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ABSTRACT 

 

In this paper, a new scheme of Runge-Kutta (RK) type has been discussed which utilizes only two slope evaluations per 

integration step while maintaining the third order accuracy as shown by the derived principal term of local truncation error. 

Characteristic stability polynomial is presented followed by the error analysis of the scheme. Error bounds in terms of Lotkin’s 

bounds of the scheme have been derived and compared with the error bounds with existing standard schemes having similar 

number of slope evaluations as that of the scheme under consideration. Couples of numerical examples with varying nature are 
presented to test the performance of the developed scheme against some of the standard schemes having same number of slope 

evaluations per integration step. 

KEYS WORDS: Initial value problems, Runge-Kutta scheme, autonomous and non-autonomous differential equations, Zero-

stability. 

 

1. INTRODUCTION 

 

Ordinary Differential Equations (ODEs) have played a vital role in mathematical and biological sciences. Mathematical models 

based upon ordinary differential equations are very much important in various field of science including Biology (DNA molecules 

or biosynthesis phospholipids), Physics (Simple Pendulum), Chemistry (chemical reaction kinetics), Medicine (Pharmaceutical 

Drug Design), Population Dynamics (Verhulst-Pearl model), Engineering (beats of a vibrating system) and many more [1-5]. 

Mathematical modeling of ODEs is widely used in physical applications of above different kinds of indispensable areas. There are 

many problems of engineering and physical science which can be formulated into ordinary differential equations satisfying certain 

conditions (initial and/or boundary). If these conditions are prescribed for one and only point 0x  then such a problem together 

with the condition is known as an Initial Value Problem (IVP) as described in [6-8]. Main focus of the present paper is upon 
solving IVPs numerically with reduced slope evaluations required per integration step having discussion and derivation of the 

error bounds on the constant step size used for the numerical scheme under consideration. 

Analytically, the solution to an initial value problem means finding an explicit expression for the unknown function  y x . But 

analytical schemes are applicable only for selected class of IVPs mostly linear ones and a very few nonlinear IVPs. In cases when 

closed form solution does not exist, one has to go for the approximate solution using some numerical schemes as discussed in [9-10]. 
Various numerical schemes in past with different characteristics have been presented to solve such IVPs. In [11-15], authors have 

attempted to improve the order of accuracy of the existing standard linear RK type schemes whereas others in [16-18] have 

proposed new linear schemes with different characteristics. There is yet another group of scholars who have developed nonlinear 

schemes to solve those IVPs having rational solutions with some sort of singularity in them for which standard linear RK schemes 

do not perform well as can be consulted with [19-20]. Explicit and implicit or semi-implicit numerical schemes have also been 

derived to serve the purpose as shown in [21]. 

Consider an initial value problem in the form of 

  , ;
dy

f x y x
dx
    0 0 0, , ny x y x x x                                                        (1) 

where uniqueness of the solution of (1) has been assumed. 

One of the most common numerical schemes for solving the equation (1) is the standard classical RK scheme as explained in [7]. 

Most efforts to increase the order of RK methods have been accomplished by increasing the number of terms of Taylor’s series 

thus the number of function evaluations per integration step. Three number of function evaluations are required per integration 

step in the classical third order RK method. Many authors have attempted to increase the efficiency of RK method with lower 
number of function evaluations required as detailed in [22-26]. 

As a result, a third order RK type scheme has been proposed in [27] which requires only two function evaluations per integration 

step to solve only autonomous type of IVPs. In order to get a numerical scheme applicable for both autonomous and non-

autonomous IVPs, an improved RK type numerical scheme was proposed in [25] which also employs two function evaluations per 

step while maintaining third order accuracy but the paper has not offered error analysis and bound on the step length  h  of the 

scheme. Taking inspiration from this research work, the present paper not only offers derivation of the scheme but also contains 

analysis of its local truncation error and corresponding error bounds. 
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The structure of the present paper has been organized as follows. In section 2, we presented the derivation of the third order 

improved RK scheme with two stages using the Taylor’s series expansion. In section 3, the stability region of the scheme is 

discussed followed by the analysis of its Local Truncations Error (LTE) in section 4. Errors bounds of the scheme are further 

analyzed in section 5 whereas the results so obtained are discussed in the section 6 followed by section 7 for conclusion.  

 

2. Derivation of the Improved RK Scheme 

 

Consider the following structure of the proposed numerical scheme: 

))(( 22211111   kkbkbkbhyy nn          (2)
 

 1 ,n nk f x y
 

 1 1 1,n nk f x y  
 

 2 2 2 1 1,n nk f x c h y a k h  
                                                                                                          

 2 1 2 1 21 1,n nk f x c h y a k h     
 

with the assumptions that 2 21c a  because 

1i

i ij

j

c a


  and  2 0,1c    

In the above equations,
 2 21 1 1 2, , ,c a b b b

 
are the constants to be determined. Here 1 1 2 2, , ,k k k k   are the slopes to 

be Taylor expanded to get the proposed scheme in the following way: 
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Generally, the Taylor’s series for a function  ny x h  is as follows: 
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Comparing the equations (3) and (4) up to h3 terms, the following order conditions are obtained: 

1 1 1 2 1 2 2 2

1 1
1, , 2

2 6
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After solving this system of nonlinear algebraic equations, we have the following general structure where 2c be a free parameter:
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After trying various values of the free parameter c2, 
we have come up with following numerical scheme which employs two slope 

evaluations per integration step while maintaining the third order accuracy as shown by the local truncation error in the next 

section:
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            (7)                        

 
 

3. Error Analysis 

 

For getting the expression of local truncation error of the proposed numerical scheme, a functional related to the scheme is 

considered: 

      1, Improved RK Schemeshown by 7nL z x x z x    

where  z x  is a function arbitrary in nature and can be differentiated as many times as required on  0 , nx x . Having Taylor 

expanded the above equation about x, it is observed that the all terms up to 
3h  have been cancelled and thus the local truncation 

error comes out to be as follows: 
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Further, being at least third order accurate the developed numerical scheme (7) is also consistent. 

 

4. Stability Analysis 

 

The stability of the developed numerical scheme in (7) is checked using it to the Dahlquist’s test problem [28] as follows: 

     ' ; R e 0y x y x             (9) 

The slopes involved in the scheme become  
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After simplification, we get the following stability polynomial 

     2, z p z q z                (10) 

where    21
5 18 12

12
p z z z    ,    21

5 6
12

q z z z  , and z h . Further, 1  and 2  are said to be the zeros of 

the stability polynomial (10). 

For analyzing stability and obtaining stability region of the developed numerical scheme, we employ Schur – Cohn stability 

criterion discussed in [29]. For this purpose, we define: 
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where p  and q  are complex conjugates of p and q respectively. Here,  1 , z   is at least of first degree polynomial as 

shown below: 
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By Schur-Cohn theorem, 1 1   and 2 1   if and only if 1q   and 
2

1p qp q   . 

Region of the stability for the developed numerical scheme is sketched (unshaded region) below along-with its interval of 

stability: 

 

Figure 1. Region of stability with interval of stability being  2.248,0.055 in the Complex Plane
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This completes the proof of stability of the developed numerical scheme. Moreover, the first characteristic polynomial   0z  , 

has two zeros, that is, 0,1  ; it can be claimed that the scheme is zero – stable. Further, depending upon the above discussion 

of consistency and stability the convergence of the numerical scheme is analyzed in the following way: 

 

Theorem (Dahlquist’s Equivalence Theorem) 
As reported in [30]; “For a linear multistep numerical scheme consistent with an ordinary differential equation 

    , ;y x f x y x  where   ,f x y x  is assumed to satisfy the Lipchitz condition, zero-stability and consistency are 

necessary and sufficient conditions for convergence.” 

Mathematically, 

Consistency+Zero-Stability   Convergence 

This theorem guarantees for the developed scheme to be convergent. 

As far as order of accuracy of the scheme is concerned; it has been revealed while deriving the scheme that it takes three order 

conditions (5) and utilizes Taylor’s expansion up to the term containing
3h . This clearly shows that global error involved in the 

method is of order three, that is, global truncation error  3O h  hence the order of the scheme. 

5. Propagation of Errors 

 
It is a common fact that numerical solution of an ordinary differential equation contains round off (uncontrollable) and truncation 

(discretization) errors where truncation error is generally of two types, that is; local and global truncation errors, which remain 

under control of the analyst.  

Detailed study of magnitude and characteristics of truncation error is important to accept any new devised iterative method. In 

order to be of some use, an iterative must discuss error bounds it contains as claimed in [31]. The developed numerical scheme (7) 

can easily be compared with Taylor series expansion of the form: 
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The terms containing 
4h  have been truncated while developing the modified iterative method resulting the bound of local 

truncation error given by: 
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According to above inequality, we find that local truncation error is proportional to the power 4 of the step size and fourth 

derivative of the given differential equation. Likewise, global truncation error will be  3GTE O h . It implies that halving the 

step size will decrease the error by a factor of about 1 8 . In order to prove it in general sense; error bound for local truncation 

error (LTE) is computed using Lotkin’s Error Bounds discussed by Lotkin in [32]. From (8), the bound for the local truncation 

error is obtained as: 

  4 4 329
,

9
k nx y h h P Q               (12) 

where  ,k nx y  is known as Principal Error Function for the proposed method and P, Q are positive constants given by 

Lotkin as: 

 ,f x y Q  and  1
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i j j
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Following table shows error bounds, number of function evaluations and order of accuracy of some numerical schemes compared 

with that of the developed scheme (7). The Table 1 reveals strength of the developed scheme in connection with order of accuracy 

in particular. The table also shows that the third order standard linear Ralston’s scheme will take comparatively larger step size 

with three function evaluations per integration step whereas the scheme developed exploits only two.  
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Table 1. Error Bounds 
Method Error Bound on LTE Function 

Evaluations 

Order of 

Accuracy 

Improved Euler 

  3 3 22
,

3
n nt y h h P Q   

TWO 2 

Midpoint Euler 

  3 3 21
,

2
n nt y h h P Q   

TWO 2 

Ralston 

  3 3 25
,

12
n nt y h h P Q   

TWO 2 

Ralston   4 4 3, 0.1111n nt y h h P Q   
THREE 3 

Proposed 

  4 4 329
,

9
n nt y h h P Q   

TWO 3 

 

6. RESULTS AND DISCUSSION 

 

For testing the developed numerical scheme, couples of initial value problems of varying nature are considered from the literature. 

Standard linear numerical schemes having same number of slope evaluations per integration step are selected for comparison with 

the developed scheme. To serve the purpose, maximum absolute error along the integration interval   
1,2, ,
max n n

n N
E y x y


 

L

, 

final absolute global error     n NE t x y x N y     and CPU time values have been tabulated for all the schemes under 

consideration. Each data cell in every table of the numerical experiments lists the maximum absolute error, final absolute global 

error and the CPU time values from top to bottom order. In all types of initial value problems under consideration in the present 

paper, the developed scheme proposed here yields smaller errors in comparison with other schemes having same order of local 

accuracy. The graphs for this purpose tell the similar sort of story even though considerably small step size is chosen to solve the 

underlying IVP as depicted in the numerical experiments discussed below. 

Example 1. In this first problem, a linear initial value problem is chosen which is given as: 

 , 0 1
dy

x y y
dx
    

whereas its exact analytical solution is given by: 

  1 2 xy x x e     

It is observed from the Table 2 that with the increasing number of integration steps, maximum absolute error on the integration 

interval  0,1  and the final absolute global error are decreasing for each numerical scheme under consideration with the 

developed scheme (7) having the smallest errors among all. CPU time values exhibit similar type of trend for almost every scheme 

in the table.  

 

Table 2. Errors and CPU values for Example 1 
Scheme/NI 64 128 256 512 1024 

Proposed 3.3760e-06 

3.3760e-06 

0.0000e+00 

4.2703e-07 

4.2703e-07 

0.0000e+00 

5.3693e-08 

5.3693e-08 

0.0000e+00 

6.7313e-09 

6.7313e-09 

0.0000e+00 

8.4264e-10 

8.4264e-10 

0.0000e+00 

Heun’s 2.1863e-04 

2.1863e-04 

0.0000e+00 

5.4980e-05 

5.4980e-05 

0.0000e+00 

1.3785e-05 

1.3785e-05 

0.0000e+00 

3.4514e-06 

3.4514e-06 

1.5625e-02 

8.6349e-07 

8.6349e-07 

1.5625e-02 

Ralston 2.1863e-04 

2.1863e-04 

0.0000e+00 

5.4980e-05 

5.4980e-05 

0.0000e+00 

1.3785e-05 

1.3785e-05 

0.0000e+00 

3.4514e-06 

3.4514e-06 

0.0000e+00 

8.6349e-07 

8.6349e-07 

0.0000e+00 

 

Example 2. Once again, a linear initial value problem is considered but it has the slope with a transcendental function given on 

the right:   

     6sin 2 20 , 0 1
dy

x y x y
dx
    

Its exact analytical solution is given by: 

      203 30 104
cos 2 sin 2

101 101 101

xy x x x e     

It can be seen from the Table 3 that with the increasing number of integration steps, maximum absolute error on the integration 

interval  0,1  and the final absolute global error are decreasing for each numerical scheme under consideration with the 

72 



J. Appl. Environ. Biol. Sci., 8(7)67-76, 2018 

 

developed scheme (7) having the smallest errors among all. CPU time values exhibit similar type of trend for almost every scheme 

in the table.  

 

Table 3. Errors and CPU values for Example 2 
Scheme/NI 64 128 256 512 1024 

Proposed 1.9368e-03 

4.2495e-08 

6.2500e-02 

2.4081e-04 

6.1629e-09 

0.0000e+00 

3.0074e-05 

8.3113e-10 

0.0000e+00 

3.7624e-06 

1.0792e-10 

0.0000e+00 

4.7041e-07 

1.3750e-11 

1.0469e+00 

Heun’s 7.8433e-03 

8.3179e-05 

0.0000e+00 

1.7335e-03 

1.9013e-05 

0.0000e+00 

4.0882e-04 

4.5582e-06 

0.0000e+00 

9.9209e-05 

1.1166e-06 

0.0000e+00 

2.4442e-05 

2.7639e-07 

0.0000e+00 

Ralston 7.8442e-03 

5.5931e-05 

1.5625e-02 

1.7338e-03 

1.2780e-05 

0.0000e+00 

4.0888e-04 

3.0633e-06 

0.0000e+00 

9.9224e-05 

7.5036e-07 

0.0000e+00 

2.4445e-05 

1.8571e-07 

0.0000e+00 

 

Example 3. In this example, a linear initial value problem is under discussion whose exact solution is not available in terms of 

elementary mathematical functions:  

   2 1, 0 1
dy

xy x y
dx
    

The exact solution consists of a special function called the Gauss error function [Temme, N. M, 2010] 

   
21

1
2

xy x erf x e    
 

 

It can be seen from the Table 4 that with the increasing number of integration steps, maximum absolute error on the integration 

interval  0,1  and the final absolute global error are decreasing for each numerical scheme under consideration with the 

developed scheme (7) having the smallest errors among all. CPU time values exhibit similar type of trend for almost every scheme 
in the table.  

 

Table 4. Errors and CPU values for Example 3 
Scheme/NI 64 128 256 512 1024 

Proposed 8.2727e-06 

8.2727e-06 

0.0000e+00 

1.0554e-06 

1.0554e-06 

0.0000e+00 

1.3326e-07 

1.3326e-07 

3.7500e-01 

1.6741e-08 

1.6741e-08 

6.7188e-01 

2.0978e-09 

2.0978e-09 

1.1406e+00 

Heun’s 1.6085e-04 

1.6085e-04 

0.0000e+00 

4.0053e-05 

4.0053e-05 

0.0000e+00 

9.9932e-06 

9.9932e-06 

0.0000e+00 

2.4958e-06 

2.4958e-06 

0.0000e+00 

6.2363e-07 

6.2363e-07 

0.0000e+00 

Ralston 9.2021e-05 

9.2021e-05 

0.0000e+00 

2.3037e-05 

2.3037e-05 

0.0000e+00 

5.7634e-06 

5.7634e-06 

0.0000e+00 

1.4414e-06 

1.4414e-06 

0.0000e+00 

3.6040e-07 

3.6040e-07 

0.0000e+00 

 

Example 4. Here, a nonlinear autonomous initial value problem is under consideration:  

      1 , 0 0.5
dy

y x y x y
dx
    

The exact solution of which is provided by:   1

1 x
y x

e



 

It can be seen from the Table 5 that with the increasing number of integration steps, maximum absolute error on the integration 

interval  0,1  and the final absolute global error are decreasing for each numerical scheme under consideration with the 

developed scheme (7) having the smallest errors among all. CPU time values exhibit similar type of trend for almost every scheme 
in the table. Further, the developed numerical scheme is also tested with considerably fewer number of integration steps (NI=20) 

against other methods but still found to be better in terms of absolute errors as shown by the Figure 2. 

 

Table 5. Errors and CPU values for Example 4 
Scheme/NI 64 128 256 512 1024 

Proposed 3.8438e-08 

3.8438e-08 

7.8125e-02 

4.8357e-09 

4.8357e-09 

1.2500e-01 

6.0639e-10 

6.0639e-10 

4.8438e-01 

7.5920e-11 

7.5920e-11 

5.1563e-01 

9.4965e-12 

9.4965e-12 

1.0000e+00 

Heun’s 2.4671e-06 

2.4671e-06 

1.5625e-02 

6.1522e-07 

6.1522e-07 

0.0000e+00 

1.5361e-07 

1.5361e-07 

0.0000e+00 

3.8378e-08 

3.8378e-08 

0.0000e+00 

9.5915e-09 

9.5915e-09 

0.0000e+00 

Ralston 6.0860e-07 

6.0860e-07 

0.0000e+00 

1.5184e-07 

1.5184e-07 

0.0000e+00 

3.7923e-08 

3.7923e-08 

0.0000e+00 

9.4758e-09 

9.4758e-09 

0.0000e+00 

2.3683e-09 

2.3683e-09 

0.0000e+00 
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Figure 2. Absolute Errors with NI=20 for Example 4 

 

Example 5. Finally, a nonlinear initial value problem with no solution in closed-form has been selected as follows:  

     22 , 0 0
d

y x x y x y
dx

    

whose solution has been obtained using Maple symbolic environment as shown below: 

 
2 2

2 2

0 0

3 1 3 1
BesselI , 2 2BesselK ,

4 2 4 2
otherwise

1 1 1 1
2BesselI , 2BesselK ,

4 2 4 2

x

x x x
y x

x x





                 

            

 

 

where  BesselI , z  and  BesselK , z  are the Bessel functions of the first and second kind respectively. 

It can be seen from the Table 6 that with the increasing number of integration steps, maximum absolute error on the integration 

interval  0,1  and the final absolute global error are decreasing for each numerical scheme under consideration with the 

developed scheme (7) having the smallest errors among all. CPU time values exhibit similar type of trend for almost every scheme 

in the table. Further, the developed numerical scheme is also tested with considerably fewer number of integration steps (NI=20) 

against other methods but still found to be better in terms of absolute errors as shown by the Figure 3. 

 

Table 6. Errors and CPU values for Example 5 
Scheme/NI 64 128 256 512 1024 

Proposed 1.0483e-06 

1.0483e-06 

0.0000e+00 

1.3285e-07 

1.3285e-07 

0.0000e+00 

1.6720e-08 

1.6720e-08 

5.6250e-01 

2.0972e-09 

2.0972e-09 

6.5625e-01 

2.6259e-10 

2.6259e-10 

9.3750e-01 

Heun’s 3.7620e-05 

3.7620e-05 

0.0000e+00 

9.3566e-06 

9.3566e-06 

0.0000e+00 

2.3331e-06 

2.3331e-06 

4.6875e-02 

5.8251e-07 

5.8251e-07 

0.0000e+00 

1.4553e-07 

1.4553e-07 

0.0000e+00 

Ralston 8.3089e-06 

8.3089e-06 

0.0000e+00 

2.0616e-06 

2.0616e-06 

0.0000e+00 

5.1343e-07 

5.1343e-07 

0.0000e+00 

1.2811e-07 

1.2811e-07 

0.0000e+00 

3.1996e-08 

3.1996e-08 

0.0000e+00 

 

 
 

Figure 3. Absolute Errors with NI=20 for Example 5 
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7. CONCLUSION 

 

The present work demonstrates the efficiency of an improved version of RK type scheme having third order accuracy especially in 

terms of number of slope evaluations per integration step and the error bound on the step length of the scheme. Errors produced by 

the presented scheme are much smaller than the errors given by other schemes taken for consideration. Although, the step length 

is taken to be as large as 0.05 but the curve of absolute errors of the scheme remains below the error curves of the other schemes 

considered for comparison. In addition to this, the presented scheme has error bound for which one may easily check the number 

of iterations required by the scheme before to actually employing it on an initial value problem. This has been shown that the 

scheme requires fewer number of integration steps in comparison with other schemes as given in the first table. In the future, the 

present research work is planned to be stretched for the derivation of a fourth order RK type scheme with three number of slope 
evaluations per integration step keeping its errors in control with the idea of the error bounds on its step length.   
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