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ABSTRACT 

Obviously, data envelopment analysis has not discrimination power to distinguish between DEA efficient units. In 
this paper, is firstly determined efficiency score of decision making units under weight restrictions (WR) model. 
This weight restrictions point importance of indexes (inputs and outputs). Next are proposed two methods to rank. In 
first method is determined one common set of weights for the performance indices of only efficient DMUs under 
weight restrictions. Then these DMUs are ranked according to the efficiency score weighted by the common set of 
weights. In second method an ideal line will be defined and determined a common set of weights for WR-efficient 
DMUs then a new efficiency score will be obtained and be ranked them with it.  
KEYWORDS: DEA, Weight restrictions, Common weights, Efficiency score, Ideal line 
 

1. INTRODUCTION 
 
Charnes et al. [4] introduce data envelopment analysis (DEA) to assess the performances of a group of decision 

making units (DMUs) that utilize multiple inputs to produce multiple outputs. DEA divides DMUs successfully into 
two categories: efficient DMUs and inefficient DMUs. A ranking for inefficient DMUs is given, but the efficient 
DMUs have equal efficiency scores and they cannot be ranked.  

Some of the methods which are proposed for ranking efficient DMUs are mentioned here. Anderson and 
Petersen [2] evaluate that DMUs efficiency possibly exceeds the conventional score 1.0, by comparing the DMU 
being evaluated with a linear combination of other DMUs, while excluding the observations of the DMU being 
evaluated. They try to discriminate between these efficient DMUs, by using different efficiency scores larger than 
1.0. Cook et al. [7] developed prioritization models to rank only the efficient units in DEA. They divide those with 
equal scores, on the boundary, by imposing the restrictions on the multipliers (weights) in a DEA analysis. The idea 
of common weights in DEA was first introduced by Cook et al. [8] and Roll et al. [12] in the context of applying 
DEA to evaluate highway maintenance units. Cook and Kress [5, 6] gave a subjective ordinal preference ranking by 
developing common weights through a series of bounded DEA runs, by closing the gap between the upper and lower 
limits of the weights. Ganley and Cobbin [9] considered the common weights for all the units, by maximizing the 
sum of efficiency ratios of all the units, in order to rank each unit. They suggest the potential use of the common 
weights for ranking DMUs. Liu and Peng [11] searched common set weights to create the best efficiency score of 
one group composed of efficient DMUs. Then they use this common set of weights to evaluate the absolute 
efficiency of each efficient DMUs in order to rank them. Jahanshahloo et al. [10] proposed rank efficiency DMUs 
by comparing with an ideal line and the special line and obtain the common set of weights to evaluate the absolute 
efficient DMUs. 

Meanwhile, the imposition of weight restrictions has been recognized as one of the important factors when 
applying DEA to actual situations and several models are developed for this purpose. These include the Assurance 
Region (AR) model by Thompson et al. [13] and the Con-ratio Approach by Charnes et al. [3]. Since weight for 
inputs (outputs) can be regarded as associated with costs of inputs and prices of outputs, constraints on weights 
should preferably reflect the actual costs (prices) information. In the AR model, upper and lower bounds are 
imposed on the ratio of weights for certain pairs of inputs or outputs. These weight restrictions contribute to 
avoiding the occurrence of frequently observed zero optimal weights to some inputs (outputs) that are caused by the 
optimization mechanism of DEA, and hence the results of analysis using weight restrictions are more persuasive 
than those without restrictions.   

In this paper, firstly we will determine efficiency score of decision making units under weight restrictions 
(WR) model. This weight restrictions point importance of indexes (inputs and outputs). Next, we will propose two 
methods for ranking of WR- efficient units. In first method will be determined one common set of weights for the 
performance indices of only efficient DMUs under weight restrictions. Then these DMUs will be ranked according 
to the efficiency score weighted by the common set of weights. In second method an ideal line will be defined and 
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determined a common set of weights for efficient DMUs then a new efficiency score will be obtained and ranked 
them with it.  

 
2. The weight restriction model 

In this section, a more general model (called the “weight restriction” model) introduced. Assume, we have n 
DMUs that are evaluated in terms of m inputs and s outputs. Let 푥   and 푦  be input and output values of DMUj for 
푖 = 1,2, … ,푚 and	푟 = 1,2, … , 푠. Spot CCR model, the efficiencies of the n DMUs using weight restrictions are 
measured by the following model. 
 
휃 = 푚푎푥 				∑ 푢 푦   

푠. 푡.						 ∑ 푣 푥 = 1                                      
∑ 푢 푦 − ∑ 푣 푥 ≤ 0						푗 = 1,2, … , 푛                                 (1) 
∑ 푣 푝 ≤ 0																	푘 = 1,2, … , (2푚− 2)  
∑ 푢 푞 ≤ 0															푡 = 1,2, … , (2푠 − 2)  
푣 ≥ 0																														푖 = 1,2, … ,푚 
푢 ≥ 0																														푟 = 1,2, … , 푠 

Where 푃 × = (푝 ) and 푄 × = (푞 ) are matrices that are associated with weight restrictions as 
described below. For example, if ratio of weights for initial and i th of input and initial and r th of output be as 
follows: 

푙 ≤ 푣 푣⁄ ≤ 푢 ⟹ 푙 푣 ≤ 푣 ≤ 푢 푣 																					푖 = 2,3, … ,푚  
퐿 ≤ 푢 푢⁄ ≤ 푈 ⟹ 퐿 푢 ≤ 푢 ≤ 푈 푢 															푟 = 2,3, … , 푠 
Where 푙  and 푢  are lower and upper bound of	푣 푣⁄ , and 퐿  and 푈  are lower and upper bound of 푢 푢⁄ .In 

this case the matrices P and Q are defined as follows: 
  

푃 =

⎣
⎢
⎢
⎢
⎡
푙
−1
0
⋮
⋮

								

−푢
1
0
⋮
⋮

											

푙
0
−1
⋮
⋮

										

−푢
0
1
⋮
⋮

										

…
……
…
…

										

…
……
…
…⎦
⎥
⎥
⎥
⎤

×

 

 

푄 =

⎣
⎢
⎢
⎢
⎡
퐿
−1
0
⋮
⋮

								

−푈
1
0
⋮
⋮

											

퐿
0
−1
⋮
⋮

										

−푈
0
1
⋮
⋮

										

…
……
…
…

										

…
……
…
…⎦
⎥
⎥
⎥
⎤

×

 

 

This is clear, that if weight restrictions of inputs be as 푣 푙 ≤ 푣 ≤ 푣 푢   and 푣 푙 ≤ 푣 ≤ 푣 푢  and …, 
then the matrices P will change. Also it is indefeasible for Q matrices.   

The dual of (1) model is as follows: 
 

θ = min 										휃  
푠. 푡. 												휃 푥 − ∑ 휆 푥 + ∑ 푝 휋 − 푠 = 0 												푖 = 1,2, … ,푚  

∑ 휆 푦 +∑ 푞 휏 − 푠 = 푦 														푟 = 1,2, … , 푠  
휆 ≥ 0											푗 = 1,2, . . ,푛 
휋 ≥ 0										푘 = 1,2 … ,2푚− 2                                                        (2) 
휏 ≥ 0											푡 = 1,2, … ,2푠 − 2 
푠 ≥ 0										푖 = 1,2, … ,푚 
푠 ≥ 0											푟 = 1,2, … , 푠 

Definition 1(WR- efficiency): The DMUp is WR- efficient if and only if, for optimum solutions of (2) model  
휃,휆,휋, 휏,푆 ,푆   it satisfies:                    

 휃 = 1				,								푆  = 0									,											푆  = 0 
Or The DMUp is WR- efficient if and only if, for optimum solutions of model (1),  푣,푢  it satisfies:  

푢푦 = 1									,												푣 > 0												,													푢 > 0 
In otherwise DMUp is WR- inefficient.  
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3. Ranking by common weights under weight restrictions (CW under WR) 
Suppose reference set E be all DMUs of WR-efficient. Decision makers always intuitively take the maximal 

efficiency score 1.0 as the common benchmark level for DMUs. In this case, weighted sum of inputs is equal 
weighted sum of outputs. By the definition of the efficiency score, the common benchmark level is one straight line 
that passes through the origin, with slope 1.0 in the coordinate. Object is giving or approximating of DMUs into 
benchmark. In Fig. 1 the vertical and horizontal axes are set to be the virtual output (weighted sum of s outputs) and 
virtual input (weighted sum m inputs), respectively. For any two DMUs, DMUM and DMUN, if given one set of 
weights 	푢′ 			(푟 = 1,2, … , 푠) and	푣 ′ 	(푖 = 1,2, … ,푚), then the coordinate of points M' and N' in Fig. 1 are 
∑ 푣 ′ 	푥 ,∑ 푢′ 푦  and	 ∑ 푣 ′푥 	,∑ 푢′ 푦 . The notation of a decision variable with superscript 

symbols” ' ” represents an arbitrary assigned value. The virtual distances, between points M' and M'P on the 
horizontal axes and vertical axes, are denoted as 훥 ′ and	훥 ′, respectively. Similarly, for points N' and N'P, the 
distances are 훥 ′ and	훥 ′. Therefore, in view of points M' and N', we observe that exists a total virtual distance 
훥 ′ + 훥 ′ + 훥 ′ + 훥 ′ to the benchmark line. 

∑ 푢′ 푦  
 

푀′  
             

	훥 ′                   
푀′ ∑ 푣 ′푥 	,∑ 푢′ 푦   

훥 ′ 
푁′  

          
	훥 ′                

푁′ ∑ 푣 ′푥 	,∑ 푢′ 푦   
훥 ′ 

 
∑ 푣′ 푥 	  

 
Fig. 1. Distance analysis showing DMU below the virtual benchmark line. 

 
If we represent the optimal value of the variable with superscript “”, we should determine an optimal set of 

weights  	푢			(푟 = 1,2, … , 푠) and	푣	(푖 = 1,2, … ,푚) such that both points M and N below the benchmark line 
could be as close to their projection points, MP and NP on the benchmark line, as possible. In other words, by 
adopting the optimal weights, the total virtual gap	훥  + 훥  + 훥  + 훥  	to the benchmark line is the shortest to 
both DMUs. The object function is minimizing of general distance of DMUs, inset E, to benchmark line. As for the 
constraint, the numerator is the weighted sum of outputs plus the vertical virtual distance 훥   and the denominator is 
the weighted sum of inputs minus the horizontal virtual distance	훥 . The constraint implies that the direction closest 
to the benchmark line is upwards and leftwards at same time. The ratio of the numerator to the denominator equals 
to 1.0, which means that the projection point on the benchmark line is reached. In this method, it assumed that the 
benchmark line is located above all DMUs in set E. The optimal common set of weights 푢	(푟 = 1,2, … , 푠) and 
푣	(푖 = 1,2, … ,푚) to each WR- efficient DMU would be solved and then each WR- efficient DMU could obtain 
one absolute efficiency score as the standard for comparison. Then, ranking of those WR- efficient DMUs would be 
completed. The basic difference of this model and method of Liu and Peng [11] is weight restrictions applied. 
 

훥 = min 															∑ 훥 + 훥∊   

푠. 푡.														
∑ 푢 푦 + 훥
∑ 푣 푥 − 훥 = 1														푗 ∊ 퐸 

∑ 푣 푝 ≤ 0																							푘 = 1,2, … , (2푚− 2)  
∑ 푢 푞 ≤ 0																					푡 = 1,2, … , (2푠 − 2)                            (3) 
훥 ,훥 ≥ 0																														푗 ∊ 퐸  
푣 ≥ 휀 > 0																													푖 = 1,2, … ,푚 
푢 ≥ 휀 > 0																												푟 = 1,2, … , 푠 
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The ε is a positive Archimedean infinitesimal constant, and 푃 × = (푝 )  and 푄 × = (푞 ) are 
matrices that, are depended weight restrictions. The ratio form of constraints in (3) model can be rewritten in a linear 
form, formulated in the constraints of (4) model. 

 
훥 = min 															∑ 훥 + 훥∊   

푠. 푡.														 ∑ 푢 푦 − ∑ 푣 푥 + 훥 + 훥 = 0														푗 ∊ 퐸  
∑ 푣 푝 ≤ 0																																																												푘 = 1,2, … , (2푚− 2)  
∑ 푢 푞 ≤ 0																																																										푡 = 1,2, … , (2푠 − 2)  
훥 ,훥 ≥ 0																																																																			푗 ∊ 퐸                                (4) 
푣 ≥ 휀 > 0																																																																		푖 = 1,2, … ,푚 
푢 ≥ 휀 > 0																																																																	푟 = 1,2, … , 푠 

Then, if we let	훥 = 훥 + 훥 , (4) model simplified to the following linear programming. 
 
훥 = min 															∑ 훥∊   

푠. 푡.														 ∑ 푢 푦 − ∑ 푣 푥 + 훥 = 0														푗 ∊ 퐸  
∑ 푣 푝 ≤ 0																																																푘 = 1,2, … , (2푚− 2)  
∑ 푢 푞 ≤ 0																																														푡 = 1,2, … , (2푠 − 2)  
훥 ≥ 0																																																														푗 ∊ 퐸                                (5) 
푣 ≥ 휀 > 0																																																						푖 = 1,2, … ,푚 
푢 ≥ 휀 > 0																																																					푟 = 1,2, … , 푠 

This problem be rewritten to the equivalent linear programming (6) by taking out the slack variable 훥  and 
putting		푋 = ∑ 푥 			,			푖 = 1,2, … ,푚	∊ and	푌 = ∑ 푦∊ 		,			푟 = 1,2, … , 푠 then	훥 = −(∑ 푢 푌 − ∑ 푣 푋 ). 
 

−훥 = max 					(∑ 푢 푌 −∑ 푣 푋 )  
푠. 푡.									 ∑ 푢 푦 − ∑ 푣 푥 ≤ 0														푗 ∊ 퐸  

∑ 푣 푝 ≤ 0																																							푘 = 1,2, … , (2푚− 2)  
∑ 푢 푞 ≤ 0																																					푡 = 1,2, … , (2푠 − 2)                                 (6) 
푣 ≥ 휀 > 0																																													푖 = 1,2, … ,푚 
푢 ≥ 휀 > 0																																											푟 = 1,2, … , 푠 

The difference is that (6) is used to search one common set of weights, in order to evaluate the absolute 
efficiency score. Moreover, (6) can be used to discriminate between the DEA efficient DMUs which resulted from 
the DEA model in the CRS case. In order to obtain more information, we transform (6) to its dual form (7). 

   
max 											휀(∑ 훼 + ∑ 훽 )  
푠. 푡.											 ∑ 휆 푥 + ∑ 휋 푝 + 훼 = 푋 																					∊ 	푖 = 1,2, … ,푚  

∑ 휆 푦 + ∑ 휏 푞 − 훽 = 푌∊ 														푟 = 1,2, … , 푠  
휆 ≥ 0											푗 = 1,2, . . ,푛 
휋 ≥ 0										푘 = 1,2 … ,2푚− 2                                                        (7) 
휏 ≥ 0											푡 = 1,2, … ,2푠 − 2 
훼 ≥ 0										푖 = 1,2, … ,푚 
훽 ≥ 0											푟 = 1,2, … , 푠 

Definition 2: By optimal weights 푣	and	푢, the CW-efficiency score under WR of DMUj is defined as follows:  

휉 =
∑ 푢푦
∑ 푣푥

													푗 ∊ 퐸 

By the value of efficiency score, we can distinguish the DMUs into two separable group, DMUs of CW-
efficient under WR (on the benchmark line) and DMUs of CW-inefficient under WR (below the benchmark line).   

 
Definition 3: 

a. If 훥 = 0 or	휉 = 1, then DMUj is CW-efficient under WR (on the benchmark line). Otherwise, DMUj is 
CW-inefficient under WR (below the benchmark line). 

b. If	휉 > 휉, then the performance of DMUj is better than DMUi. 
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c. If	휉 = 휉 < 1	, i.e. both DMUs are CW-inefficient under WR (below benchmark line), then the 
performance of DMUj is better than DMUi if	훥 < 훥. 

d. If	휉 = 휉 = 1, i.e. both DMUs are CW-efficient under WR (on the benchmark line), then the performance 
of DMUj is better than DMUi if	휆 > 휆. 

 
The CW-efficiency score under WR of DMUj , (j∊E) is limited to no greater than 1.0, therefore there is no DMU 

upon the benchmark line, and there is at least one DMU that joins the assessment located on the benchmark line.  
 

4. Common set of weights under WR by comparing with the ideal line  
In this section, in the first, we define ideal DMU and rank WR- efficient DMUs with common weights by ideal 

line.  
 
Definition 4 (ideal DMU): The ideal DMU is a DMU, that its inputs are minimize inputs of all of DMUs and its 
outputs is maximize outputs of all of DMUs. In other word, if we show ideal DMU by	퐷푀푈 = (푥̅, 푦), then 푥̅ =
min ,…, 푥 		, (푖 = 1, … ,푚) and	푦 = min ,…, 푦 	 , (푟 = 1, … , 푠). Meanwhile, an ideal line is one straight line 
that passes through the origin and ideal DMU with slope 1.0.                          

In space of weighted sum of inputs and weighted sum of outputs, ox is an ideal line and 
퐷푀푈 = (∑ 푣′ 푥̅ ,∑ 푢′ 푦 ) is an ideal DMU. The notation of a decision variable with superscript symbols” ' ” 
represents an arbitrary assigned value. For any two DMUs, DMUM and DMUN, if given one set of weights 	푢′ 			(푟 =
1,2, … , 푠) and	푣 ′ 	(푖 = 1,2, … ,푚), then the coordinate of points M' and N' in Fig. 2 are ∑ 푣 ′푥 	,∑ 푢′ 푦  
and	 ∑ 푣 ′푥 	,∑ 푢′ 푦 . The virtual distances, between points M' and M'P on the horizontal axes and vertical 
axes, are denoted as 훥 ′ and	훥 ′, respectively. Similarly, for points N' and N'P, the distances are 훥 ′ and	훥 ′. 
Therefore, in view of points M' and N', we observe that exists a total virtual distance 훥 ′ + 훥 ′ + 훥 ′ + 훥 ′ to the 
ideal line. 
 

∑ 푢 푦   
●  퐷푀푈 = (∑ 푣′ 푥̅ 	,∑ 푢′ 푦 ) 

푀′  
             

	훥                    
푀′(∑ 푣 푥 	,∑ 푢 푦 )  

훥  
푁′  

          
	훥                 

푁′(∑ 푣 푥 	,∑ 푢 푦 )  
훥  

 
∑ 푣 푥 	  

 

Fig. 2. Distance analysis showing DMU below the virtual ideal line. 
 
If we represent the optimal value of the variable with superscript “”, we should determine an optimal set of 

weights  	푢			(푟 = 1,2, … , 푠) and	푣	(푖 = 1,2, … ,푚) such that both points M and N below the ideal line could be 
as close to their projection points, MP and NP on the ideal line, as possible. In other words, by adopting the 
optimal weights, the total virtual gap	훥  + 훥  + 훥  + 훥  	to the ideal line is the shortest to both DMUs. 

The object function is minimizing of general distance of DMUs, inset E, to ideal line. As for the constraint, the 
numerator is the weighted sum of outputs plus the vertical virtual distance 훥   and the denominator is the weighted 
sum of inputs minus the horizontal virtual distance	훥 . The constraint implies that the direction closest to the ideal 
line is upwards and leftwards at same time. The ratio of the numerator to the denominator equals to 1.0, which 
means that the projection point on the ideal line is reached. The basic difference of this model and method of 
Jahanshahloo et al. [10] is weight restrictions applied. Then we purpose following model.  
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훥 = min 															∑ 훥 + 훥∊   

푠. 푡.															
∑ 푢 푦
∑ 푣 푥̅ = 1 

∑ 푢 푦 + 훥
∑ 푣 푥 − 훥 = 1														푗 ∊ 퐸																																																									(8) 

∑ 푣 푝 ≤ 0																							푘 = 1,2, … , (2푚− 2)  

∑ 푢 푞 ≤ 0																					푡 = 1,2, … , (2푠 − 2)  

훥 ,훥 ≥ 0																														푗 ∊ 퐸  

푣 ≥ 휀 > 0																													푖 = 1,2, … ,푚 

푢 ≥ 휀 > 0																												푟 = 1,2, … , 푠 

The ratio form of constraints in (8) model can be rewritten in a linear form, formulated in the constraints of 
following model. 
 

훥 = min 															∑ 훥 + 훥∊   

푠. 푡.															 ∑ 푢 푦 − ∑ 푣 푥̅ = 0  

∑ 푢 푦 −∑ 푣 푥 + 훥 + 훥 = 0														푗 ∊ 퐸  

∑ 푣 푝 ≤ 0																																																												푘 = 1,2, … , (2푚− 2)  

∑ 푢 푞 ≤ 0																																																										푡 = 1,2, … , (2푠 − 2)             (9) 

훥 ,훥 ≥ 0																																																																			푗 ∊ 퐸 

푣 ≥ 휀 > 0																																																																		푖 = 1,2, … ,푚 

푢 ≥ 휀 > 0																																																																	푟 = 1,2, … , 푠 

Then, if we let	훥 = 훥 + 훥 , (9) model simplified to the following linear programming. 
 

훥 = min 															∑ 훥∊   

푠. 푡.															 ∑ 푢 푦 − ∑ 푣 푥̅ = 0                    () 

∑ 푢 푦 −∑ 푣 푥 + 훥 = 0													푗 ∊ 퐸  

∑ 푣 푝 ≤ 0																																															푘 = 1,2, … , (2푚− 2)  

∑ 푢 푞 ≤ 0																																													푡 = 1,2, … , (2푠 − 2)                (10) 

훥 ≥ 0																																																													푗 ∊ 퐸 

푣 ≥ 휀 > 0																																																					푖 = 1,2, … ,푚 

푢 ≥ 휀 > 0																																																				푟 = 1,2, … , 푠 

If a DMUj was on ideal line, then we use definition (2) for CW- efficiency score under WR. Therefore the CW- 
efficiency score under WR of it is 1.0. So that constrain () in (10) become redundant and this model become same 
model of (5). On the other hand, the ideal line is the benchmark line. We result (5) is special case of (10). Therefore, 
DMUj is CW- efficient under WR if 훥 = 0 or	휉 = 1, otherwise, DMUj is CW- inefficient under WR.  
 

Definition 5: The performance of DMUj is better than DMUi if	훥 < 훥. 
 

5. Numerical example 
In this section, we apply the above methods for two numerical examples. 
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Example 1: We consider the following example from Tone [14]  paper. The data set are inclusive 16 hospitals. 
As for the inputs and outputs, we employ the following technical factors as designated in Table 1. 

Input 
 Doctor: Total hours worked by doctors in the survey period 
 Nurse: Total hours worked by nurse 
 Tech: Total hours worked by technical workers 
 Office: Total hours worked by office staff 

Output 
 Outpatient: Total medical insurance points for outpatients 
 Inpatient: Total medical insurance points for inpatients 

  
Among the inputs we chose “Doctor” as axis and impose weight restriction of other input relative to “Doctor” 

as below where 푣 ,푣 ,푣  and 푣  represent the weights for Doctor, Nurse, Technical worker and Office staff, 
respectively. The lower / upper bounds were determined by considering the ratio of cost of inputs against doctor’s 
cost. 

2 ≤ 푣
푣 ≤ 5.3  

1.7 ≤ 푣
푣 ≤ 4.2  

2.3 ≤ 푣
푣 ≤ 5.4  

In the similar way, we added the weight restriction outputs as: 
0.28 ≤ 푢

푢 ≤ 0.4  
Where 푢  and 푢 	represent the weights for outpatient and inpatient, respectively. The results performance 

obtained by the addition of these weight restrictions are exhibited in Table 1. 
 

Table 1. Technical data for 16 hospitals 
DMU                I1= Doctor       I2= Nurse           I3=Tech            I4=Office                          O1=Outpat         O2=Inpat                        휃                                               
H1                     995                 6205                   1375                 2629                                  4127                 1678                        1.0000                          
H2                     917                 5898                   1379                 2047                                  3721                 1277                        0.9230 
H3                     3178               10049                 3615                 3511                                  2706                 2051                        0.5212 
H4                     813                 5833                   1124                 1730                                  2176                 1538                        0.9097 
H5                     1236               8639                   2486                 4990                                  5220                 2042                        0.8618 
H6                     1146               7610                   1600                 3589                                  3517                 1856                        0.8283 
H7                     705                 5600                   1557                 3623                                  2352                  2060                       1.0000 
H8                     2871               11524                 2880                 2452                                  1755                  1664                       0.4078 
H9                     1098               8998                   1730                 2823                                  4412                  2334                       1.0000 
H10                   2032               9383                   2421                 4454                                  5386                  2080                       0.7690 
H11                   1414               10468                 2140                 3649                                  5735                  2691                       0.9865 
H12                   1967               11260                 2759                 3178                                  6079                  2804                       0.9246 
H13                   1851               9880                   2335                 4570                                  5893                  2495                       0.8751 
H14                   3100               15649                 5487                 2940                                  5248                  3692                       0.7545 
H15                   5016               18010                 4008                 3567                                  7800                  4582                       0.8056 
H16                   1924               12682                 2490                 2975                                  6040                  3396                       1.0000 
 

In Table 1, it is shown that hospitals H1, H7, H9 and H5 are the WR-efficient hospitals. The WR-inefficient 
hospitals are ranked by 휃 easily. For ranking of WR-efficient hospitals, we apply (5) and (7) models (Table 2). 
Then, we introduce ideal hospital and compare them with ideal hospital. Finally, by (10) model we rank WR-
efficient hospitals (Table 3). 

 
Table 2. Results ranking by comparing with benchmark line 
Hospital                           휉                             	훥                            	휆                            Rank    
  H1                               1.0000                    —                         2.4667                         1                               
  H7                               0.9840                 0.2470                       —                              4                              
  H9                               1.0000                    —                         1.8260                         2                                                               
  H16                             1.0000                    —                         0.1379                         3                          
  
The ideal hospital is as following: 

I1=705       I2=5600           I3=1124       I4=1730                   O1=7800         O2=4582    
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Table 3. Results ranking by comparing with ideal line 
Hospital                   	훥                               Rank    
  H1                      14.8620                          2                               
  H7                      14.1249                          1                               
  H9                      20.4892                          3        
  H16                    29.5925                          4    
 
For ranking by comparing with benchmark line Table 2 shows: 휉 = 휉 = 휉 = 1 > 휉 = 0.9840 

and		휆 > 휆 > 휆  . By Definition 3, we can say that, performance H1 is better than H9, and its performance is 
better than H16, and its performance is better than H7.  

For ranking by comparing with ideal line Table 3 shows:	훥 < 훥 < 훥 < 훥 	. By Definition 5, we can say 
that, performance H7 is better than H1, and its performance is better than H9, and its performance is better than 
H16. Finally, Table 4 shows ranking of all of DMUs (hospitals) in two methods.  

 
Table 4. Results ranking all of DMUs in two methods 
Hospital              Ranking by comparing              Ranking by comparing                    
                             with benchmark line                    with ideal line                           
  H1                              1                                                   2  
  H2                              7                                                   7 
  H3                              15                                                 15      
  H4                              8                                                   8      
  H5                              10                                                 10                        
  H6                              11                                                 11 
  H7                              4                                                   1    
  H8                              16                                                 16                            
  H9                              2                                                   3 
  H10                            13                                                 13   
  H11                            5                                                   5  
  H12                            6                                                   6             
  H13                            9                                                   9       
  H14                            14                                                 14    
  H15                            12                                                 12        
  H16                            3                                                   4    
 
Example2. In this example, we consider 20 branches of bank in Iran that previously analyzed by Amirteimoori 

and Kordrostami [1] and Jahanshahloo et al. [10] and are listed in Table 5. 
 
Table 5. Data of 20 branches of bank 
Branch        I1 = Staff           I2 = Computer         I3 = Space                O1 = Deposits           O2 = Loans         O3 = Change                              휃 
B1                0.950                 0.700                        0.155                         0.190                          0.521                  0.293                                   0.6983 
B2                0.796                 0.600                        1.000                         0.227                          0.627                  0.462                                   0.7222 
B3                0.798                 0.750                        0.513                         0.228                          0.970                  0.261                                   0.9091 
B4                0.865                 0.550                        0.210                         0.193                          0.632                  1.000                                   1.0000 
B5                0.815                 0.850                        0.268                         0.233                          0.722                  0.246                                   0.8387 
B6                0.842                 0.650                        0.500                         0.207                          0.603                  0.569                                   0.7170 
B7                0.719                 0.600                        0.350                         0.182                          0.900                  0.716                                   1.0000 
B8                0.785                 0.750                        0.120                         0.125                          0.234                  0.298                                   0.4758 
B9                0.476                 0.600                        0.135                         0.080                          0.364                  0.244                                   0.7074 
B10              0.678                 0.550                        0.510                         0.082                          0.184                  0.049                                   0.2515 
B11              0.711                1.000                         0.305                         0.212                          0.318                  0.403                                   0.5502 
B12              0.811                 0.650                        0.255                         0.123                          0.923                  0.628                                   1.0000 
B13              0.659                 0.850                        0.340                         0.176                          0.645                  0.261                                   0.7351 
B14              0.976                 0.800                        0.540                         0.144                          0.514                  0.243                                   0.4357 
B15              0.685                0.950                         0.450                         1.000                          0.262                  0.098                                   1.0000 
B16              0.613                0.900                         0.525                         0.115                          0.402                  0.464                                   0.5847 
B17              1.000                0.600                         0.205                         0.090                          1.000                  0.161                                   0.9849 
B18              0.634                0.650                         0.235                         0.059                          0.349                  0.068                                   0.4380 
B19              0.372                0.700                         0.238                         0.039                          0.190                  0.111                                   0.3324 
B20              0.583                0.550                         0.500                         0.110                          0.615                  0.764                                   1.0000 
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Among the inputs we chose “Staff” as axis and impose weight restriction of other input relative to “Staff” as 
below where 푣 ,푣  and 푣  represent the weights for Staff, Computer, and Space, respectively.  

 
0.6 ≤ 푣

푣 ≤ 4.4  
0.5 ≤ 푣

푣 ≤ 5.5  
 

In the similar way, we added the weight restriction outputs as: 
0.7 ≤ 푢

푢 ≤ 5.4  
0.85 ≤ 푢

푢 ≤ 6.8 
Where 푢 ,푢  and 푢 	represent the weights for Deposits, Loans and Change, respectively. 
The results performance obtained by the addition of these weight restrictions are exhibited in Table 5. In this 

Table, it is shown that branches of banks B4, B7, B12, B15 and H20 are the WR-efficient branches. For ranking of 
WR-efficient branches, we apply all of methods of example 1.Table 6 and 7 show results.  

 
Table 6. Results ranking of branches of bank by comparing with benchmark line 
Hospital                           휉                                 	훥                               	휆                                 Rank    
  B4                               1.0000                       —                             1.6247                              2                               
  B7                               1.0000                       —                             2.3067                              1                               
  B12                             0.8688                    0.0003                           —                                   4                                                           
  B15                             1.0000                       —                             0.8746                              3 
  B20                             0.8477                    0.0003                           —                                   5    
  
The ideal hospital is as following: 

I1=0.372       I2=0.550           I3=0.120                    O1=1.000          O2=1.000         O3=1.000  

Table 7. Results ranking of branches of bank by comparing with ideal line 
Hospital                      	훥                             Rank    
  B4                      0.002367                          2                               
  B7                      0.002394                          3                               
  B12                    0.002815                          4        
  B15                    0.004159                          5    
  B20                    0.002363                          1 
    
For ranking by comparing with benchmark line Table 6 shows: 휉 = 휉 = 휉 = 1 > 휉 > 휉  and훥 =

훥  and		휆 > 휆 > 휆  . By Definition 3, we can say that, performance B7 is better than B4, and its performance is 
better than B15, and its performance is better than B12, and its performance is better than B20.  

For ranking by comparing with ideal line Table 7 shows: 훥 < 훥 < 훥 < 훥 < 훥 . By Definition 5, we 
can say that, performance B20 is better than B4, and its performance is better than B7, and its performance is better 
than B12, and its performance is better than B15. 

 
6. Conclusion 

 
Ranking of DMUs in DEA is an important phase for efficiency evaluation of DMUs. DEA techniques 

generally do not rank the efficient DMUs. In this paper, we impose weight restrictions in CCR model. This weight 
restrictions point importance of indexes (inputs and outputs). Then, we determine efficiency score of decision 
making units under weight restrictions (WR) model. Next, we propose two methods to rank. In first method we 
determine one common set of weights for the performance indices of only efficient DMUs under weight restrictions. 
Then, we rank these DMUs according to the efficiency score weighted by the common set of weights. In second 
method we define an ideal line and determine a common set of weights for WR-efficient DMUs then a new 
efficiency score obtain and rank them with it.  
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