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ABSTRACT 

 

Generalized fractional Burgers fluid is analyzed for the flow of an edge in Rayleigh stokes problem. Newtonian and 

non-Newtonian expressions of velocity field have been established by the usage of Laplace and double Fourier Sine 

transforms along with their inverses. The constitutive and governing equations are solved by fractional calculus 

techniques. The general solutions are presented as the sum of non-Newtonian and Newtonian forms and expressed in 

terms of Fox-H Function. All imposed conditions (initial, natural and boundary) are fulfilled. The general solutions 

have been particularized for fractionalized as well as ordinary in six types of fluids such as Newtonian fluid, second 

grade fluid, Maxwell fluid, Oldroyd-B fluid, Burger fluid and generalized Burgers fluid. Finally the rheology is 

graphically described by various parameters on fluid flow.  

KEY WORDS: Transforms, Generalized Burger’s model, Stokes problem and graphical rheology. 

 

1. INTRODUCTION 

 

At present, there is no refusing realism that characteristics of non-Newtonian fluids cannot be described by 

Navier-Stokes equations, this is due to realism that several technological and industrial processes frequently take 

place in non-Newtonian fluids. If flows of non-Newtonian fluids are assumed between two side of plates then such 

flows turns into several processes of industry, for instance, paper production, drawing of copper wires, glass 

blowing, polymer suspension, extrusion of plastic sheets, continuous stretching of plastic films and various others. 

In the non-Newtonian fluids models, Burgers’ fluid model [1-3], the Oldroyd-B fluid model [4-5], Maxwell fluid 

model [6-7] and the second grade fluid model [8-9] are known as viscoelastic models, because they recognize both 

characteristics viscosity as well as elasticity. The fractional Burgers’ fluid for Couette and Poiseuille flows between 

two parallel plates is discussed by Hyder Ali Muttaqi Shah [10]. Exact analytical solutions for temperature 

distributions and velocity fields for magnetohydrodynamics generalized Burgers’ fluid in the presence of radiation 

effects on the heat transfer is investigated in [11]. The fractional generalized Burgers’ fluid for oscillating, 

accelerating and rotating flows with porous medium and magnetohydrodynamics have been obtained for exact 

solutions along with fractional calculus approach in [12-18]. In continuation, our full attention is on the study of 

fluid problem between two parallel plates, in last few years, several researchers and mathematicians have diverted 

their research directions towards the fluid problem related between two parallel plates. However, we mention here 

very latest research work between two parallel plates. Exact solutions for constantly accelerating plate between two 

side walls perpendicular to the plate in generalized Oldroyd-B fluid is persuaded by [19]. Using fractional derivative 

approach, flow between two side walls perpendicular to the plate in second grade fluid is investigated in [20]. Due to 

suddenly moved plate the flow between two side walls in Maxwell fluid is found out by T. Hayat and et al. [21]. A 

constant pressure gradient between two side walls perpendicular to the plate in generalized Oldroyd-B fluid is traced 

out in [22]. Influence of accelerated flows between two side walls perpendicular to the plate in generalized Oldroyd-

B fluid is communicated by [23]. Taza Gul and et al. analyzed impacts of magnetic field without slip boundary 

suppositions for third grade fluid flow using vertical belt [24]. Kashif and et al. investigated fractionalized 

viscoelastic fluid for magnetohydrodynamic flow by employing transformation techniques [25]. We also include 

here few recent work related to viscoelastic fluids [26-34]. Observing the above motivations, we traced out 

generalized fractional Burgers fluid for the flow of an edge in Rayleigh stokes problem. Newtonian and non-

Newtonian expressions of velocity field have been established by the usage of Laplace and double Fourier Sine 

transforms along with their inverses. The constitutive and governing equations are solved by fractional calculus 

techniques.  The general solutions are presented as the sum of non-Newtonian and Newtonian forms and expressed 

in terms of Fox-H Function. All imposed conditions (initial, natural and boundary) are fulfilled. The general 

solutions have been particularized for fractionalized as well as ordinary in six types of fluids such as Newtonian 

fluid, second grade fluid, Maxwell fluid, Oldroyd-B fluid, Burger fluid and generalized Burgers fluid. The rheology 
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is graphically described by various parameters on fluid flow and in order to discuss the effects of various 

parameters, we depicted figures to analyze the fluid flows. 

 

2. Modeling of Governing Equations  

The rheological equations for fractional generalized Burgers' fluid are � � ��� � �,			
Λ��
�� � ��Λ��
�� � Λ��
� � 1�,																																																																																																												�1� 

Where, ���, �, �, �, 
, �Λ� � Λ��, Λ�, Λ�, �, �  and �
�  denotes indeterminate spherical stress, the extra stress 

tensor, Cauchy stress tensor, first Rivlin–Ericksen tensor, dynamic viscosity, the retardation time, relaxation time, 

new material parameter, fractionalized parameters and  fractional derivative operator respectively [10-18].We 

assume velocity field for such problem related between two parallel plates and extra-stress tensor as �	 � 	���, �, �� � 	���, �, �� , �	 � 	���, �, ��,																																																																																																																								�2� 

here  is identity vector along the x-co-ordinate direction. The limitation of incompressibility is consequently 

fulfilled for the velocity field. The fluid being at rest up to the moment t = 0as well as considering the initial 

condition ���, �, 0� � 0,																																																																																																																																																																																		�3� 

Employing equation (2) into equation (1) and considering equation (3) for initial condition, we get the following 

system of equations in fractionalized form  $%% � $&& � $&% � 0,																																																																																																																																																																						�4�	

�1 � Λ��
� � Λ(�
��� )���, �, ��)� � �1 � Λ��
� � Λ��
���$���, �, ��,																																																																									�5� 


�1 � Λ��
� � Λ(�
��� )���, �, ��)� � �1 � Λ��
� � Λ��
���$���, �, ��,																																																																									�6� 

In the above equations (5) and (6), we used the below definition so called Caputo fractional operator 

)�,���)�� �
-./
.0 1

Γ�1 � �� 1 ,′�2��� � 2�� 32,					0 � � � 1

43,���3� ,																																												� � 1			 ,																																																																																																												�7� 

In the absence of body force the balance of linear momentum diminishes to )$���, �, ��)� � )$���, �, ��)� � 6 )���, �, ��)� � )�)7 � 0,							 )�)� � )�)�,																																																																																				�8� 

Assuming that there is absenteeism of pressure gradient in the flow direction and eliminating $���, �, �� and $���, �, �� between equations �5 � 6� and �8��. We investigate the governing equations   	
�1 � Λ��
� � Λ��
��� )���, �, ��)� � 9 : )�)�� � )�)��; �1 � Λ��
� � Λ(�
��� )����, �, ��)�� ,																																								�9� 

This model contains as special cases such as Newtonian when �Λ( → Λ� → Λ� → Λ� → 0�, when �Λ( → Λ� → Λ� →0�  second grade, when �Λ( → Λ� → Λ� → 0�  Maxwell, when �Λ( → Λ� → 0�Oldroyd-B, �Λ( → 0�  Burger. It is 

also noted that when � → � → 1 then above all models are termed as ordinary fluid models. In order to state the 

problem, we assume an incompressible fractional generalized Burger fluid possesses the space of first dial of 

rectangular edge as�, � ? 0;	�∞ � 7 � ∞. When � � 0B the fluid fetched to constant velocityΩ4 in the 7 direction. 

Owing to shear, fluid slowly moved and its velocity of the form �2�� . The initial and boundary conditions along 

with governing equations �5,6�and �9� as 

 

For,  �, � D 0;						EFG�&,%,4�E
F � EG�&,%,4�E
 � ���, �, 0� � 0,																																																																																																			�10� 

 

For,  � D 0; 			���, 0, �� � ��0, �, �� � Ω4,																																																																																																																											�11� 

 

For,  �� � �� → 0; 			HI								 EG�&,%,
�E% → EG�&,%,
�E& → ���, �, �� → 0.																																																																																		�12� 

 

Equation (12) represents that there is no shear in the free stream when the fluid is at rest at infinity 

 

3. Solution of the problem 

3.1 Solution of Generalized Burger fluid for velocity field 

Applying double Fourier sine transform to equation (9-11), we attain  )�K�L, M, ��)� �1 � Λ��
� � Λ��
��� � 9�1 � Λ��
� � Λ(�
����L� � M���K�L, M, �� � 2	Ω49	�L� � M��N	L	M 																												 O�1 � Λ��
� � Λ(�
����K�L, M, �� � 0,																																																																																																																																		�13� 
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Where �K�L, M, �� is the Fourier sine transform of ���, �, �� illustrated as  

 �K�L, M, �� � 2 N⁄ 1 1 ���, �, ��	Q R��L�	Q R��M�	3L	3M,S
4

S
4 																																																																																												�14� 

 

has to justify imposed conditions equation (10-11), )��K�L, M, 0�)�� � )�K�L, M, 0�)� � �K�L, M, 0� � 0,										L, M D 0,																																																																																											�15� 

Applying Laplace transform to equation (13), we obtain 

�TK�L, M, U� � 	2	Ω4	9	�L� � M��N	L	M �1 � Λ�U� � Λ(U���UV�U � Λ�U�B� � Λ�U��B�� � 9	�L� � M���1 � Λ�U� � Λ(U���W,																									�16� 

Our aim is to express the solutions as a sum of Newtonian and non-Newtonian Part �X��, �, �� � �XYZ��, �, ��, 

henceΛ� → Λ� → Λ� → Λ( → 0 in equation (16), we have get Newtonian part as  

�TK�X��L, M, , U� � 2	Ω4	9	�L� � M��N	L	M	U	�U � 	9L� � 9M��		,																																																																																																																										�17� 

Switching equation (17) into equation (16), we obtain equivalently,  

�TK�L, M, U� � 	 2	Ω4N	L	M [1U � 1�U � 	9L� � 9M��\ � 2	Ω4	9	�L� � M��N	L	M 																																																																																																	 
O �1 � Λ�U� � Λ(U��� � �1 � Λ�U� � Λ�U����U � 	9L� � 9M��VU�1 � Λ�U� � Λ�U��� � 9	�L� � M���1 � Λ�U� � Λ(U���W,																																																								�18� 

expressing equation (18) in terms of series form as,  

�TK�L, M, U� � 	 2	Ω4N	L	M [1U � 1�U � 	9L� � 9M��\ � 2	Ω4	9	�L� � M��N	L	M 1�U � 	9L� � 9M��																																																																 
O ]^ _ 19L� � 9M�`aS

ab4 ^ �Λ��cd!
S

cb4 ^ _�Λ�Λ� `f 1g!
S

fb4 ^ ��Λ��hi!
S

hb4 ^ _�Λ(Λ� `j 1k!
S

jb4 																																																																												 
O Γ�m � 1�Γ�d � 1�Γ�i � 1�Γ�m � i�Γ�m � d � 1�Γ�d � g � 1�Γ�m�Γ�i � k � 1� 1U�fn�cn��fnan�hB�jn��j																																																																								 
� ^��9L� � 9M��aS

ab4 ^ ��Λ��cd!
S

cb4 ^ _�Λ(Λ� `f 1g!
S

fb4 ^ ��Λ��hi!
S

hb4 ^ _�Λ�Λ� `j 1k!
S

jb4 																																																																									 
O Γ�m � 1�Γ�d � 1�Γ�i � 1�Γ�m � i�Γ�m � d � 1�Γ�d � g � 1�Γ�m�Γ�i � k � 1� 1U�fn�cn��fBan�hB�jn��jB�o ,																																																								�19� 

 

Applying inverse Laplace transform on equation (19), we get 	
�K�L, M, �� � 	 2	Ω4N	L	M � 2	Ω4N	L	M p7���9L� � 9M��� � 2	Ω4	9	�L� � M��N	L	M p7���9L� � 9M��� ∗																																																		 
O ]^ _ 19L� � 9M�`aS

ab4 ^ �Λ��cd!
S

cb4 ^ _�Λ�Λ� `f 1g!
S

fb4 ^ ��Λ��hi!
S

hb4 ^ _�Λ(Λ� `j 1k!
S

jb4 																																																																												 
O Γ�m � 1�Γ�d � 1�Γ�i � 1�Γ�m � i���fn�cn��fnan�hB�jn��jΓ�m � d � 1�Γ�d � g � 1�Γ�m�Γ�i � k � 1�Γ��g � �d � 2�g � m � �i � �k � 2�k � 1�																																	 
� ^��9L� � 9M��aS

ab4 ^ ��Λ��cd!
S

cb4 ^ _�Λ(Λ� `f 1g!
S

fb4 ^ ��Λ��hi!
S

hb4 ^ _�Λ�Λ� `j 1k!
S

jb4 																																																																									 
O Γ�m � 1�Γ�d � 1�Γ�i � 1�Γ�m � i���fn�cn��fBan�hB�jn��jB�Γ�m � d � 1�Γ�d � g � 1�Γ�m�Γ�i � k � 1�Γ��g � �d � 2�g � m � �i � �k � 2�k � 2�r,																					�20� 

Inverting equation (20) by means of Fourier sine transform, we get 

���, �, �� � 	Ω4 � Ω4stu�� 2√�9⁄ �stu�� 2√�9⁄ � � 4Ω49	N� 1 1 1 �L� � M��L	MS
4

S
4



4 sin��M� sin��L�																																		 

Op7���9L� � 9M���� � z�	3z	3L	3M ]^ _ 19L� � 9M�`aS
ab4 ^ �Λ��cd!

S
cb4 ^ _�Λ�Λ� `f 1g!

S
fb4 																																																											 

O ^ ��Λ��hi!
S

hb4 ^ _�Λ(Λ� `j 1k!
S

jb4
Γ�m � 1�Γ�d � 1�Γ�i � 1�Γ�m � i�Γ�m � d � 1�Γ�d � g � 1�Γ�m�Γ�i � k � 1�																																																																								 
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O ��fn�cn��fnan�hB�jn��jΓ��g � �d � 2�g � m � �i � �k � 2�k � 1� � 4Ω49	N� 1 1 1 �L� � M��L	MS
4

S
4



4 sin��M� sin��L�																																 

Op7���9L� � 9M���� � z�	3z	3L	3M ^��9L� � 9M��aS
ab4 ^ ��Λ��cd!

S
cb4 ^ _�Λ(Λ� `f 1g!

S
fb4 																																																							 

O ^ ��Λ��hi!
S

hb4 ^ _�Λ�Λ� `j 1k!
S

jb4
Γ�m � 1�Γ�d � 1�Γ�i � 1�Γ�m � i�Γ�m � d � 1�Γ�d � g � 1�Γ�m�Γ�i � k � 1�																																																																								 

O ��fn�cn��fBan�hB�jn��jB�Γ��g � �d � 2�g � m � �i � �k � 2�k � 2�r,																																																																																																									�21� 

 

Finally velocity field is expressed in compact form in terms of Fox-H function as, 

 

�{|��, �, �� � �X��, �, �� � 4Ω49	N� 1 1 1 �L� � M�� I R��M� I R��L�L	MS
4

S
4



4 		p7���9L� � 9M���� � z�																										 

O ^ _ 19L� � 9M�`aS
ab4 ^ �Λ��cd!

S
cb4 ^ _�Λ�Λ� `f 1g!

S
fb4 ^ ��Λ��hi!

S
hb4 ��fn�cn��fnan�hB�jn��j																																																								 

O}(,~�,( �Λ(Λ� � ��m, 0�, ��d, 0�, ��i, 0�, ��i � m, 0��0,1�, �d � m, 0�, �g � d, 0�, �1 � m, 0�, ��i, �1�, ��g � �d � 2�g � m � �i, ���o 3z	3L	3M															 
� 4Ω49	N� 1 1 1 �L� � M�� I R��M� I R��L�L	MS

4
S

4



4 p7���9L� � 9M���� � z�																																																																														 
O ^��9L� � 9M��aS

ab4 ^ ��Λ��cd!
S

cb4 ^ _�Λ(Λ� `f 1g!
S

fb4 ^ ��Λ��hi!
S

hb4 ��fn�cn��fBan�hB�jn��jB�																																														 
O}(,~�,( �Λ�Λ� � ��m, 0�, ��d, 0�, ��i, 0�, ��i � m, 0��0,1�, �d � m, 0�, �g � d, 0�, �1 � m, 0�, ��i, �1�, ��g � �d � 2�g � �i � 2, ���o 3z	3L	3M.						�22�																									 
 

Where, Newtonian part of velocity field is �X��, �, �� � Ω4 � Ω4stu�� 2√�9⁄ �stu�� 2√�9⁄ � and relation of Fox-H 

function is [35] 	
^ ����� ∏ Γ�u� � ������b��!	∏ Γ��� � ������b�
S
� � }�,�B��,� �� � �1 � u�, ���, �1 � u�, ���, … , �1 � u�, ����0,1�, �1 � ��, ���, �1 � ��, ���, … , �1 � �� , ���r.																																�23� 

 

Now we can investigate shear stresses $���, �, �� and $���, �, �� by substituting equation (22) into equations (5) and 

(6) as obtained by Fetecau and et al. for Oldroyd-B fluid [19].It is also noted that one can have ordinary solutions for 

even six models namely (Newtonian, second grade, Maxwell, Oldroyd-B, Burger and generalized Burgers fluid) if 

we put � � � � 1 in equation (22).   

 

3.2 Solution of Simple Burger fluid for velocity field when �� → � 

Employing similar methodology, we retrieve the solution for simple Burger fluid for velocity field as 

�|��, �, �� � �X��, �, �� � 4Ω49	N� 1 1 1 �L� � M�� I R��M� I R��L�L	MS
4

S
4



4 		p7���9L� � 9M���� � z�																												 

O ^ _ 19L� � 9M�`aS
ab4 ^ �Λ��cd!

S
cb4 ^ _�Λ�Λ� `f 1g!

S
fb4 ��hB�an�fn��hn�c 																																																																																												 

O}�,(�,� �Λ� � ��m, 0�, ��d, 0�, �1 � m, 1��0,1�, �d � m, 0�, �g, 0�, ��g, �1�, �2m � �g � �d � 1, ���o 3z	3L	3M																																																											
� 4Ω49	N� 1 1 1 �L� � M�� I R��M� I R��L�L	MS

4
S

4



4 p7���9L� � 9M���� � z�																																																																														 
O ^��9L� � 9M��aS

ab4 ^ ��Λ��cd!
S

cb4 ^ _�Λ(Λ� `f 1g!
S

fb4 ��hnfB�an�cn��h																																																																																									 
O}�,(�,� �Λ�Λ� � ��m, 0�, ��m � g, 0�, �0,1��0,1�, �d � m, 0�, ��g, 0�, ��g,�1�, �2m � �g � �d � 1, ���o 3z	3L	3M.																																											�24�																										 
 

3.3 Solution of Oldroyd-B fluid for velocity field when �� → �� → � 

Employing similar methodology, we retrieve the solution for Oldroyd-B fluid for velocity field as 
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��|��, �, �� � �X��, �, �� � 4Ω49	N� 1 1 1 �L� � M�� I R��M� I R��L�L	MS
4

S
4



4 		p7���9L� � 9M���� � z�																										 

O ^ _ 19L� � 9M�`aS
ab4 ^ �Λ��cd!

S
cb4 }�,��,� �Λ� � ��m, 0�, �1 � m, 1��0,1�, �d � m, 0�, �1 � m, 0�, ��d � m, ���o �n�cn�fna	3z	3L	3M																																		 

� 4Ω49	N� 1 1 1 �L� � M�� I R��M� I R��L�L	MS
4

S
4



4 p7���9L� � 9M���� � z� ^��9L� � 9M��aS

ab4 																																										 
O ^ ��Λ��cd!

S
cb4 }�,��,� �Λ� � ��m, 0�, �1 � m, 1��0,1�, �d � m, 0�, �1 � m, 0�, �m � �d � 2, ���o �an�cn�fB�		3z	3L	3M.																									�25�																	 

 

 

3.4 Solution of Maxwell fluid for velocity field when �� → �� → �� → � 

Employing similar methodology, we retrieve the solution for Maxwell fluid for velocity field as 

����, �, �� � �X��, �, �� � 4Ω49	N� 1 1 1 �L� � M�� I R��M� I R��L�L	MS
4

S
4



4 		p7���9L� � 9M���� � z�																											 

O ^ _ 19L� � 9M�`aS
ab4 }�,��,� �Λ� � ��m, 0��0,1�, ��m, �1�, �m, ��o �n�cna	3z	3L	3M � 4Ω49	N� 																																																															 

O 1 1 1 �L� � M�� I R��M� I R��L�L	MS
4

S
4



4 p7���9L� � 9M���� � z�																																																																																									 

O ^��9L� � 9M��aS
ab4 ^ ��Λ��cd!

S
cb4 }�,��,� �Λ� � ��m, 0��0,1�, ��m, �1�, �1, ���o �n�cB�		3z	3L	3M.																																									�26� 

 

3.5 Solution of Second Grade fluid for velocity field when �� → �� → �� → � 

Employing similar methodology, we retrieve the solution for Maxwell fluid for velocity field as 

�����, �, �� � �X��, �, �� � 4Ω49	N� 1 1 1 �L� � M�� I R��M� I R��L�L	MS
4

S
4



4 		p7���9L� � 9M���� � z�																											 

O ^ _ 19L� � 9M�`aS
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4. Concluding Remarks 

The main purpose of this article is to investigate generalized fractional Burger fluid for the flow of an edge in 

Rayleigh stokes problem in Newtonian and non-Newtonian form. Velocity field have been developed by the usage 

of Laplace and double Fourier Sine transforms along with their inverses. The general solutions are presented in the 

compact form as the sum of Newtonian and non-Newtonian forms and expressed in terms of }�,�B��,� ��� (Fox-H 

Function). All compulsory conditions (initial, natural and boundary) are fulfilled. The general solutions have been 

particularized for fractionalized as well as ordinary in five types of fluids such as Newtonian, second grade, 

Maxwell, Oldroyd-B, Burger and generalized Burgers fluid. In order to analyze the rheology of parameter for fluid 

flows, Comparison through graphical illustration is presented for five models namely second grade, Maxwell, 

Oldroyd-B, Burger and generalized Burgers fluid with and without ordinary and fractional effects at two different 

times. However major consequences and outcomes are: 

 

• The general solutions (equations 22-27) for velocity field are presented in the compact form as the sum 

of Newtonian and non-Newtonian fluid and expressed in terms of }�,�B��,� ��� (Fox-H Function). 

• By fixing all rheological parameters and enhancing the values of viscosity�9� and time��� in Fig. 1(a) 

and 1(b), velocity field for generalized Burger fluid has vivid influence for small values of viscosity�9� 

and large values of time��� parameters. It is a physical fact that the stability of fluid flows for smaller 

values of viscosity�9� have greater than higher values.  

• The effects of retardation�Λ�� and relaxation �Λ��time parameters are depicted in Fig. 2(a) and 2(b) in 

which the fluid flows is identical in both cases to what we expect between both plates. Fig. 2(a) and 
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2(b) also reveal that the decline is produced in velocity field, resulting the fluid is sequestrating on the 

both region of plates.  

• Fig. 3(a) and 3(b) are drawn for the impacts in fluid flow of material parameters �Λ� � Λ�� decreases 

boundary layer thickness between two plates over the boundary. It is also pointed out that retardation �Λ��  and relaxation �Λ��  time parameters have reciprocal behavior withmaterial parameters �Λ� �Λ��, see also Figs. 2(a), 2(b), 3(a) and 3(b). 

• Contrast among five models namely second grade, Maxwell, Oldroyd-B, Burger and generalized 

Burgers fluid with and without ordinary and fractional effects at fix time � � 0.5 are illustrated in Fig. 

4.  In this figure, we have depicted behavior of fluid flow with and without ordinary and fractional 

effects. Fig. 4(a) demonstrates the fluid flow with ordinary effects which describes flow in extremely 

thickness situation; on the other hand Fig. 4(b) has scattering behavior of fluid flow. Meanwhile, Fig. 5 

is drawn at time � � 5.0, the influence of five models on fluid flow with and without ordinary and 

fractional effects for thickness situation and scattering behavior is good in agreement. This is due to the 

fact that integer-order models are not more adequate than fractional-order models, because description 

of the memory in fluid flow is identified by fractional derivatives due singular kernel. 
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