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ABSTRACT 

 

A computational study for the effects of buoyancy and chemical diffusion on heat and mass transfer of Casson fluids 

flow due to a permeable shrinking surface has been considered. The fluids flows through a porous medium in the 

presence of a magnetic field. The similar mathematical model of the problem is obtained by employing suitable 

similarity functions. The resulting non-linear equation coupled ordinary differential form are then solved by 

employing coding in Mathematica. Rigorous computational work has been carried out to observe the effects of 

emerging parameters on the physical equation namely thermal function ( )θ η , velocity function ( )f η′ and 

concentration function ( )φ η . Representative results of these equations are presented in form of plots of these 

functions. 
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1. INTRODUCTION 

 

The magnetohydrodynamic (MHD) flow of non-Newtonian fluids has relevance to the alloys, optimization of 

solidification processes of metals, and nuclear fuel debris treatment. Several researchers are occupied in the 

investigation of Bouyancy effects with chemical reaction in the flow of Casson fluids, when the flow is due to a 

sheet with moving boundary.  Mustafa et al. [1] studied the unsteady boundary layer flow and of Casson fluid over a 

moving flat plate. Recently, Hassan et al and Nadeem and Sajjad [2-3] investigated the unsteady magnetic 

hydrodynamic (MHD) stagnation point flow of Casson fluids with radiation heat transfer has been investigated. The 

fluid flows past porous shrinking sheet. The exact solution for boundary layer flow of Casson fluid over a permeable 

stretching/shrinking sheet with and without external magnetic field was discussed by Bhattacharyya et al. [4-5]. The 

Casson fluid has an infinite viscosity at zero rate of shear and a yield stress below which no flow occurs and a zero 

velocity at an infinite shear rate [6-7]. An excellent collection of articles can be found in [8-9].  Kameswarn [10] 

investigated Dual solutions of Casson fluid flow over a stretching sheet. Chamkha [11] described Hydromagnetic 

three dimensional free convection on a vertical stretching sheet with heat generation. stretching sheet. The solution 

they obtained is by a power series method analystically, further Nandeppanavar [12-14] investigated the heat 

transfer analysis of Casson fluid due to stretching sheet with convective heating condition both Numerical and 

analytical results in terms of Kummer’s function and RungeKutta flurth order method with shooting technique. Attia 

and Ahmed[15] studied the transient Coutte flow analysis of Casson fluid between parallel plates with heat transfer 

analysis. Bhattacharyya et.al[16] have given an analytical solution for magnetohydrodynamic boundary layer flow 

of Casson fluid, they also studied the effect of wall mass transfer analysis too. Swati[17] studied the effect of 

thermal radiation on the flow and heat transfer analysis of Casson fluid over an unsteady stretching sheet with effect 

of suction and blowing. Shehzad et.al[18] investigated the mass transfer of magnetohydrodyanic flow of Casson 

fluid with an chemical reaction. 

2. MATHEMATICAL ANALYSIS 

 

 The steady flow of Casson fluid is investigated  in the presence of  magnetic field of strength 0B .The fluid is 

incompressible that flows fluid due to a permeable sheet which stretches /shrinks. u and v are respectively the  two 
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dimensional velocity components in x and y directions. The fluid temperature is T  and species  concentration is C. 

The permeability of porous medium is K , where in the external flow temperature is T∞ in  and concentration of 

species is C∞ .  

Under the above assumptions the equations governing the problems are: 
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where ⍴ is density, � is the electrical conductivity, 
p

c is the specific heat capacity at constant pressure, µ is dynamic 

viscosity, 
*uβ ( )T T∞−  and 0 ( )Q T T∞−  are heat generated or absorbed per unit volume, 0B is the applied 

magnetics induction, g is the acceleration due to gravity, other symbols have usual meanings as described in the 

relevant literature.  

The boundary conditions are: 
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Using similarity transformations: 

The velocity components are described in terms of the stream function ( , )x yψ : 
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Equation of continuity (1) is identically satisfied. 

Substituting the above appropriate relation in equations (2), (3) and (4) we get  
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and the boundary conditions are 
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reaction parameter. 

 

3. RESULTS AND DISCUSSION 

 

The physical insight of this work is examined through numerical computation of the system  of equations (6) to 

(9). The plots for chemical space concentration temperature distribution and velocity function are mapped under the 

influence of dimensionless parameters standing for buoyancy, magnetic fields strength, suction/injection, Casson fluid 

behavior, porosity of medium, Radiation heat generation chemical diffusion. Results have been computed for some 

representative values of the influencing parameters by using codes in Mathematica. 

The Grashof number rG  and magnetic field strength Casson reduction in flow speed as presented respectively in 

fig.1 and fig.2.Fig.3 also shows that injection decreases the speed of flow.Fig.4 and fig.5 respectively demonstrate the 

effects of Casson parameter and porosity parameter on flow velocity f ′ . Both of these parameters reduced the 

magnitude of velocity. 

The thermal distribution ( )θ η decreases with the increase in the value of magnetic parameter M and the Casson 

parameter β  as shown as shown respectively in fig.6 and fig.7, but the fig.8 shows that radiation causes increase in 

( )θ η . The Prandtl number rP  and suction parameter wf cause sufficient reduction in ( )θ η  as demonstrated 

respectively in fig.9 and fig.10.The increase in heat source parameter B increases ( )θ η bur increase in rG and the 

porosity parameter p
K decreases ( )θ η as shown respectively in fig.11, fig.12 and fig.13. 

Fig.14, fig.15 and fig.16 respectively show that the concentration function ( )φ η  

decreases in magnitude with increase in the value of ,w rf K and cS  
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Fig.1: The plot for curves of f ′ under the effect of Gr. 
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Fig.2: The plot for curves of f ′  under the effect of M 
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Fig.3: The plot for curves of f ′  under the effect of suction/injection wf . 
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Fig.4: The plot for curves of f ′  under the effect of β  
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Fig.5: The plot for curves of 'f  under the effect of Porosity parameter 
pK  
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Fig.6: The plot for curves of ( )θ η  under the effect of M 
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Fig.7: The plot for curves of ( )θ η  under the effect of β  
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Fig.8: The plot for curves of ( )θ η  under the effect of nR  
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Fig.9: The plot for curves of ( )θ η  under the effect of rP  
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Fig.10: The plot for curves of ( )θ η under the effect of suction/injection wf  
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Fig.11: The plot for curves of ( )θ η  under the effect of parameter B 
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Fig.12: The plot for curves of ( )θ η under the effect of Gr. 
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Fig.13: The plot for curves of ( )θ η  under the effect of Porosity parameter 
pK  
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Fig.14: The plot for curves of ( )φ η under the effect of suction/injection wf  
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Fig.15: The plot for curves of ( )φ η  under the effect of chemical reaction  parameter rK  
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Fig.16: The plot for curves of ( )φ η  under the effect of Schmidt number cS  
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