problem 
An Unconstrained Problem 
Find the maximum of the following function.  
 

:2f   R 210,10   

 
).(001.01
)(sin1

, 22

222

yx
yx

yx



  

 
As one can see easily from the plot in Fig. 3, 
the function has a global maximum in 0 and 
a lot of local maxima. 
 

 

Solution Based on Generalized Modified GA:  
Table 3 

Optimal 2f  Optimal x  Optimal y  Accuracy Maximum Generation Number 

0.9982519 
4.144014*

210
 -5.483898*

310
 

310
 

148 

0.9997131 
1.609740*

210
 5.249945*

310
 

410
 

461 

0.9999635 
5.676770*

310
 2.069079*

310
 

510
 

594 

1.000000 
1.402405*

410
 -8.068331*

510
 

810
 

Maximum 
Accuracy 

786 

 

A Constrained Problem 
This two-dimensional mathematical optimization problem is configured as next example. This 

multimodal objective function would be challenging to solve with a calculus-based method, but is well 
suited for the genetic algorithm. The problem is:  

Min    2
2

1
22

2
2

13 sinsin25 xxxxxf   

  Subject to 22
2

1  xx  
Solution Based on Conventional GA with Adaptive Penalty Functions: 

Table 4 
Penalty Function Type 

  
External Quadratic External Linear External Step-Linear 

Draw-Down Strategy 

  

Optimal 

3f  

Optimal 

1x  

Optimal 

2x  

Optimal 

3f  

Optimal 

1x  

Optimal 

2x  

Optimal 

3f  

Optimal 

1x  

Optimal 

2x  

Constant 9.6901 -3.0863 0.0583 9.5929 2.9942 -0.0583 9.6298 -0.0154 3.0925 
Generation Linear 

Increase 
9.6427 -2.9881 0.0706 9.6455 -3.0065 -0.0768 10.0915 -0.0645 2.8775 

Generation Quadratic 
Increase 

9.5145 -3.0433 0.0215 9.6506 -3.0556 -0.0706 9.6269 -2.9451 0.0031 

Generation Exponential 
Increase 

9.6269 -2.9451 0.0031 9.5114 -3.0310 0.0276 9.5191 -3.0126 -0.0338 

Fitness-Based Standard 
Deviation 

9.5819 -0.0031 3.0802 9.5212 -0.0338 3.0310 9.5816 -0.0522 3.0495 

Fitness-Based Variance 9.6876 -0.0215 2.9328 9.6212 -2.9881 0.0645 9.9417 2.9328 0.1013 
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Solution Based on Generalized Modified GA:  
Table 5 

Optimal 3f  Optimal 1x  Optimal 2x  
Accuracy Maximum Generation Number 

9.494057 -3.032859 
7.366068*

310
 

210
 

150 

9.492272 
-9.016127*

410
 

3.006921 310
 

250 

9.488236 
-5.253371*

410
 

3.020720 410
 

300 

9.488197 
-4.223884*

510
 

3.019490 610
 

Maximum 
Accuracy 

451 

 
4-3- MDO Application  

The design optimization problem, in which the objective function is affected byseveral engineering 
subjects through design process, is called multidisciplinary design optimization (MDO). In this mood, 
subsystems are designed so that the main system is optimized with respect to the given criterion. In this 
kind of problems, it is not necessary to optimize each subsystem with respect to its criterion, but it is just 
enough to optimize total system based on a special criterion [24]. 

For an aerospace application of the proposed method, the MDO of a flying vehicle is studied in this 
section. At first, this vehicle must be designed to fly on a trajectory so that its final height must be more 
than a given value (it is the problem functional constraint, because the flying height is an implicit function 
of design variables); then, the problem is to optimize the initial mass of vehicle so that it flies on an optimal 
trajectory.  
 
4-3-1-Problem Formulation [25] 

Figure 4 outlines the disciplines and data flow in this paper. A set of values is inserted into the 
variables and the disciplines are analyzed sequentially. Any analysis module, not only calculates the 
intermediate variable and passes them to other disciplines, but also computes function values of the 
equality and inequality constraints which should be satisfied. Problem inputs are demonstrated in figure 3 
and consist of three following groups. 
Technical Data and Technological Constraints  

Disciplines input parameters that don’t change during design cycle, are considered as technical data. 
Technological constraints are requirements about technologies to be used (for industrial reasons 
especially).In the other word, available technologies apply some limitation in design. Rocket motor length, 
diameter, case strength and material specifications, propellant characteristics and propellant loading density 
are some technical data and technological constrains. 
Mission Requirements 

These requirements consist of payload mass to be inserted into a given main mission orbit, injection 
accuracy, limitation on loads encountered by satellite, operational constraints such as range safety and 
launch azimuth. 
Initial Point 

Initial values for design variables generate initial point. Based on optimization algorithm selection, 
needs for feasible initial point may be neglected. 
4-3-2- Design Variables 
The variables represent geometric shapes of the vehicles (diameter of each stage, 1dm , 2dm ), propulsion 

performance(output mass rate of motors of each stage, 1m , 2m ), and parameters of optimized flight 

trajectory(maximum angle of attack during first stage maneuver m , final pitch angle e ).  
The design variables and their feasible range are shown in following table:  
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Table6 : Design Variables 
Design Variable Description Feasible Minimum Feasible Maximum 

(deg.) mx 1  
maximum angle of 

attack in first maneuver 
4 6 

(deg.) ex 2  
terminal value 
of pitch angle 

35 45 

(m) 13 dmx  
diameter of first 

stage motor 
1 1.2 

(m) 24 dmx  
diameter of second 

stage motor 
0.8 1 








s
Kg

15 mx   

mass rate of 
first motor 

168 176 








s
Kg

26 mx   

mass rate of 
second motor 

18 24 

 Subject to (flying height) intConstrahh   ( intConstrah = 44 Km) 
 
4-3-3- Analysis Modules  

To formulate design in a MDO problem form, four disciplines such as propulsion, weight, 
aerodynamic and trajectory, must be considered.  
Propulsion 

The propulsion analysis consists of Rap SRMD analysis code which was developed by MDO 
Laboratory. This code uses performance prediction equations and calculates principal design parameters. 
Input parameters include motor diameter, propellant properties, combustion thermo-chemical characteristic, 
thrust and burning time. Motor design algorithm scans chamber pressure and reference design height for 
minimum rocket motor weight. The code computes propellant weight, specific impulse, nozzle exhaust 
velocity, port and throat area, propellant burning area and motor dimensions. 
Weight Modules  

The vehicle weight is broken down into following major subsystems: Propellant, Motor case, Nozzle, 
Inter stage structure,  Payload adapter, Guidance set, and payload.  
Propulsion module calculates weight of propellant. Inter stage structure, payload adapter, and guidance set 
are estimated by statistical curve fitted Mass Estimate Relationships (MERs). Weight of motor case was 
calculated using special pressure vessels codes. 
Aerodynamics 

The external vehicle mold lines are not allowed to change. Semi empirical equations were used for 
aerodynamic coefficients computation. These methods developed from databases of analyses, flight tests 
and wind tunnel data for vehicles that were either flying or existing. 

Overall, there is good agreement for simple conventional ELV configuration. Good agreement is not 
expected for exotic configurations or revolutionary concepts due to the fact that Semi empirical codes are 
based on empirical methods. 

The modeling program generates tabulated aerodynamics coefficients. These tables present 
coefficient values relative to Mach number, Reynolds number and angle of attack. The trajectory module 
interpolates these data. The effect of aerodynamics shape and coefficients in system level variables has 
been considered. 
Trajectory Analysis  

This study implements a three-degree-of-freedom(3DOF) trajectory analysis. State variables are 
velocity, flight path angle, range, altitude and mass. Control variables are maximum angle of attack during 
first maneuver and optimized pitch program parameters. Generally, the trajectory analysis computes state 
variable profiles by integrating equations of motion with given control variable profiles and examines 
satisfaction ratings of constraint conditions during the flight. One of the characteristics in this study is to 
optimize the flight trajectory with other design variables, as already described [25]. 

By combining four discipline codes, described above, according to figure 4, a homogenous design 
environment has been achieved.  
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Figure4 : MDO Problem Formulation 

 
Optimal Solution Based on Conventional GA with Adaptive Penalty Functions: 

Table 7 
Penalty Function 

Type   
External Quadratic 

Draw-Down Strategy 

  

Optimal Initial 
Mass Optimal 1x  Optimal 2x  Optimal 3x  Optimal 4x  Optimal 5x  Optimal 6x  

Constant 15535.0713 5.253177 35.00 1.015640 0.837537 168.007828 18.00 
Generation Linear 

Increase 
15535.0713 5.253177 35.00 1.015640 0.837537 168.007828 18.00 

Generation Quadratic 
Increase 

15535.0713 5.253177 35.00 1.015640 0.837537 168.007828 18.00 

Generation 
Exponential Increase 

15535.0713 5.253177 35.00 1.015640 0.837537 168.007828 18.00 

Fitness-Based 
Standard Deviation 

15560.8975 5.345064 35.879765 1.018768 0.800000 168.703812 18.046921 

Fitness-Based 
Variance 

15550.6191 5.259042 36.573803 1.020332 0.935484 168.00 18.193548 

 External Linear 
Constant 15535.0713 5.253177 35.00 1.015640 0.837537 168.007828 18.00 

Generation Linear 
Increase 

15535.0713 5.253177 35.00 1.015640 0.837537 168.007828 18.00 

Generation Quadratic 
Increase 

15535.0713 5.253177 35.00 1.015640 0.837537 168.007828 18.00 

Generation 
Exponential Increase 

15535.0713 5.253177 35.00 1.015640 0.837537 168.007828 18.00 

Fitness-Based 
Standard Deviation 

15550.6191 5.259042 36.573803 1.020332 0.935484 168.00 18.193548 

Fitness-Based 
Variance 

15550.6191 5.259042 36.573803 1.020332 0.935484 168.00 18.193548 

 External Step-Linear 
Constant 15535.0713 5.253177 35.00 1.015640 0.837537 168.007828 18.00 

Generation Linear 
Increase 

15535.0713 5.253177 35.00 1.015640 0.837537 168.007828 18.00 

Generation Quadratic 
Increase 

15535.0713 5.253177 35.00 1.015640 0.837537 168.007828 18.00 

Generation 
Exponential Increase 

15535.0713 5.253177 35.00 1.015640 0.837537 168.007828 18.00 

Fitness-Based 
Standard Deviation 

15550.6191 5.259042 36.573803 1.020332 0.935484 168.00 18.193548 

Fitness-Based 
Variance 

15550.6191 5.259042 36.573803 1.020332 0.935484 168.00 18.193548 
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Optimal Solution Based on Generalized Modified GA & PSO :  
Table8 : Optimal Results of MDO 

Method Optimal 
Initial Mass 

Optimal

1x  

Optimal

2x  

Optimal

3x  

Optimal

4x  

Optimal

5x  
Optimal 6x  Flight 

Height 
[Km] 

GMGA 15534.19 5.252387 35.00 1.015640 0.837537 168.007828 18.00 44.14 
PSO 15536.00 5.30 34.50 1.10 0.81 167.90 18.30 44.00 
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Figure 5 : Convergence Process of Proposed GA in MDO Application 
 

5- Conclusion 
 

Through application to one and two-dimensional optimization problems and a MDO application with 
six optimization variables, it was demonstrated that the generalized modified GA, proposed in this article, 
could be used for any kind of optimization problem with any number of variable. As it was observed in the 
constrained and unconstrained problems solved in sections (4-1) and (4-2), this proposed GA could be 
suitable to optimize any constrained and unconstrained problem with any value of accuracy. Furthermore, 
this method specially is useful for problems with functional constraints (i.e., constraints that areimplicit or 
explicit function of one or more optimization variables). Controllability and generalization of this 
optimization method are its main properties. Rate of convergence in this method depends on constraint type 
and value of accuracy given by user.  

The sensitivity of convergence properties of conventional method,which is based on penalty functions, 
to penalty parameters makes the generalized modified GA operate better than that conventional method.  

PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms 
(GA), but unlike GA, PSO has no evolution operators such as crossover and mutation. PSO like MGA is 
weak to cover the problems with several numbers of variables, unlike GMGA. 
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