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ABSTRACT 
 

We propose memetic computing for the solution to force-free and forced Duffing-van der pol (DVP) oscillator. An approximate 
mathematical model based on the linear combination of some basis functions employing log sigmoid has been done. Fitness 
function (FF) which is a function of unknown weights is formulated. Genetic algorithm (GA) and hybrid approach of GA and 
interior point algorithm (IPA) have been employed for the optimization of the unknown weights. The proposed method has been 
effectively applied to force-free DVP, as well as single-well, double-well, and double-hump situations of forced DVP oscillator. 
The results obtained using this method are in good agreement with the numerical methods based on fourth order Runge-Kutta 
(RK), and Lindsted’s method (LM). 
KEYWORDS: Duffing-van der pol (DVP), nonlinear oscillator; heuristic computation; genetic algorithm; adomian 

decomposition, homotopy perturbation 

I. INTRODUCTION 
 

In the last few decades a considerable attention has been devoted to the study of nonlinear oscillators due to their potential 
applications in diverse areas of engineering and science [1]. The key issue in the study of nonlinear oscillators is to find the exact 
solutions of the nonlinear oscillator equations especially using traditional analytical techniques. In this view a rich variety of 
approximate methods, and the numerical techniques such as variational iteration method (VIM), adomian decomposition method 
(ADM), homotopy perturbation method (HPM), Runge Kutta method (RKM), Lindsted’s method (LM), energy balance method 
(EBM) , differential transform method (DTM) have been proposed [2, 3]. Duffing van-der pol (DVP) oscillator is one of the most 
extensively studied dynamical system, which can be used as a model in engineering, electronics, physics, biology, neurology, and 
many other disciplines [1,4,5]. The chaotic behavior and coupling of the Duffing-van der pol oscillator (DVP) makes it useful in 
applications, such as chaos communication systems, synchronization in communication engineering, image processing, electrical 
and automation engineering [1, 2]. 

A great deal of attention has been devoted toward the solution of DVP equation and several approximate analytical and 
numerical techniques have been proposed. Cordshooli, and Vahidi [6] employed adomian decomposition method (ADM) to solve 
the DVP equation.  Chen and Liu [7] applied homotopy analysis method (HAM) to study the limit cycle of DVP oscillator. 
Recently Vahidi et al. [8] applied restarted adomian decomposition method (RADM) to solve DVP equation. Sajadi et al. [9] used 
homotopy perturbation method (HPM) and variational iteration method (VIM) to study the problem of single-well, double-well 
and double-hump. Khan et al. [10] employed modified version of homotopy pertubation method (NHPM) to solve the force-free 
DVP equation. Kimiaeifar et al. [11] applied homotopy analysis method (HAM ) to solve the DVP equation. Sweilam and Khader 
[2] employed He’s parameter-expansion method (PEM) to solve the coupled chaotic Duffing-van der pol system. Kakmeni et al. 
[12] investigated the chaotic behavior of DVP system with two external periodic forces obtained by numerical methods such as 
bifurcation diagram, Lyapunov exponent and Poincare map. Njah [5] studied the synchronization and anti-synchronization 
behavior of double-hump DVP oscillator using active control. Recently amalgamation of neural networks and evolutionary 
computation techniques such as genetic algorithm (GA), particle swarm optimization (PSO), simulated annealing (SA), and 
interior point algorithm (IPA) have been exploited to solve nonlinear problems in engineering and science [13-15].The classical 
Van- der pol oscillator equation has been solved using neural network (NN) based approach by Khan et al. [16]. Caetano et al. 
[17] solved nonlinear differential equations in atomic and molecular physics using ANN tuned with GA.  

The aim of this research work is to investigate the solution of the DVP oscillator equation using the heuristic computation 
approach. Since GA has high potential for global optimization it has been used to obtain the numerical solution of the DVP 
equation. To exploit the application of hybrid evolutionary computation we have solved DVP oscillator equation using the 
memetic heuristic approach of GA and IPA. We have also solved three special situations of DVP oscillator equation such as 
single-well, double-well, and double- hump. The results of the proposed method are compared with some popular analytical and 
numerical methods. The proposed method  based on heuristic approach is stochastic in nature as compared to the conventional  
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methods such as ADM, HPM, DTM etc. which are deterministic in nature.  The proposed heuristic computation method can 
provide the solution to the problem on continuous grid of time while the deterministic methods give the solution on the predefined 
discrete points. Further most of the conventional deterministic methods provide the results for the time t between 0 and 1. On the 
other hand proposed heuristic computation method can provide the results for any value of t without repeating the whole 
procedure.   

The major scientific contribution of this work is that an alternate stochastic method based on heuristic computation is 
proposed which is capable of solving nonlinear DVP oscillator problem. To the best of our knowledge nobody has solved the 
DVP oscillator problem using the proposed approach.  

The remaining paper is organized as follows: In section II the governing equation of DVP oscillator is presented. In section 
III proposed method is described. Section IV gives a brief overview of GA, and IPA. In section V we present the results and 
discussion. Finally concluding remarks are given in section VI. 

 
II. DVP Oscillator Equation 

The governing equation of the forced DVP oscillator is given by the following second order differential equation [11]. 
 

−(ݐ)ݔ̈ −1)ߤ ݔ̇((ݐ)ଶݔ + (ݐ)ݔߙ	 + (ݐ)ଷݔߚ	 = ݃(݂,߱,  (1) (ݐ
where ݃(݂,߱	, (ݐ 	= (ݐ߱)ݏ݋ܿ	݂	  represents the periodic excitation function, and for a force-free Duffing-van der pol 
oscillator	݃(݂,߱	, (ݐ 	= 	0. ߱ is the angular frequency of the driving force, f is the amplitude of the excitation,   ߤ	 > 	0 is the 
damping parameter of the system, while ߙ	and ߚ are constant parameters.  

The DVP oscillator equation has three main physically fascinating situations, (a) single-well (α > 0, β > 0), (b) double-well (α 
< 0, β > 0), and (c) double- hump (α > 0, β < 0).  

 
III. METHODOLOGY 

 
We may assume that the solution		(ݐ)ݔ and its first and second derivatives,	̇݀݊ܽ,(ݐ)ݔ	(ݐ)ݔ̈, are a linear combination of some 

basis functions which can be represented by the following equations. 

(ݐ)ݔ = 	෍ ∝௜

௠

௜ୀଵ

߮(߱௜ݐ +  (௜ߚ
 
(2) 

(ݐ)ݔ̇ = 	෍ ∝௜ ߱௜

௠

௜ୀଵ

߮̇(߱௜ݐ +  (௜ߚ
 
(3) 

(ݐ)ݔ̈	 = 	෍ ∝௜ ߱௜
ଶ

௠

௜ୀଵ

߮̈(߱௜ݐ +  (௜ߚ
 
(4) 

where	߮(ݐ) is the log sigmoid function given by 

(ݐ)߮ = 	
1

1 + ݁ି௧  
(5) 

∝௜ ௜ߚ,	 	, ܽ݊݀	߱௜ are real valued unknown weights (chromosomes), and m is the number of  basis functions. 
To apply a heuristic algorithm fitness function (FF) is formulated for the given equation as follows 

ܨܨ =
1

1 + ௝ߝ
 (6) 

௝ߝ = ଵߝ +   (7)	ଶߝ
where ߝଵis mean square error linked with the given equation, and ߝଶ is mean square error linked with the initial conditions while j 
is the cycle index. 

Fitness function (FF) given by (6) is a function of unknown weights (∝௜,ߚ௜ , ߱௜).	 An evolutionary algorithm is used to 
maximize this fitness function by suitably training the equations represented by (2) to (4). The values of unknown weights are 
acquired. Consequently the approximate solution	(ݐ)ݔof the given problem at hand is determined using (2). 

 
IV. Heuristic Search Algorithms 
A. Genetic Algorithm (GA) 
The Genetic algorithm (GA) is one of the well known global search algorithms based on the evolutionary ideas of natural 

selection, and genetics [18]. GA works on the Darwin’s theory about evolution ‘survival of the fittest’. The flow chart of the 
genetic algorithm is shown in Figure 1. GA begins with an initial population of individuals. Each individual with a population 
represents one possible solution to the problem. Each individual within a population is evaluated using a fitness value. The 
algorithm evolves population sequentially and iteratively using three fundamental operators: selection, crossover, and mutation. 
The general procedural steps of GA can be summarized as follows: 
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Algorithm 1: Genetic Algorithm 
Step 1: Generate a population of N chromosomes (C1, C2, …, CN ) each of length M using random number generator. 
Step 2: Determine the fitness of each individual in the current population. 

૚ࡲ = ഥ࢞)ࢌ = ;(૚࡯ … . … ࡺࡲ; = ഥ࢞)ࢌ =  (ࡺ࡯
(The chromosomes are sorted according to their fitness) 

Step 3: Selection of parents and production of offsprings (children). 
Suppose the chromosomes are sorted in descending order. These are parents to the next generation. They will 
produce offsprings with a probability to their fitness through crossover operation. 

Step 4: Populating the new generation. 
Step 5: Mutation (optional) 

Mutation operation is performed if there is no improvement in fitness in the generation or the problem is 
converging very fast or steady state is reached very easily.  

Step 6: Stoppage criteria. 
The algorithm terminates if the fitness reaches a certain value or a certain number of cycles has reached.  
Else go to step 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Flow Chart of GA 
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B. Interior Point Algorithm (IPA) 
Interior-point methods (IPM) also called as barrier methods are among the most useful algorithms for solving broad range of 

optimization problems including linear, nonlinear, convex, and non-convex. Since the revolutionary work of Karmarkarin [19], 
IPMs have received a tremendous attention, and they have been extensively applied in various practical optimization problems in 
engineering. The algorithm solves a sequence of barrier subproblems by employing either Newton step or conjugate gradient 
(CG) step at each iteration. The Newton step is the default step taken by the algorithm which attempts to solve Karush-Kuhn-
Tucker (KKT) equations.  The algorithm decreases a problem specific merit function. If an attempted step does not decrease the 
merit function, it is rejected by the algorithm and a new step is attempted. Contrary to the simplex method IPA traverses through 
the interior feasible region until it reaches an optimal solution [20]. The algorithm iteratively traces the central path while 
reducing the barrier parameter ߤ at each iteration [21]. The sequence of barrier parameters must converge to zero [22]. The 
graphical representation of the IPM algorithm is given in Figure 2. [21]. 

 
 

Figure 2. Graphical representation of IPM [21] 
 
Memetic computation is a very recent growing area of evolutionary computation. The memetic computation is a 

hybridization approach of the global search technique with a local search method.  The hybridization algorithms have been shown 
to be more accurate and fast convergent [23]. Due to the improved performance and fast convergence properties hybrid 
algorithms have been vastly used in diverse fields of engineering [24-25]. 

The genetic algorithm (GA) is a global optimizer but in some optimization problems it encounters the trouble of premature 
convergence. The memetic approach of GA and IPA (GA-IPA) can prevent the problem of premature convergence, and the 
improved performance can also be achieved [26]. In this paper hybridization of GA, and IPA has been used for the learning and 
optimization of the unknown weights by minimizing the fitness function. In this hybrid approach the best chromosome found by 
the GA is given as a starting point to the IPA which is a fine and fast local optimizer and brings down the error to acceptable 
levels. Thus improved performance with a fast and fine convergence is achieved. 

 
V. RESULTS AND DISCUSSION 

 
In this section we demonstrate the results of applying the proposed method to the force-free Duffing-van der pol (DVP) 

oscillator, and the forced Duffing-van der pol oscillator equations.  
Problem 1: Consider the force- free Duffing-van der pol equation given by [6, 8] 

 
−(ݐ)ݔ̈ 0.1(1− ݔ̇((ݐ)ଶݔ + (ݐ)ݔ	 + (ݐ)ଷݔ0.01	 = 0 (8) 

with initial conditions, 
(0)ݔ = (0)ݔ̇																		,2 = 0 

The solution of (8) using ADM, RADM, and LM is given by (9), (10), and (11) respectively [6, 8] 
 

஺஽ெݔ												 = 2 − ଶݔ1.04 + ଷݔ0.104 + ସݔ0.089 + ⋯+  (9) ଼ݔ0.00053
 

ோ஺஽ெݔ = 2− ଶݔ1.04 + ଷݔ0.104 + ସݔ0.0892667 +⋯+ 2.57313 × 10ିଵସݔଶସ (10) 
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௅ெݔ = ݐ߱ݏ݋ܿܣ +
ߙ
4 ݐ3߱ݏ݋ܿ + )ߤ

3
4 ݐ߱݊݅ݏ −

1
4 ݐ3߱݊݅ݏ +  (ଶߤ)ܱ

(11) 

 with	ܣ = 2 − ଵ
ଶ
߱,ߙ = 1 + ଷ

ଶ
ߙ − ଶ଻

ଵ଺
ߙ − ଵ

ଵ଺
ଶߤ +  (ଶߤ)ߍ

The solution of (8) using the proposed method is obtained by formulating its fitness function (FF) as follows. 

௝ߝ =
1

11
෍(̈ݔ(ݐ௜)
ଵଵ

௜ୀଵ

− 0.1(1− ݔ̇(ଶݔ + ݔ + ଷ)ଶݔ0.01 +
1
2 (0)ݔ)} − 2)ଶ + ൫̇(0)ݔ൯ଶ}อ

௝

 
 
(12) 

where	݀݊ܽ,(ݐ)ݔ̇ ,(ݐ)ݔ	(ݐ)ݔ̈ are given by (2) to (4) 
The fitness function given by (12) is minimized by applying heuristic methods. For simulations Matlab R2008a version 7.6.0 

has been used in this work. Three different heuristic methods such Genetic algorithm (GA), Interior Point Algorithm (IPA), and 
the memetic heuristic approach of GA and IPA  (GA-IPA) have been implemented for the training of equations (2) to (4) to 
minimize the fitness function given by (12).  

The parameter settings in the optimization tool for the execution of GA, IPA, and GA-IPA algorithms used for this problem 
are given in Table 1. The equations of (2) to (4) are trained by a training set with inputs taken from	ݐ	0,0.1,0.2,0.3}߳, … . ,1}. The 
number of basis functions is taken equal to 10. Therefore the number of (chromosomes) unknown weights (∝௜, ߚ௜  , ߱௜) which 
have to be tailored is equal to 30. These unknown weights are restricted to the interval[−5, +5]. This was observed by simulations 
that we get better results if we bound unknown weights to this interval. After running GA, IPA, and GA-IPA according to the 
prescribed settings given in Table 1, the minimum fitness function values achieved for GA, IPA, and GA-IPA are 7.7956 x 10-8, 
1.2417 x 10-9, and 3.0509 x 10-10 respectively. The values of unknown weights (best chromosomes) obtained corresponding to 
these fitness values are given in Table 2. The approximate solution (ݐ)ݔof the DVP oscillator represented by (9) is achieved by 
using the values of unknown weights in (2).  The results obtained using the proposed method by employing GA, IPA, and GA-
IPA are given in Table 3.  

The approximate solution (ݐ)ݔobtained from the proposed method using GA, IPA, and GA-IPA are compared with the 
results of the Lindsted’s method (LM) [6], and adomian decomposition method (ADM) [6]. It is evident from the comparison of 
the results that the proposed method based on the heuristic techniques GA, IPA, and GA-IPA provide much satisfactory results 
which are in good agreement with the numerical method based on LM. The comparison further reveals that the proposed method 
is more accurate than ADM. The effectiveness of the proposed approach is quite evident from the absolute errors which have been 
computed relative to the LM. The superior performance of memetic approach of GA and IPA (GA-IPA) is also quite evident from 
the results. Further it would be worth to mention that GA-IPA approach took only 990 iterations as compared to 1500 iterations 
taken by GA.  

In Table 4 we present absolute errors of GA, IPA, and GA-IPA, computed relative to LM [6] and compare these with the 
errors obtained using restarted adomian decomposition method (RADM) [8]. From the comparison it is significant that the 
performance of the proposed method is comparatively better than RADM. 

 
TABLE 1.  SETTINGS OF THE ALGORITHMS 

  GA       IPA   
Parameters Setting Parameters Setting 
Population Size 240  Maximum Iterations 1000 
Chromosome Size 30  Maximum function evaluations 60000 
Creation function Uniform  X tolerance 1e-6 
Fitness scaling function Proportional  Function tolerance 1e-24 
Selection function Stochastic Uniform  Nonlinear constraint tolerance 1e-12 
Reproduction crossover fraction 0.6  Minimum perturbation 1e-8 
Mutation function Adaptive feasible  Maximum perturbation 0.1 
Crossover function Heuristic  Derivative type Forward differences 
Migration direction Forward  Hessian BFGS 
Hybrid function fmincon (IPA)  Subproblem algorithm ldl factorization 
No of generations 1500  Scaling objective and constraints 
Function tolerance 1e-22  Initial barrier parameter 0.1 
Nonlinear constraint tolerance 1e-12    
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TABLE 2. UNKNOWN WEIGHTS ACQUIRED BY THE ALGORITHMS 
Algorithm index(i) αi ωi βi 

 
 
 
 

GA 
 
 
 
 
 

1 -0.177793228724768 1.372143885594660 0.267269199684203 
2 -3.049739835713970 1.563871029800120 -3.254523880756310 
3 -2.874952834310280 -0.405584227198786 2.271394966928810 
4 -0.349735472562995 2.760102458375770 2.455955703923160 
5 -0.627598796531771 1.740348775679930 -4.799283367298240 
6 1.845313381842820 3.609775852071270 3.439964856722690 
7 2.348621061435780 -1.521669443019670 1.961009551059900 
8 -1.546577907838180 1.140333235413910 0.012979425823147 
9 2.554300772541020 2.206712789642280 1.116526783509830 
10 2.382873095545740 -1.451357186416530 -2.668660904156950 

 
 
 
 

IPA 
 
 
 
 
 

1 -1.121799848865420 0.420143531084565 0.034323237619862 
2 -0.508611137824402 0.746024565990766 1.804652145488360 
3 1.584952571402940 2.998952520449050 2.696161332877600 
4 -0.874019196843631 -1.479609888608340 -0.778953119440877 
5 -0.824407746358772 0.320247653958491 0.545579678464943 
6 -1.152516096018750 0.834305530936738 -0.374731349720112 
7 1.734747474779950 -1.383761471401220 2.641836670355020 
8 2.215353452581230 -1.501236084993330 2.798800354505280 
9 -1.505673801930070 -2.071985708808530 -0.928420142542375 
10 -1.683042566769000 1.169726402658540 -0.883378881913459 

 
 
 
 

GA-IPA 
 
 
 
 
 

1 -1.234744607081430 0.232944210747082 1.457483658480350 
2 2.592612422029060 -1.567763207476860 2.153321905631980 
3 2.208874828179050 2.027267452377460 0.842639594114534 
4 -1.455291413720960 -3.045586200700630 -4.137726344376620 
5 -0.823008658068831 2.365036090673610 4.026104317205500 
6 1.533762855190490 -2.144640828654960 4.310907228423700 
7 -0.439278165377514 -0.696639801223637 0.680993653140154 
8 1.131061904093790 3.165451409082820 2.486680936175640 
9 -3.368197116088810 0.976129223253480 0.017384897958785 
10 -0.608813786434817 1.532770791383090 4.372269147581950 

 

TABLE 3. COMPARISON OF THE RESULTS OF GA, IPA, GA-IPA, LM [6], and ADM [6] 
   x(t)       Absolute Error  

t LM GA  
IPA 

GA-IPA ADM GA IPA  
GA-IPA 

ADM 

0 2.00000 2.00000 2.00000 2.00000 1.9975 0.000E+00 0.000E+00 0.000E+00 2.500E-03 
0.1 1.98971 1.98971 1.98971 1.98971 1.98724 0.000E+00 0.000E+00 0.000E+00 2.470E-03 
0.2 1.95936 1.95936 1.95936 1.95936 1.95697 0.000E+00 0.000E+00 0.000E+00 2.390E-03 
0.3 1.9098 1.90981 1.9098 1.9098 1.90758 1.000E-05 0.000E+00 0.000E+00 2.220E-03 
0.4 1.84202 1.84203 1.84202 1.84202 1.84008 1.000E-05 0.000E+00 0.000E+00 1.940E-03 
0.5 1.75702 1.75703 1.75702 1.75702 1.75552 1.000E-05 0.000E+00 0.000E+00 1.500E-03 
0.6 1.65586 1.65587 1.65586 1.65585 1.65493 1.000E-05 0.000E+00 1.000E-05 9.300E-04 
0.7 1.53958 1.53959 1.53958 1.53957 1.53937 1.000E-05 0.000E+00 1.000E-05 2.100E-04 
0.8 1.40922 1.40925 1.40923 1.40922 1.40982 3.000E-05 1.000E-05 0.000E+00 -6.000E-04 
0.9 1.26581 1.26588 1.26586 1.26586 1.26726 7.000E-05 5.000E-05 5.000E-05 1.450E-03 
1.0 1.11033 1.11056 1.11053 1.11053 1.11267 2.300E-04 2.000E-04 2.000E-04 2.340E-03 
1.1 0.94373 0.94437 0.94435 0.94434 0.94704 6.400E-04 6.200E-04 6.100E-04 3.310E-03 
1.2 0.76686 0.76848 0.76845 0.76845 0.77147 1.620E-03 1.590E-03 1.590E-03 4.610E-03 
1.3 0.58037 0.5841 0.58407 0.5841 0.58715 3.730E-03 3.700E-03 3.730E-03 6.780E-03 
1.4 0.38462 0.39254 0.39255 0.39267 0.39545 7.920E-03 7.930E-03 8.050E-03 1.083E-02 
1.5 0.17946 0.19518 0.19532 0.1957 0.19795 1.572E-02 1.586E-02 1.624E-02 1.849E-02 

 
TABLE 4. COMPARISON OF ABSOLUTE ERRORS OF GA, IPA, GA-IPA, and RADM [8] 

 x(t)   Absolute Error    
t LM GA IPA GA-IPA RADM 
0 2.00000 0.0000E+00 0.0000E+00 0.0000E+00 2.5000E-03 

0.1 1.98971 0.0000E+00 0.0000E+00 0.0000E+00 2.4751E-03 
0.2 1.95936 0.0000E+00 0.0000E+00 0.0000E+00 2.3902E-03 
0.3 1.9098 1.0000E-05 0.0000E+00 0.0000E+00 2.2202E-03 
0.4 1.84202 1.0000E-05 0.0000E+00 0.0000E+00 1.9337E-03 
0.5 1.75705 2.0000E-05 3.0000E-05 3.0000E-05 1.5052E-03 
0.6 1.65598 1.1000E-04 1.2000E-04 1.3000E-04 9.2768E-04 
0.7 1.53999 4.0000E-04 4.1000E-04 4.2000E-04 2.2146E-04 
0.8 1.41039 1.1400E-03 1.1600E-03 1.1700E-03 5.6169E-04 
0.9 1.26872 2.8400E-03 2.8600E-03 2.8600E-03 1.3411E-03 
1 1.11696 6.4000E-03 6.4300E-03 6.4300E-03 2.0159E-03 
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Problem 2: Consider DVP oscillator represented by (1) with the following parameter values [9]  

a) α =0.5, β =0.5, µ=0.1, ω=0.79, f=0.5 α >0, β >0 (single-well situation) 
b) α = -0.5, β =0.5, µ=0.1, ω=0.79, f=0.5  α<0, β >0 (double- well situation) 
c) α =0.5, β = -0.5, µ=0.1, ω=0.79, f=0.5  α >0, β<0 (double-hump situation) 

with the following initial conditions 
(0)ݔ = (0)ݔ̇																		,1 = 0 

To apply the proposed method fitness function for each of the three cases is formulated. The fitness function for single well 
situation is as follows.  

௝ߝ =
1

11
෍൫̈ݔ − 0.1(1− ݔ(ଶݔ + ݔ0.5 + ଷ̇ݔ0.5 − 0.5 cos(0.79ݐ)൯

ଶ
+

ଵଵ

௜ୀଵ

1
2
ቄ((0)ݔ − 1)ଶ + ൫̇(0)ݔ൯ଶቅอ

௝

 
 
(13) 

Similarly fitness functions for double well and double hump are formulated. The parameters settings for algorithms GA, 
IPA, and GA-IPA for single-well are given in Table 5 and for double-well and double- hump in Table 6. 

The algorithms are executed according to the prescribed settings. The values of unknown weights attained for three 
situations, single-well, double-well, and double-hump are given in Table 7, Table 8, and Table 9 respectively. 

The results obtained using GA, IPA, and GA-IPA for the three situations, single-well, double-well, and double-hump are 
given in Table 10, Table 11, and Table 12 respectively. For comparison we use the results of this problem obtained using fourth 
order Runge-Kutta (RK), variational iteration method (VIM), and homotopy perturbation method (HPM) given in [9]. It is 
significant from comparison of the results that the proposed heuristic method employing GA, IPA, and GA-IPA provide the 
solution of DVP oscillator (1) quite accurately for all the three situations, single-well, double-well, and double-hump. Further the 
results obtained using heuristic methods are more precise than HPM and VIM. The superiority of GA-IPA is quite evident from 
the results in all the three situations. The absolute errors given in Tables 10-12 have been computed relative to fourth order 
Runge-Kutta (RK) method [9]. 

 
TABLE 5. SETTINGS OF THE ALGORITHMS (SINGLE-WELL SITUATION) 

 GA  IPA  
Parameters Setting Parameters Setting 
Population Size 240 Start point Weights from GA 
Chromosome Size 30 Maximum Iterations 1000 
Creation function Uniform Maximum function evaluations 200000 
Fitness scaling function Proportional X tolerance 1e-06 
Selection function Stochastic Uniform Function tolerance 1e-20 
Reproduction crossover fraction 0.6 Nonlinear constraint tolerance 1e-08 
Mutation function Adaptive feasible Mimimum perturbation 1e-08 
Crossover function Heuristic Maximum perturbation 0.1 
Migration direction Both Derivative type Forward differences 
Hybridization IPA Hessian BFGS 
No of generations 1000 Subproblem algorithm ldl factorization 
Function tolerance 1e-20 Scaling objective and constraints 
Nonlinear constraint tolerance 1e-20 Initial barrier parameter 0.1 
Bounds [-10,10]   

 
TABLE 6. SETTINGS OF THE ALGORITHMS (DOUBLE-WELL AND DOUBLE-HUMP SITUATIONS) 

  GA          IPA    
Parameters Settings Parameters Settings 

Double well Double hump Double well Double hump 
Population size 240 240 Start point  Weights from GA Weights from GA 
Chromosome size 30 30 Maximum iterations 1000 1000 
Creation function Uniform Uniform Maximum function evaluations 60000 150000 
Fitness scaling function Proportional Proportional X-tolerance 1e-6 1e-6 
Selection function Stochastic Remainder Function tolerance 1e-18 1e-22 
Reproduction elite count 3 3 Nonlinear constraint tolerance 1e-18 1e-8 
Reproduction crossover 
fraction 

0.8 0.6 Minimum perturbation 1e-8 1e-8 

Mutation function Adaptive feasible Adaptive feasible Maximum perturbation 0.1 0.1 
Crossover function Heuristic Heuristic Derivative type Forward differences Central differences 
Migration direction Forward Both  Hessian BFGS BFGS 
Migration fraction 0.3 0.2 Subproblem algorithm ldl factorization ldl  factorization 
Migration interval 20 25 Scaling Objective & 

constraints 
Objective & 
constraints 

Hybridization IPA IPA Initial barrier parameter 0.1 0.1 
No. of generations 1500 1500    
Function tolerance 1e-22 1e-24    
Nonlinear constraint tolerance 1e-10 1e-18    
Bounds -10,+10 -20,+20    
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TABLE 7. UNKNOWN WEIGHTS ACQUIRED BY THE ALGORITHMS (SINGLE-WELL SITUATION) 

Algorithm index(i) αi ωi βi 
  1 -1.265889985090810 1.092793964017490 -2.521966427031720 
  2 -0.080971147083984 -2.684965763982810 0.905133471080701 
  3 1.672197087063020 -1.081914936624450 1.736136122217580 
  4 -0.093971878638577 -3.104703481247070 -0.622790297096618 

GA 5 -0.439331493429415 1.836044050217470 -0.928773178627185 
  6 1.755029922105900 1.898392937479290 3.146558994004050 
  7 0.005681627445785 -0.485072682968863 0.297801672544738 
  8 -1.433917964568520 -0.303711713634846 4.651312091661520 
  9 0.957187053339987 0.422228256448854 -1.498945085712250 
  10 -0.741816693762730 -1.300739919289930 1.075096282269960 
  1 -3.366540927777840 -0.695904078565238 -1.488560550141650 
  2 -0.411968135837980 -0.105196898567083 0.292091550953972 
  3 -0.215184226168917 -0.610945247008287 -0.773890022421320 
  4 -0.517829846659449 0.551353210856498 -0.672422637825685 

IPA 5 0.825115934559723 -1.398190441496490 0.687082018158296 
  6 -0.201694410257641 1.403691206472150 3.135842593748000 
  7 0.184231905202183 -0.072863528166909 -2.251822700851530 
  8 1.297996489143470 1.065908756517320 0.470375391738961 
  9 -2.675318568537380 0.619339557275293 -1.009069504675560 
  10 1.712944895119460 -0.885757699083415 3.132104765412600 
  1 -1.595699014585090 0.899241933683106 -2.162074100442170 
  2 0.432572864151938 -1.769831224648860 1.065357373198600 
  3 1.126073804646040 -0.882516492699905 1.750722316695450 
  4 -0.025244391637788 -2.007871782280050 -0.848465670646516 

GA-IPA 5 0.000034735803093 0.994711535812835 -0.503432012659814 
  6 0.975813639648169 1.772990532096380 1.785700502978950 
  7 0.072215645721349 -0.324572085099750 0.214266334263812 
  8 -0.768876133296560 -0.041942988918680 2.935571080170680 
  9 0.549393650027235 -0.184094122075768 -1.101351967757240 
  10 -0.621710189709648 -1.405835778101230 0.531252411316486 
 

TABLE 8. UNKNOWN WEIGHTS ACQUIRED BY THE ALGORITHMS (DUBLE-WELL SITUATION) 
Algorithm index(i) αi ωi βi 

  1 -1.106389539379750 0.519952229380371 0.242684564980686 
  2 2.032805933329850 1.218187143719400 2.429174237626060 
  3 2.218196182261100 0.860222077787026 -2.877871963618480 
  4 -0.216153098472222 1.226845901227490 -1.404100652461520 

GA 5 -0.377820612000670 -1.487628264794860 2.596208990975920 
  6 -2.369491469777590 0.331846429807915 -1.426311568822080 
  7 -0.780496783025413 1.933051189824190 1.519948850215280 
  8 -1.411227587992220 1.930967910874740 3.812887646930820 
  9 2.457084518681930 1.390376926173040 -1.918754174759930 
  10 2.268310865063920 -1.544546845906380 3.377408282567570 
  1 -2.839197309899250 0.991562030993229 -2.507273023768120 
  2 2.234996026290390 -1.041514939623520 -0.540180298782562 
  3 0.652073746506419 0.287640053784605 1.686564563192340 
  4 -1.516036800417300 1.162871457856940 -1.101891729106960 

IPA 5 -1.706366226758330 0.110448488312742 -0.814302803964632 
  6 0.875952746862778 1.488257006439010 -0.092706760870700 
  7 -0.628111866299581 0.277794689093435 0.337009077245961 
  8 -0.159153031009649 1.051869027750690 0.737956971716954 
  9 3.626299968558260 1.394934331357520 -1.804899016671840 
  10 0.738577797503401 1.272027159628920 -0.452987891014406 
  1 -0.284054804086385 -0.236811726194791 0.245224201579831 
  2 0.625612650321309 1.129169963239380 0.714869967947955 
  3 1.264753325031940 -0.640177640006530 -1.096403143439970 
  4 -0.042522121548590 0.553883204697940 -0.639565158724306 

GA-IPA 5 -0.562386901970556 -1.680767593091950 0.790083450489341 
  6 -1.164716663024460 0.572546538855296 -0.675382864004003 
  7 0.272585804352962 -0.167925205450166 1.572699543193290 
  8 -1.045323005459440 1.344159010173530 1.517380197856290 
  9 1.548382075356330 1.683205761905120 -2.232225797171660 
  10 1.785847840135400 -1.002300500792990 2.967357367425730 
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TABLE 9. UNKNOWN WEIGHTS ACQUIRED BY THE ALGORITHMS (DOUBLE-HUMP SITUATION) 

Algorithm Index(i) αi ωi βi 
  1 1.192870162603730 -0.711750462375938 1.043756398746230 
  2 2.049766539550740 0.117622360536661 -0.145243339469248 
  3 0.001667790450654 4.305225834970370 1.530014216481870 
  4 1.553411780292540 1.609616750654910 -1.884653012672490 

GA 5 -1.511832268651550 -0.655468812639403 0.093273323765845 
  6 1.440488121127990 -1.071568775623080 1.797079394614090 
  7 -1.392510050750330 1.679695649258460 2.056357865402550 
  8 0.245722857624671 -1.326733813053720 2.086613245436550 
  9 2.529430061638120 2.462287338798440 -5.333049517074870 
  10 -0.482163869644241 2.090049645243980 5.256888620896470 
  1 3.817834054554160 0.187141566168683 -3.395667211155050 
  2 5.332124314907600 1.418442751529810 -5.250722964441450 
  3 -2.158398571262080 -3.085465757381100 7.702584988451890 
  4 -1.398343911120740 -0.569859957706764 1.084998239776930 

IPA 5 2.196781234981200 -0.747976191759508 -0.446891476473399 
  6 2.195789773353360 0.161503469808081 3.997387116500730 
  7 -1.781231800390960 -0.919056686262346 1.469629415468130 
  8 2.577483208690370 0.738746510553374 0.974268969697450 
  9 8.923469343649400 -0.772901997544750 -2.505731671932690 
  10 -0.273816082761995 -0.500401548803586 -1.301671726083450 
  1 1.240642347032380 -0.722210559793231 1.095492035294410 
  2 2.182861468112850 0.194394889547447 -0.159073730082925 
  3 0.009961705724485 4.594886963565530 1.628338562228540 
  4 1.699569959674330 1.587109469725120 -2.100989111588310 

GA-IPA 5 -1.621222064807400 -0.652063496901351 0.125520376141866 
  6 1.482422396313390 -1.085897551765640 1.910359610722290 
  7 -1.452053698302400 1.721863375285820 1.919656215302390 
  8 0.203457102639309 -1.406990651854360 2.222745302475970 
  9 2.791641323983200 2.569536416700710 -5.874991502569490 
  10 -0.484778160718981 2.195006812720280 5.637864072860240 
 

TABLE 10. COMPARISON OF THE RESULTS OF GA, IPA, GA-IPA, RK [9], HPM [9], and VIM [9] (SINGLE-WELL 
SITUATION) 

                                          t 0.2 0.4 0.6 0.8 1 
 RK 0.99004 0.9607 0.91341 0.85024 0.77352 
 HPM 0.99004 0.96075 0.91383 0.85216 0.77973 
x(t) VIM 0.99004 0.9607 0.91341 0.85025 0.77353 
 GA 0.99005 0.96071 0.91342 0.85025 0.77352 
 IPA 0.99005 0.9607 0.91342 0.85025 0.77352 
 GA-IPA 0.99004 0.9607 0.91341 0.85025 0.77352 
       
 HPM 0.000E+00 5.000E-05 4.200E-04 1.920E-03 6.210E-03 
Absolute VIM 0.000E+00 0.000E+00 0.000E+00 1.000E-05 1.000E-05 
Error  GA 1.000E-05 1.000E-05 1.000E-05 1.000E-05 0.000E+00 
 IPA 1.000E-05 0.000E+00 1.000E-05 1.000E-05 0.000E+00 
 GA-IPA 0.000E+00 0.000E+00 0.000E+00 1.000E-05 0.000E+00 
 

TABLE 11. COMPARISON OF THE RESULTS OF GA, IPA, GA-IPA, RK [9], HPM [9], and VIM [9] (DOUBLE-WELL 
SITUATION) 

                                         t 0.2 0.4 0.6 0.8 1 
 RK 1.00994 1.03911 1.08544 1.14538 1.21377 
 HPM 1.00994 1.03918 1.08621 1.14937 1.22785 
x(t) VIM 1.00994 1.03911 1.08544 1.14539 1.21382 
 GA 1.00995 1.03912 1.08545 1.14539 1.21379 
 IPA 1.00995 1.03912 1.08545 1.14539 1.21378 
 GA-IPA 1.00994 1.03911 1.08545 1.14538 1.21378 
      Absolute HPM 0.000E+00 7.000E-05 7.700E-04 3.990E-03 1.408E-02 
Error VIM 0.000E+00 0.000E+00 0.000E+00 1.000E-05 5.000E-05 
 GA 1.000E-05 1.000E-05 1.000E-05 1.000E-05 2.000E-05 
 IPA 1.000E-05 1.000E-05 1.000E-05 1.000E-05 1.000E-05 
 GA-IPA 0.000E+00 0.000E+00 1.000E-05 0.000E+00 1.000E-05 
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TABLE 12. COMPARISON OF THE RESULTS OF GA, IPA, GA-IPA, RK [9], HPM [9], and VIM [9] (DOUBLE-HUMP 
SITUATION) 

                               t 0.1 0.2 0.5 0.75 1 
 RK 1.0025 1.01001 1.063 1.14346 1.26039 
 HPM 1.0025 1.01001 1.06296 1.14209 1.25055 
x(t) VIM 1.0025 1.01001 1.063 1.14346 1.26035 
 GA 1.0025 1.01001 1.063 1.14346 1.26039 
 IPA 1.0025 1.01001 1.06301 1.14347 1.2604 
 GA-IPA 1.0025 1.01001 1.06301 1.14347 1.26039 
        HPM 0.000E+00 0.000E+00 4.000E-05 1.370E-03 9.840E-03 
 Absolute VIM 0.000E+00 0.000E+00 0.000E+00 0.000E+00 4.000E-05 
Error GA 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 
 IPA 0.000E+00 0.000E+00 1.000E-05 1.000E-05 0.000E+00 
 GA-IPA 0.000E+00 0.000E+00 1.000E-05 1.000E-05 0.000E+00 

 
Problem 3: Consider the following force-free Duffing-van der pol oscillator equation [10] 
 

(ݐ)ݔ̈ + ൬
4
3 + ଶ൰ݔ3 ݔ̇ +

1
3 ݔ + ଷݔ = 0	 (14) 

 

With initial conditions, 
(0)ݔ = (0)ݔ̇																		,0.28868− = 0.12 

The DVP oscillator represented by (14) is solved using the proposed method by employing GA, IPA, and GA-IPA algorithms. 
The fitness function is formulated as follows 
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(15) 
 

The parameters settings used for the execution of the algorithms GA, IPA, and GA-IPA are given in Table 13. The unknown 
weights achieved and the results obtained using GA, IPA, and GA-IPA are given in Table 14, and Table 15 respectively. The 
absolute errors computed relative to the fourth order Runge-Kutta (RK) method are given in Table 16. 

We use fourth order Runge- Kutta (RK) method, modified homotopy perturbation method (NHPM), and Differential 
Transform method (DTM) for comparison of the results given in [10]. The comparison of results clearly illustrates the 
competency of the proposed method. The results obtained from the proposed method are satisfactory and in a good agreement 
with the numerical method based on fourth order Runge- Kutta (RK). It is clear from the results that the performances of GA, 
IPA, and GA-IPA are significantly better than the differential transform method (DTM). The remarkably good performance of 
GA-IPA is quite evident in this problem also. Further the results of IPA, and GA-IPA are comparatively better than NHPM. 

 
TABLE 13. SETTINGS OF THE ALGORITHMS 

  GA        IPA    
Parameters Setting  Parameters Setting 
Population Size 240   Start point Weights from GA 
Chromosome Size 30   Maximum Iterations 1000 
Creation function Uniform   Maximum function evaluations 200000 
Fitness scaling function Proportional   X tolerance 1.00E-06 
Selection function Stochastic Uniform   Function tolerance 1.00E-24 
Reproduction crossover fraction 0.6   Nonlinear constraint tolerance 1.00E-10 
Reproduction Elite count 3       
Mutation function Adaptive feasible   mimimum perturbation 1.00E-08 
Crossover function Heuristic   maximum perturbation 0.1 
Migration direction Forward   derivative type Forward differences 
Migration fraction 0.3       
Mifration Interval 25       
Hybridization IPA   Hessian BFGS 
No of runs 1500   subproblem algorithm ldl factorization 
Function tolerance 1.E-24   scaling objective and constraints 
Nonlinear constraint tolerance 1.E-10   initial barrier parameter 0.1 
 
 
 
 
 

11145 



J. Basic. Appl. Sci. Res., 2(11)11136-11148, 2012 

 
TABLE 14. UNKNOWN WEIGHTS ACQUIRED BY THE ALGORITHMS 

Algorithm index(I) αi ωi βi 
  1 -1.91306516522 0.02175192151 1.29904899010 
  2 1.70543263956 0.98854294435 0.14041737022 
  3 1.43216420823 1.34875958181 2.66144272062 
  4 0.77864220343 -0.27375397568 1.17238262963 

GA 5 0.31009987831 -0.61181223325 -1.17654805869 
  6 -0.86386475139 1.02024670131 1.82682599667 
  7 0.07840918331 -0.69676627753 -0.26524559724 
  8 -1.50822160178 0.96930100531 0.07388755505 
  9 1.03044873446 0.19994355052 -1.37000284459 
  10 -0.90397715307 -0.50116607023 -0.13660866351 
  1 -1.47699748839 -0.75481030473 -1.11814642191 
  2 0.08576367111 0.68642599788 0.36183184369 
  3 -0.12680159035 1.41770408305 -0.38619987951 
  4 0.16446402067 -1.95905490219 -0.93291827889 

IPA 5 -0.24907914864 -1.65865427115 -1.26206961004 
  6 -0.11915962203 -0.03681371193 -0.52649409703 
  7 0.00105567820 -0.72484245418 0.36438882369 
  8 0.40538553888 -0.90135083075 -1.17188997320 
  9 0.02264743289 1.71360046672 -0.22189100676 
  10 0.04475885194 -0.72603614550 -0.02238247734 
  1 -0.75958061636 -0.12008938922 0.77292721647 
  2 0.23004821405 1.34518813058 -0.02635950119 
  3 1.02338291601 1.24638664911 2.22166706939 
  4 0.02642539682 0.28946605634 0.56203668275 

GA-IPA 5 0.12403534086 -0.35834293517 -0.55929926728 
  6 -0.40195043859 1.10618287666 0.37127397210 
  7 0.09951879349 -0.30950893860 -0.13914380752 
  8 -1.24768968326 0.02250125920 0.28154548452 
  9 0.44819179642 0.76064803340 -0.70035768911 
  10 -0.24297156050 0.57411047343 -0.12721846243 
 

TABLE 15. COMPARISON OF THE RESULTS OF GA, IPA, GA-IPA, RK [10], NHPM [10], and DT [10] 
    x(t)     

t RK GA IPA GA-IPA NHPM DT 
0 -0.28868000000 -0.28868029738 -0.288680019 -0.28867998436 -0.28868000000 -0.28868000000 

0.01 -0.28748349253 -0.28748376209 -0.287483494 -0.28748346243 -0.28748347499 -0.28748522585 
0.02 -0.28629387437 -0.28629413304 -0.286293874 -0.28629384488 -0.28629385687 -0.28630661206 
0.03 -0.28511109904 -0.28511134719 -0.285111099 -0.28511106933 -0.28511108168 -0.28514428684 
0.04 -0.28393510355 -0.28393534221 -0.283935105 -0.28393507400 -0.28393508631 -0.28399838456 
0.05 -0.28276582565 -0.28276605654 -0.282765832 -0.28276579778 -0.28044716121 -0.28286904593 
0.06 -0.28160320408 -0.28160342933 -0.281603218 -0.28160318022 -0.27929767140 -0.28175641828 
0.07 -0.28044717833 -0.28044740045 -0.280447205 -0.28044716152 -0.27814565867 -0.28066065588 
0.08 -0.27929768854 -0.27929791050 -0.279297732 -0.27929768251 -0.27701806494 -0.27951892013 
0.09 -0.27815467572 -0.27815490080 -0.27815474 -0.27815468472 -0.27815465866 -0.27852037991 
0.1 -0.27701808173 -0.27701831337 -0.277018171 -0.27701811031 -0.27701806494 -0.27747621187 

 
TABLE 16. ABSOLUTE ERRORS OF GA, IPA, GA-IPA, NHPM, and DT 

t Error of GA Error of IPA Error of GA-IPA Error of NHPM Error of DT 
0 2.9738E-07 1.9220E-08 1.5640E-08 0.0000E+00 0.0000E+00 

0.01 2.6956E-07 1.1200E-09 3.0100E-08 1.7540E-08 1.7333E-06 
0.02 2.5867E-07 1.0000E-10 2.9490E-08 1.7500E-08 1.2738E-05 
0.03 2.4815E-07 4.0000E-10 2.9710E-08 1.7360E-08 3.3188E-05 
0.04 2.3866E-07 1.3200E-09 2.9550E-08 1.7240E-08 6.3281E-05 
0.05 2.3089E-07 6.0200E-09 2.7870E-08 2.3187E-03 1.0322E-04 
0.06 2.2525E-07 1.4250E-08 2.3860E-08 2.3055E-03 1.5321E-04 
0.07 2.2212E-07 2.6430E-08 1.6810E-08 2.3015E-03 2.1348E-04 
0.08 2.2196E-07 4.2980E-08 6.0300E-09 2.2796E-03 2.2123E-04 
0.09 2.2508E-07 6.4070E-08 9.0000E-09 1.7060E-08 3.6570E-04 
0.1 2.3164E-07 8.9680E-08 2.8580E-08 1.6790E-08 4.5813E-04 
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VI. Conclusions 
 
In this work heuristic computing approach has been exploited to investigate the solution of forced and force-free Duffing-van der 

pol (DVP) oscillator. On the basis of the simulation results and the comparisons made with some popular numerical and analytical 
methods we can conclude that the heuristic approach is an effective method for solving DVP oscillator equation. The results obtained 
using our proposed method are in excellent agreement with the numerical methods based on fourth order Runge-Kutta (RK), and 
Lindsted’s method (LM). The reliability and the efficacy of the proposed method using heuristic approaches of GA, IPA, and GA-IPA 
are also demonstrated by solving three interesting situations, single-well, double-well, and double-hump of the forced DVP oscillator. 
It has been observed that proposed method shows ascendancy on differential transform method (DTM), adomian decomposition 
method (ADM), and homotopy perturbation method (HPM) in comparison with numerical methods based on fourth-order Runge 
Kutta (RK) and Lindsted’s method (LM). Moreover it has also been shown that proposed method can approximate the solution with 
the accuracy comparable to RADM, NHPM, and VIM or even better in some cases. The potency of the proposed method is that it can 
provide the approximate solution on the continuous time domain.  
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