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ABSTRACT 

 

Substructural analysis (SSA) was one of the very first machine learning techniques to be applied to 

chemoinformatics in the area of virtual screening. Recently, the use of SSA method based on genetic traits 

particularly the genetic algorithm (GA) was shown to be superior to the SSA based on a naive Bayesian 

classifier, both in terms of active compound retrieval rate and predictive performance. Extensive studies on 

data fusion have been carried out on similarity-based rankings, but there are limited findings on the fusion of 

data obtained from evolutionary algorithm techniques in chemoinformatics. This paper explores the 

feasibility of data fusion on the GA-based SSA. Data fusion is a method to produce a final ranking list from 

multiple sets of ranking lists via several fusion rules. Based on the encouraging results obtained using the 

GA, the application of data fusion to the GA-based SSA weighting schemes are examined in this paper in 

order to enhance retrieval performance of 2D-based fingerprint predictive method. Our experiments used the 

MDDR and WOMBAT datasets. The results show that data fusion can indeed enhance retrieval performance 

of evolutionary techniques further in the case of evolutionary algorithm techniques, and specifically the GA-

based SSA. 

KEYWORDS: Chemoinformatics, Substructural analysis, Evolutionary Algorithm, Genetic Algorithm, Data 

Fusion.  

 

INTRODUCTION 

 

Substructural analysis (SSA) is a method under ligand-based virtual screening, pioneered by [5]. The 

technique is one of the earliest forms of machine learning method used in chemoinformatics. In SSA, it is 

assumed that each molecule in a dataset is characterized by a series of binary descriptors, most commonly in the 

form of a 2D fingerprint in which each bit denotes the presence or absence of a substructural feature (often 

referred to as a fragment). Associated with each such bit is a weight that is a function of the number of active 

and inactive molecules that have that bit switched on, i.e., that contains the corresponding fragment. This weight 

reflects the probability that a molecule containing that substructural feature will be active (or inactive); for 

example, the weight might be the fraction of the active molecules containing that particular fragment. A 

molecule is then scored by summing (or otherwise combining) the weights of those bits that are set in its 

fingerprint, the resulting score representing the overall probability that the molecule will be active 1. A major 

assumption of SSA is that a given substructure can influence the determination of the activity level of a 

molecule, regardless of the compound in which it occurs. A variety of weighting schemes based on specific 

relationship-bound equations are available for this purpose. In [10] looked at expanding the SSA method by 

applying a GA-based weighting scheme to determine the suitable set of fragment weights for any possibility of 

an upper-bound to the activity prediction of the SSA. From the study, it can be concluded that the GA-based 

SSA method is superior to the SSA R4 scheme as it successfully managed to provide uplift of active retrieval 

performance in the top 1% of ranked molecules. Unlike the SSA, the GA-based approach is considered to be an 

inherently non-deterministic process. High correlation and consistency between multiple GA runs, however, 

means that the method is reliable and effective as an alternative weighting scheme to the SSA method. 

Data fusion is a method of combining the information gained from different sensors to achieve an effective 

or improved decision, compared to when only a single sensor is considered [7]. This method can be utilized for 

ligand-based virtual screening. The sensors to be combined are used as functions that score molecules in a 

database on their likelihood of exhibiting some required biological activity. The combination of different 

sources of information is already practiced in most human daily activities such as in decision-making processes. 

A simple example is the use of different sensors in our everyday lives that include our sense of smell, taste, 

feeling, hearing and seeing. In a more practical sense, for instance, a manager considering the hiring of new 

employees makes informed decisions based on the different traits of the candidate such as their skills, 

experience and communication abilities. These traits collectively produce a decision about the candidate’s 
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eligibility to be hired. Data fusion is increasingly used to combine the outputs of different types of digital or 

analogue sensors.  

Data fusion has been successfully used in different fields such as medicine, defense and information 

retrieval. The findings on combining more than one query in the field of information retrieval were first 

discussed by [1]. The study on data fusion was carried out in two different projects at Rutgers University and the 

Virginia Technology Institute. Together, these projects found that fusing the multiple queries is far more 

effective in increasing search performance, yielding better retrieval rates than using a single query. 

In virtual screening, many studies related to data fusion have been carried out, especially regarding 

similarity searching. Similarity search is based on three main components: the molecule representation used to 

describe the molecular structures, the weighting scheme used to compute the score of a particular compound 

structure to produce compound rankings, and the similarity coefficient used to calculate the degree of similarity 

between the reference molecule and the database molecules. Furthermore, data fusion in similarity searching can 

be divided into similarity fusion and group fusion. Similarity fusion is the combination of scores gathered from 

multiple similarity measures by using a single reference structure for searching a chemical database [20]. For 

instance, the data fusion ranking is obtained by combining three rankings from different similarity coefficients, 

for example tanimoto, dice and cosine. Several studies on similarity fusion were carried out by fusing different 

similarity coefficients in a similarity search [6, 16, 17]. The group fusion approach fuses rankings produced 

from different reference structures by using the same similarity coefficient and molecular representation [8]. 

Group fusion can utilize either similarity scores or rankings [22]. For instance, assuming one type of 2D 

descriptor such as the MDL fingerprints, the similarities between reference structure and other structures in the 

database are measured using the Tanimoto coefficient. They are then ranked in descending order based on their 

similarity score.  

Comparing the two fusion techniques, similarity fusion tends to perform better than group fusion when the 

actives are strongly clustered structurally [21]. By contrast, group fusion is best employed when the actives are 

structurally diverse [9]. Numerous studies have compared these two data fusion techniques in similarity 

searching. Other studies have found that group fusion is effective as a general approach in similarity searching 

[2, 8, 20, 24]. Based on the encouraging results obtained using GA in the recent work [10], the application of 

data fusion to the GA-based SSA weighting schemes are examined in this paper in order to enhance the retrieval 

performances of 2D-based fingerprint predictive method. Extensive studies on data fusion have been carried out 

on similarity-based rankings, but there is still a lack of findings on data fusion using genetic algorithm 

techniques in chemoinformatics. 

 

RESULTS AND DISCUSSION 

 

Three large datasets were used for the evaluation of the methods in question. The datasets used are as 

follows: (i) the MDL Drug Data Report database (MDDR); (ii) the World of Molecular Bioactivity database and 

(WOMBAT). The MDDR and WOMBAT datasets used here are described in detail by [6]: the MDDR dataset 

contains eleven activity classes and 102,514 molecules while the WOMBAT dataset contains 14 activity classes 

and 138127 molecules.  

The molecules from MDDR and WOMBAT datasets were characterized via dictionary-based fingerprints 

known as the MDL fragment description. The MDL structural keys used in this study was originally developed 

for a substructure search [14]. The MDL keys consist of 166 bit keysets based on 166 publicly available MDL 

MACCS structural keys. The structural keys are important fragments listed in a dictionary used to encode 

molecules in a bit-string. Each bit is associated with a structural key and it denotes the presence or absence of 

one of the keys or substructure. The MDL fingerprints were used to identify the combination of fragment 

weights to generate the best possible ranking of the molecules in a database. The MDL fingerprints were 

generated using SciTegic’s Pipeline Pilot software to produce structural descriptors or fragments for all 

compounds. Pipeline Pilot protocols were used to retrieve the MDL fingerprints from the MDDR database. The 

protocol involves the process of converting a Daylight SMILES notation found in the property list to a 

molecular representation. The MDL public key fingerprint component was then used to convert molecules into 

166-bit MDL fingerprints, denoting the present fragments as ‘1’ and the absent fragments as ‘0’ in each of the 

166 fragments. 

In order to perform data fusion, it was necessary to extract the ranking output of the ten runs of the GA for 

each activity class to be fused. Based on the encouraging results obtained using the GA3, the application of data 

fusion to the GA-based SSA weighting schemes are examined in this paper in order to enhance retrieval 

performance of 2D-based fingerprint predictive method. Results of the GA ten runs are summarized in three 

important results which are (i) the enrichment factor of active molecules in the top 1% (ii) the mean and 

standard deviation of the number of actives in the top 1% for the ten GA runs and (iii) the mean correlation and 

standard deviation between 166 weights using Pearson correlation coefficient for the ten GA runs. Based on 

results, high correlation values were observed, in which the mean correlation of Pearson’s r recorded a 
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minimum of 0.74 and on average circa 0.78. Some classes were also observed to record a mean Pearson’s r as 

high as 0.86. From the mean and standard deviation values for the ten GA runs, it can be seen that there is a high 

degree of consistency of the number of actives were retrieved in the top 1% of the ranked data. Also, it indicates 

that the variation of actives retrieved in the top 1% is less dispersed. 

Five types of fusion rules namely the SUM, MAX, MED, MIN and RKP rules were identified. Most rules 

were first discussed by [1], however, the RKP rule was initially described by [12]. These rules are presented in 

Table 1. In the table, dj denotes an individual compound listed in the sets of machine learning technique 

rankings, MLi {dj} which consists of n GA rankings. Observing the first fusion rule, SUM computes the mean 

value of the compound scores or ranks in the list. In this case, this is achieved by aggregating all the scores of 

each database structure, then dividing the score by n. For the MAX, MIN and MED fusion rules, the scores for 

each database structure dj are computed by taking the largest, the smallest and the middle score (or median) in 

the n rankings respectively. The final rule used for consensus scoring is known as the RKP fusion rule, whereby 

a compound dj score is computed by adding the reciprocal of the non-zero scores after the ranking is truncated 

to a certain percentage p; for instance, 100% (i.e. the whole database), 50%, 5% and 1%. Notably, the formula 

of the RKP rule is measured by using the rank position of each molecule to be fused as used by [12] in text 

retrieval.  

 

Table 1: Fusion rules 
Fusion Rule Formula 

SUM 1
� � ���( 	
)

�

��
 

MAX max�����	
�, ����	
�, … ����	
�, . . � 

MED med�����	
�, ����	
�, … ����	
�, . . � 

MIN min�����	
�, ����	
�, … ����	
�, . . � 

RKP 

� 1
����	
�

�

��
 

 

Several studies have reported on success of similarity fusion using the SUM fusion rule in applications of 

similarity searching [6]. Other studies have reported the MAX rule to be the best fusion rule for group fusion in 

similarity searching [8, 11, 24]. Several comparisons on consensus scoring were also reported with applications 

in docking [13, 26] and in 2D and 3D similarity searching [27]. In [4] reported the RKP fusion to be the most 

effective fusion rule for combining multiple document rankings from an information retrieval. In [2] found that 

group fusion can even be superior to similarity fusion. 

Following the fusion rules criteria, it was determined that two variables could be used in the computation of 

the GA-based fusion scores: (1) the score of compounds which is the sum of GA weights or (2) the ranking of 

compounds in the ten sets of GA runs. The first four rules, SUM, MAX, MED and MIN were used to fuse the 

ten sets of GA runs using both score-based and rank-based data. For the RKP equation, the rule is applicable 

only on the fusing of n sets of ranks. Hence, the RKP rule was applied with rank-based data only. For this study, 

p value was set at 100% which otherwise means that the whole database of ranked outputs were fused. In total, 

nine fusion rules were employed in which a number of the rules are based on ranking information of the data 

with the rules listed as rank RKP, rank max, rank sum, rank med and rank min. The other fusion rules are based 

on the scoring information of compounds in a dataset where these fusion rules are referred to as score max, 

score sum, score med and score min. 

In evaluating the GA-based fusion search method, the effectiveness criteria was stressed on quantifying 

whether the actual output meets the desired output or otherwise. Area under the curve (AUC) also known as 

receiver operating characteristics (or ROC) [3] is a standard evaluation method used in machine learning 

experiments. It is however less suitable for virtual screening evaluations as it only considers the full ranking of a 

database. In fact, methods of virtual screening require only the analysis of a small fraction of the molecules that 

occurs at the top of the ranking to be considered for further biological screening [19]. Rather than using AUC 

values, the screening performance was hence measured by the number of actives for the top 1% of the ranked 

test set (i.e. 1% enrichment value). 

The output of the ten GA-based SSA weighting schemes for each activity class were combined and 

employed for data fusion, using the nine fusion rules mentioned earlier. The enrichment factor of actives 

retrieved in the top 1% obtained by GA-based fusion based on various fusion rules. The highest values are 

shown as lightly shaded. Each row of one of the sections of the tables corresponds to a single activity class and 

lists the total number of actives in the test set; the mean enrichment factor of actives retrieved in the top 1% 

using a combination of ten runs of the GA weighting schemes and the remaining rows show the results of the 

data fusion procedures. The fusion results are listed and compared against the mean of the ten GA runs results 

for benchmarking. The highest values are shown as lightly shaded.  
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The outcome indicates three observations. Firstly, it was observed that the performance of the GA based 

fusion is seen to be more effective than the mean GA results for all activity classes in all three databases. Based 

on enrichment factor of actives in the top 1% for all activity classes, the differences between data fusion 

methods to GA-based SSA is often very small. On average, there is about one to fifteen active compounds 

retrieval differences recorded. Secondly, when comparing both the mean of ten runs of the GA and the RKP 

method in each activity class, it is interesting to note that the RKP rule performs better than these mean runs in 

all cases. Thirdly, in a comparison of all the nine fusion rules, it was observed that the score min and score med 

rules jointly yielded the worst performances in recall rate for most classes from both databases using the GA-

based methods.   

Kendall’s W analysis the impact of the GA-based fusion were studied further by employing the Kendall's 

W test of statistical significance to measure the agreement of the fusion rules performance in all three databases. 

This coefficient provides a means of quantifying the degree of association between k variables or k sets of 

rankings of similar objects. Accordingly, Kendall’s W calculates the agreements between rankers as it evaluates 

and ranks a number of subjects according to particular characteristics. The concept is that n subjects are ranked 

(0 to n-1) by each of the rankers, and the statistic evaluates how much the rankers agree with each other. 

Kendall's W ranges from 0 to 1, where 0 indicates no agreement and 1 indicates complete agreement. 

Specifically, the weighting schemes from each database are ranked in decreasing order of effectiveness of 

virtual screening for a specific activity class. This is repeated for each class so that there are e.g. 11 rankings for 

the MDDR dataset. The degree of agreement between the rankings in the top 1% of the ranked compounds is 

measured by calculating the Kendall Coefficient of Concordance, W. This coefficient provides a means of 

quantifying the degree of association between sets of rankings of the same objects [25]. If there is an agreement 

between the rankings of the weighting schemes, it can be concluded that there is a statistical significant result 

for the null hypothesis, H0. This predicts the probability that the rankings are not associated, and can thus be 

rejected. In this analysis, 0.001, 0.01, 0.1 and 0.5 were selected as the significance level. Therefore, if the 

probability p value is equal to or less than 0.001, it is then necessary to reject the null hypothesis and then can 

give overall ranking. However, if the p value is more than 0.5, then the computed results are considered 

insignificant. The equation that has been used to compute the degree of variance among the ranks is given by 

Equation (1): 

 

W =  �� ∑ "#$%&'$ ×) ()*�)$
'$ ×) ()$%�)       (1) 

 

where k is the number of ranks, for example, 11 activity class in MDDR dataset, N is the number of objects 

being run; for example 9 weighting schemes were evaluated in this study and is the sum of the squares sums of 

ranks for each of the N objects. 

The significance of the W was computed using a X2 distribution with a degree of freedom df =N-1 for 

which the equation (Equation 2): 

 

X� = k(N − 1)W       (2) 

 

If the size of the samples is larger (N >7), then the chi square and the probability p values were identified by 

referring to the chi square distribution table. Otherwise, the table of critical values was used to identify the 

probability [18]. Whenever W is larger than the critical values, this result would be considered significant and 

thus the null hypothesis would be rejected.  

For the GA-based fusion, the results obtained from Kendall’s W analysis were analyzed. The rankings are 

determined based on the enrichment factor of actives in the top 1% (or 1% cut-off value). The rankings were 

listed in decreasing order. 

Kendall’s W analysis of the fusion rules in MDDR classes is calculated, in which the total computed value 

of W is 0.46. The significance of this value was tested using X2 distribution, giving a value of 45.38 for X2 at a 

significance level of p < 0.01. The analysis therefore suggests the following ranking: 

 

Rank RKP > Score Max > Rank Max > Score Sum > Rank Sum > Rank Min > Score Med > Rank Med > Score 

Min > Mean GA 

 

Similar to the MDDR case, the results for the fusion rules in WOMBAT-based classes were calculated. The 

value obtained for W is computed as 0.30 and the significance of the X2distribution is valued at 42.26 at a 

significance level of p < 0.01. The following ranks the fusion rules, from the best to worst performing ones: 

 

Rank RKP > Rank Max > Score Max > Score Sum > Rank Sum > Score Min > Rank Min > Score Med > Rank 

Med > Mean GA 
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In essence, at a significance level of p < 0.01, the Rank RKP was found to be the best performing rule for 

the GA-based fusion in MDDR datasets and WOMBAT sets. The rest of the fusion rules exhibit mixed results 

across all three databases. The worst performing method can be seen in the mean GA and score med, which 

were consistently placed in the lower tier of the ranking position. 

Table 2 highlighted fusion rules based on the mean rank for all three databases (i.e., MDDR and 

WOMBAT). Here, it was possible to obtain the following observations for GA-based fusion Table 2 whereby 

the calculated value W = 0.94 which gives a value of X2 = 25.40. The results denote a significant value at p < 

0.01. Subsequently, the best overall ranking of data fusion using GA-based fusion is as follows: 

 

Rank RKP > Rank Max > Score Max > Score Sum > Rank Sum > Rank Min > Score Med > Rank Med > Score 

Min > Mean GA 

 

Table 2: Kendall's W analysis for the top 1% based on the average of enrichment factor actives in the top 

1% of the GA-based SSA from the MDDR and WOMBAT databases 
Fusion  Databases Mean Rank 

Rules MDDR WOMBAT Rank Position 

Rank RKP 6.95 6.50 6.73 1 

Rank Max 6.36 6.29 6.33 2 

Score Max 6.64 5.29 5.97 3 

Score Sum 5.73 5.25 5.49 4 

Rank Sum 5.64 5.00 5.32 5 

Rank Min 3.95 3.82 3.89 6 

Score Med 3.50 3.46 3.48 8 

Rank Med 2.95 3.43 3.19 7 

Score Min 2.00 3.89 2.95 9 

Mean GA 1.27 2.07 1.67 10 

 

It was concluded that when comparing all the nine fusion rules using the ten runs of GA-based SSA 

methods in all MDDR and WOMBAT activity classes, the RKP rule was found to perform better than other 

rules in most cases. This is in agreement with the results reported by [2], whereby they found that RKP is 

superior to the other rules in group fusion. In contrast to the best fusion rule determined, it was consistently 

observed that both MED and MIN rules jointly yielded the worst performances in recall rate for most classes 

from both databases. This occurred when applying fusion on GA-based SSA compounds ranking results.  

Based on the Kendall’s W analysis performed, the GA-based data fusion was deemed more effective than 

the mean of ten GA-runs in all classes of the databases. Thus, it was necessary to use the Wilcoxon signed rank 

test to quantify the significance of the difference between the performance of data fusion and the mean of the ten 

GA runs. To conduct the test, the enrichment factor results in the top 1% from both the mean of ten runs GA 

against the best data fusion rule were observed. A measure of significance following W is measured by referring 

to the table of critical values for the Wilcoxon test (i.e. Wcritical). It is necessary to refer to the table of critical 

values of W. This serves to gauge the level of rejection of the test statistics in order to arrive at the alternate 

hypothesis. Using the information of the number of differences, N; a probability value with the lowest value of 

the significance level of 0.01, rejects the null hypothesis H0, if the value of W is less than or equal to the critical 

value of Wcritical [15].  

In the Wilcoxon signed rank test, if two scores of any pair are equal (i.e. there is no difference between the 

two compared entities), then such pairs are discarded from the analysis. These were consequently ignored. A 

null hypothesis(Ho) is defined as where the median difference is zero. This means that our default assumption is 

that both results of weighting schemes are significantly identical. The alternate hypothesis (H1) is defined as the 

median difference being positive at a significance level of p = 0.01 [15]. For the case of the MDDR database 

and comparing the mean of ten GA runs against the RKP method, the Wilcoxon signed rank test showed a value 

of W = 0 and the critical value of W for N = 11 at p < 0.01 is 5. In the case of WOMBAT, the value of W = 3 

and the critical value of W for N = 14 at p < 0.01 is 12. Overall, the data fusion results appear to be significant 

when compared against mean results of the GA runs. Hence, it can be concluded that rank RKP fusion rules 

provide good enhancement of recall rates when compared with the mean of individual GA. 

 

CONCLUSION 

 

This paper described the investigation of data fusion, which sought to combine retrieval results from 

multiple, individual GA-based SSA results for each activity class. From the experiment and various analyses 

performed, it can be concluded that, the data fusion was found to perform better in each activity class from the 

three databases utilizing the rank RKP. By contrast, the fusion rules MED (i.e., rank med and score med) and 

MIN (i.e., rank min and score min) showed the worst performances relative to the three MDD and WOMBAT 
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databases. It was also found that for the comparison of data fusion to the mean of ten runs of the GA, the 

difference was found to be significant for the GA-based fusion. This is in agreement with the results reported by 

[25]. It was found that the diversity of the relevant documents in the ranked list of documents can affect the 

performance of data fusion. Better performance of data fusion is more likely with a higher rate of diversity in 

the fused input.  

The GA is essentially a robust and non-deterministic process. Hence, data fusion can be used as a 

deterministic measure to produce a single, unified outcome. It was found that the fusion of multiple rankings of 

the GA-based SSA produced a significant improvement in the final ranking results with easy implementation. 

These conclusions confirm that the data fusion approach SSA is found to be highly effective technique in 

enhancing the retrieval performance of SSA specifically for the GA-based SSA. The findings of this experiment 

could be used to help the standard practice of data fusion in virtual screening [23], and to guide further 

enhancement in SSA. 
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