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ABSTRACT 
 

The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-

high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, we investigate a theoretical 

model of the magneto-hydrodynamic flow of a third grade fluid for wire coating  process inside a cylindrical 

coating die. The governor equations are modeled and then solved by utilizing by Optimal Homotopy Asymptotic 

Method (OHAM). The convergence of the series solution is established. The effect of different emerging 

parameters is discussed with several graphs.The results of this investigation1are verified by Adomian 

Decomposition Method (ADM). Furthermore, the obtained results are also compared with published work, as a 

special case of the problem where an admirable agreement with the current work is observed. 

KEYWORDS: Metallic wire coating, MHD flow, Third grade fluid, ADM and OHAM solution. 

 

1. INTRODUCTION 
 

Many fluids, in industrial and domestic applications exhibit non-Newtonian behavior. The apparent viscosities of 

such fluids depend on the rate at which they are sheared and on their previous shear history. An understanding of non-

Newtonian behavior is quite important. For instance for Chemical engineering such fluid can help in two aspects: one 

they can confer essential, desirable properties on the material and secondly, they can facilitate the observation of non-

Newtonian behavior in the design of the process of plant and pipelines [1, 2]. Most of the fluids used in chemical 

industry, for manufacturing purpose, belong to the class of non-Newtonian fluids.Therefore, more attention has been 

given to this class of fluid. Usually, non-Newtonian fluids are compound, mixture slurries, pastes, plastics, gels, 

polymer solutions etc. [3, 4]. In this study non-Newtonian1third1grade fluids have been1studied for1their 

applicability. Third grade fluids have been studied by many researchers. Siddiqui et al. [5] studied the torsion flow of 

such fluid.The heat flux of such fluids in two parallel plates is discussed in [6]. Islam et al. [7] studied third grade fluid 

with heat transfer. Aksoy et al. [8] investigated the third grade fluid flow in parallel plates with a porous medium. 

Homotopy perturbation method was used for the thin film stream of a third grade of liquid onto a moving belt by 

Siddiqui et al. [9]. Thin film third grade fluid studied in [10]. Ellahi et al. [11] investigated MHD third grade fluid with 

a variable viscosity. The MHD thin film flow of a third grade fluid with temperature dependent viscosity was 

investigated by Gul et al. [12]. 

Material used for coating of wire also exhibits non-Newtonian behavior in nature. Different types of fluids 

are used for wire and fiber optics coating. The wire coating depends upon the temperature, geometry, fluid 

viscosity and polymer.It depends on the geometry of die, viscosity of fluid, the temperature of the wire and the 

molten polymer. Limited information is available in the literature regarding the wire coating problem.Shah et al. 

[13] investigated wire coating analysis with linearly varying temperature. Han and Rao [14] carried out an 

analysis on wire coating extrusion. Nom-Newtonian fluid model was used byAkter and Hashmi [15, 16] for wire 

coating. Siddiqui et al. [17] investigated wire coating extrusion in a pressurized type die. Fenner and Williams 

[18] investigated the coating flow in a pressurized die. Mitsoulis [19] studied the wire coating flow with heat 

transfer. Unsteady second grade fluid with oscillating boundary condition inside the wire coating die was 

investigated by Shah et al. [20]. Exact solution was obtained for unsteady second grad fluid for wire coating by 

Shah et al. [21].  The Oldroyd 8-constant fluid was used for wire coating analysis by Shah et al.[22]. Shah et al. 

[23] investigated the wire coating using third grade fluid flow along with heat transfer analysis. Recently Sajid et 

al. [24] used Sisko fluid for wire coating analysis by applying HAM. Recently Zeeshan et al. [25] used 

PhanThien Tanner fluid in double-layer optical fiber coating. The same author [26] investigated double-layer 

coating of optical glass fiber using wet-on-wet coating process using PTT fluids of different viscosities for the 

constant pressure gradient. Zeeshan et al. [27] investigated an approximate solution for optical fiber coating in a 

pressure type die using two immiscible Oldroyd 8-constant fluids using OHAM. 

Nowadays magneto-hydrodynamic (MHD) system are used effectively in many applications such as power 

generators, pumps, accelerators, wire coating, electrostatic filters, and droplet purifiers. Thus, in order to achieve 
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the desired characteristics of the final product, the use of electrically conducting fluids subject to a magnetic 

field has gained great attention. Recently, Sajid et al. [28] studied MHD Oldroyd 8-constant fluid for wire 

coating. 

In scrutiny of the above incentive, in the present study, weanalyze the wire coating analysis using MHD flow of a 

Third grade fluid.To the best of our knowledge, no previous investigation has been reported to develop the 

governing equations for MHD flow of a third grade fluid in the wire coating analysis. Well known mathematical 

techniques, namely OHAM and ADM are used for a series solution. The OHAM [20, 22, 23, 27, 33-35] is a 

steadfast method which has been broadly used by the researchers to solve nonlinear problems. Additionally the 

results are also verified by ADM [29-32]. Furthermore, the obtained results are also compared with preceding 

published related literature, as a special case of the problem and admirable agreement is observed in this case also. 

 
2. Modeling of the Problem 

Take an Elasto-hydrodynamic coating system in which the continuum enters between the leakage control 

units that is attached to the melting chamber. The continuum after crossing the melting chamber enters the 

plasto-hydrodynamic pressure unit. Here, the hydrodynami pressure helps to deposit a coating on the wire. The 

bull block after wounding a coated wire is driven by a variable speed motor. Figs. 1 and 2 show the physical 

model of the problem. Here, �� is the radius of the wire and Lis the unit length (or length die). 

The continuity and momentum equations for incompressible third grade fluid are [5-12, 23] 

. 0,u∇ =            (1)     

. ,
Du

Dt
ρ = ∇ + ×T J B           (2) 

where  is the fluid density,  the material derivative,  the Cauchy stress tensor,  the current density,
D

Dt
ρ T J

 the total magnetic field and  is the velocity vector.uB
 

p ,= − +T I S           (3) 

where pI denotes spherical stress and extra stress tensor S is given by 

( ) ( )1 1 2 2 1 1 2 2 1 2 2 1 3 2 1μ ,trα α τ τ τ= + + + + + +S A A A A A A A A A A     (4) 

in which μ , is the coefficient of the viscosity of the fluid, 1 2 1 2 3, , , ,α α τ τ τ are the material constant and 

1 2 3, ,A A A  are line kinematic tensors defined by  

1
1 1 1, , 2,3

T T n
n n n

D
n

Dt

−
− −= + = + + =

A
A L L A A L LA        (5) 

where T denotes1transpose1of the matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. Typical wire coating line [24]. 
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Figure. 2.Wire coating1in pressure1type coating1die. 

 

The flow1is assumed to1be linear,1steady and1no slippage1occurs between1the boundaries. 

The velocity1fieldis 

( ) ( )0,0, , .u w r r = =  S S          (6) 

For electrically1conducting1fluid, the Maxwell's1equations1are 

. 0, , 0,µ∇ = ∇× = ∇× =E B J E         (7) 

and the1Ohm's1law is 

( )σ .w= + ×J E B           (8) 

 In the above equations , , ,µ σJ E are the current density, magnetic permeability, electric field, electric 

conductivity, respectively and B
)

 is the total magnetic field so that 0 ,b b= +B B
 
is the induced magnetic 

field. The magnetic field B normal to the velocity field w and the induced magnetic field is negligible compared 

with the imposed magnetic field so that the magnetic Reynolds number is small. Based on these considerations, 

particularly on small magnetic Reynolds number, the magneto-hydrodynamic force becomes 
2

0 .B wσ× = −J B           (9) 

In view of Eqs. (1-6) and (9),1assuming that1there is no1pressure gradient1along axial1direction, the 

momentum1Eq. (2) reduce1to the1following form 

( )
3

2

2 3 0
2 0,w

d dw d dw
r r B

dr dr r dr dr

µ
τ τ σ

    + + − =         
      (10) 

Boundary1conditions are      

1 2 at   , at ,w dw V r R w V r R= = = =         (11) 

 

where, dR is the1radius of1the1die and 2V is the1velocity1of the gas1surrounding the coated wire. 

 

The1average1velocity is 
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( )2 2

2 d

w

R

ave

d w R

w rw r dr
R R

=
− ∫          (12) 

 

At some control surface downstream, the volume flow rate is 

 

( )2 2

1 .c wRQ V Rπ= −           (13) 

where��  is the radius of coated wire. 

 

The volume1flow1rate is 

( ) .
d

w

R

R

Q rw r dr= ∫            (14) 

The thickness of the coated wire can be obtained from Eq. (13) and (14) as: 

 

( )
1

2

2

1

2
.

d

w

R

c w

R

R R r
V

w r dr
 

= + 
  

∫          (15) 

 

The force on1the total1wire is  

3

02 .
w

w

rz r R

r R

dw dw
S

dr dr
µ τ

=

=

 = +  
 

         (16) 

 

The force1on the1surface of1the total1wire is 

 

2 .
w

w w rz r R
F R LSπ

=
=           (17) 

Introducing1the dimensionless1parameters 
2

* * 20 02
0 2 3 2

1 1

2

1

, , , 1, , , .d w

w w w

V

V

R B Rr w
r w U M

R V R R

V

τ σ
τ τ τ δ β

µ
µ

= = = + = > = = =
 
 
 

 (18) 

in view of Eq. (18), the Eqs. (10-17) after dropping the asterisks become 

 

2 32 2
2

2 2
2 3 0,

d w dw d w dw dw
r r M w

dr dr dr dr dr
β
    + + + − =         

(19)  

 

( ) ( )1 1, ,w w Uδ= =           (20) 

 

( )
( )

2 2

1 1

,
2

ave d w

avg

w

w R R
q rw r dr

VR

δ−
= = ∫          (21) 

 

( )
2

1 1

,
2 w

Q
q w r dr

R V
r

δ

π
= = ∫          (22) 

 

( )
1

2

1

1 2 ,c

w

h
R rw r dr

R

δ 
= = + 

 
∫         (23) 
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3

1
1 1 1

2 ,rz w

r

r r

S R dw dw

V dr dr
β

µ=
= =

 = = +  
 

ϒ        (24) 

 
3

1 1

2 ,
2

w

r

F dw dw
F

LV dr dr
β

πµ =

 = = +  
 

        (25) 

 

3. Analysis of1Adomain Decomposition1Method (ADM) 

The Adomian Decomposition Method is used to decompose the unknown function �(�) into a sum of an infinite 

number of components defined by the decomposition series. 

( ) ( ).n

n

w r w r
∞

=∑          (26) 

The decomposition method is used to find the components �	, ��, �� …, separately. The determination of these 

components can be obtained through simple integrals. 

To give a clear overview of ADM, we consider the linear differential equation in an operator1 orm as: 

 

( ) ( ) ( )  rL w r R w r N w r+ + ( ) ,g r=         (27) 

( ) ( ) ( ) rL w r g r R w r= − − ( ) ,N w r         (28) 

2

2
where   is linearrL

r

∂
=
∂

in the  differential equation and is easily invertible, ( )g r is a source term, 

( ) R w r is a remainder1linear1operator and ( ) ,N w r t is 1a nonlinear analytical1term expandable in  

Adomian1Polynomials. 

Applying1the inverse1operator
1

rL− on to1both1sides of Eq. (28). 

( ) ( )1 1

r r rL L w r L g r− −= − ( ) ( )1 1  ,r rL R w r L N w r− −− −       (29) 

( ) ( )w r f r= − ( ) ( )1 1  ,r rL R w r L N w r− −−        (30) 

here, the function ( )f r represents the terms arising from ( )1

rL g r−
 after using the given conditions Eq. (20).

( )1 . drdrrL− =� is used as an inverse operator for the second order differential equation. Similarly for higher 

order differential equation ��
�� and �� , depend on the order of differential equation. 

Adomian Decomposition Method defines the series solution ( )w r as, 

( ) ( ) ( )1

n r

n n

nw r f r L R w r
∞ ∞

−= − −∑ ∑ ( )1 .
n

r nL N w r
∞

− ∑       (31) 

The nonlinear term ( )n

n

N w r
∞

∑ can be expressed in term of Adomian Polynomials as  

( ) ,n n

n n

N w r A
∞ ∞

=∑ ∑           (32) 

From Eq. (31) and (32), we have 

( )0 1 2 3 4w w w w w f r+ + + + ……= − ( )1

0 1 2 3 4rL R w w w w w− + + + + … − ( )1

0 1 .rL N A A− + +… . (33) 

To determine thecomponents�	, ��, ��, ��, �� …, it is1important1to note that1ADM suggests1that the function

( )f r 1actually1described1the zero component 0w  which is obtained by using1the1boundary conditions Eq. 

(20). 

 

The formal1recursive relation1is defined as:         

 

( ) ( )0 ,w r f r=           (33) 
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( ) ( ) ( )1 1

1 0 0 ,r rw r L R w r L A− − = − −          (35)
 

( ) ( ) ( )1 1

2 1 1 ,r rw r L R w r L A− − = − −          (36) 

( ) ( ) ( )1 1

3 2 2 .r rw r L R w r L A− − = − −          
(37) 

And so on. 

 

4. Analysis of Optimal1Homotopy Asymptotic1Method (OHAM) 

OHAM has been applied successfully applied by many researchers for solving nonlinear differential equations in 

different areas and in particularly in fluid mechanics. One special area of application of this method is to solve 

equations arising when non-Newtonian fluids are studied.  

For better understanding we consider  

A( ( )) ( ) 0,   ,  B( , )=0, ,
wd

w r G r r r
d

w
r

+ = ∈Λ ∈ℑ       (38) 

where A is the differential operator and B is a boundary operator, 
( ) ( )iu r  is the unknown function, r  denote 

the spatial independent variable, ℑ  is the boundary of the domain Λ  and ( )G r  is the unknown analytical 

function. The operator A can be written as 

A ,L N= +            (39) 

Where1 L  and N  are the linear and nonlinear operators respectively.1 

We construct1a homotopy ( ) [ ], : Λ 0,1r p R∅ × → which1satisfies 

[ ] ( ) ( ) ( )
( )
( ) ( )

1 ( , ) 0,
L w r

p L r p G r H p
N w r G r

   +   − ∅ + − =     +  
( ) ( ),

B , , 0.
w r p

w r p
r

 ∂
= 

∂ 
 (40) 

Where  and [0,1]r R p∈ ∈  is an1embedding1parameter, ( )H p is1a non-zero1auxiliary1function and 

( ),r p∅ is1an unknown1function.1For 0p = , the homotopy1given in Eq. (40) only1recover the1linear 

solution i.e., 

( )( ) 0
0( ,0 ( ) 0,   ( , ).

dw
L r G r B w

dr
∅ + =         (41) 

For 1p = , we recuperate the nonlinear boundary value problem and this solution approach to the  exact 

solution such ( ) ( )as ,1 .r w r∅ = So we can say that the solution �(�, �) approaches to exact solution as p  

approaches 0 to 1. 

( )The auxiliary function H p isselected as 

( ) 2

1 2

3

3 ...H p pC p C p C+ += +
 

       (42) 

1 2 3, , ,...,C C C are auxiliary constants to be resolute such that to reduce solution inaccuracy.  

For estimated solution, ( ),r p∅ is expanding with respect to � by using Taylor series[31-34]. 

( ) ( ) ( )0

1

, ,, i

k
k i

k

r r p , w w Cr p C
∞

=

= +∅ ∑         (43) 

By using Eqs. (42) and (43) into equation (40), and comparing the coefficient of like power of p , we obtain 

various order problems, where the1zeroth order1problem is1given in1Eq. (41) and1the first1and second1order 

problems1are as follows: 

1
1 1 0 0 1( ( )) ( ) ( ( )),  B( , ) 0,

dw
L w r G r C N w r w

dr
+ = =       

 (44) 2 1 2 0 0 1 1 1 1( ( )) ( ( )) ( ( )) [ ( ( )) ( ( ))],L w r L w r C N w r C L w r N w r− = + + 2
2B( , ) 0.

dw
w

dr
=  (45) 

In general  
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1
1

1 0 0

1 1 0 1 1

[ ( ( ))
( ( )) ( ( )) ( ( )) ,

( ( ), ( ),..., ( ))]

k
i k

k k k

i k k

C L w r
L w r L w r C N w r

N w r w r w r

−
−

−
= − −

+
− = +∑

B( , ) 0,  2,3,...k
k

dw
w k

dr
= =

         

(46) 

Here 1 0 1 1( ( ), ( ),..., ( ))k kN w r w r w r− −  is the coefficient of 
1kp −

 in the extension of ( ( , ))N r p∅ . 

0 0 0 1

1

( ( , )) ( ( )) ( , ,..., ).k i k i

k i

N r p N w r N w w w
∞

− −
− =

∅ = + ∑       (47) 

 

The junction of Eq. (43) depends upon the auxiliary constants and the order of the problem. 

 

If it converges at 1,p = one has: 

( ) ( ) ( )( )0

1

, , ,  ; 1, 2,3,...,i ik

k

rw wC r r C i mw
∞

=

= + =∑ .      (48) 

Using Eq. (48) into Eq. (38), the expression for the residual in the following is obtained as: 

( ) ( ) ( ) ( )( ), ( , , , 1,2, ,i i iR r C L r C G r N r C i mw w= + + = … ,     (49) 

Many methods such as Ritz Method, Galerkin’sMethod, Collocation method and Least Square method are used 

to find the auxiliary constants. 

Here we use the least squares method to find the auxiliary constant: 

( ) ( )2J ,   ; 1, 2,3,..., ,

b

i i

a

C R r C dr, i m= =∫         (50) 

J
0,  ; 1,2,3,..., ,

i

i m
C

∂
= =

∂
          (51) 

here �, � (taking from domain) are constant that locate auxiliary constants which minimize the residual. Many 

researchers fruitfully implemented this method for solving highly non-linear boundary value problems of 

physics and engineering and gained pleasing outcome. As the number of the auxiliary constant increase the 

solution errors, reduce and a consequence the solution of the problem converges to the exact solution. 

 

5. Solution of the problem 

Here we applied optimal homotopy asymptotic method (OHAM) toEqs. (19, 20). 

From Eq. (19), we have  

( )
2

2
, ,

d w dw
L r p r

dr dr
ϕ  = +           (52) 

( )
2 32

2

2
[ , ] 2 3 , ( ) 0,

d w dw dw
N r p r M w g r

dr dr dr
ϕ β

    = + − =              

(53) 

where L , N  and , g  are linear,1nonlinear1operators, and source1term respectively. 

The boundary conditions are 

( ) ( )1, 1 and , .p p Uϕ ϕ= δ =          (54) 

By using Eqs. (52)-(54) and (42) into equation (40), and comparing the coefficient of like power of p , we will 

obtain various order problems, whereas the zero, first and second order problems with appropriate boundary 

conditions are as follows: 

Zeroth-order problem with boundary conditions 
2

0 0 0

2
: 0,

d w dw
p r

dr dr
+ =           (55) 

  

( ) ( )0 01 1, ,w w Uδ= =           (56) 
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First-order problem with boundary conditions 

 
32

1 2 0 01 1
1 1 12

: ( 1) 2
dw dwd w dw

p r M rC C C
dr dr dr dr

β  + + − + −  
 

22 2

0 0 0
1 12 2

( 1) 6 0,
d w d w dw

r C r C
dr dr dr

β  − + − = 
 

       (57) 

 

( ) ( )1 11 0, 0,w w δ= =           (58) 

 

Second-order problem with boundary conditions 

 
3 22

2 2 0 0 02 2 1 1
2 2 2 1 2 12 2

: 2 (1 ) (1 ) 6
dw dw d wd w dw dw dw

p r M rC C C C r C s r C
dr dr dr dr dr dr dr

β β + + − − − + − + − 
 

2 2 22 2 2 2 2

0 0 0 0 0 01 1 1 1
2 1 1 12 2 2 2 2

6 12 6 0,
dw d w dw d w dw dwdw d w d w d w

r C r C r rC r C
dr dr dr dr dr dr dr dr dr dr

β β β     − − − − − =     
     
            (59) 

 

( ) ( )2 21 0, 0.w w δ= =           (60) 

 

The corresponding solutions of equations (55)-(60) are: 

0 1 ( 1),
lnr

w U
lnδ

= + −           (61) 

2

1 1 2 32

1
w Λ Λ Λ ,r lnr

r
= + +          (62) 

2

2 4 5 6 72 4

1 1
Λ Λ Λ Λ ,w r lnr

r r
= + + +         (63) 

where 1 2 3 5 6Λ , Λ , Λ ,Λ , Λ ,  and 7Λ  are1constants which1hold auxiliary1constants �� and �� are given 

in1appendix. 

Now, since1the second1order1approximation is: 

( ) ( ) ( )0 1 2w w w w .r r r= + +          (64) 

The second1order approximate1solution is1given by 

2

1 4 2 5 6 3 72 4

1 1
(Λ Λ ) (Λ Λ ) Λ (Λ Λ ) .w r lnr

r r
= + + + + + +      (65) 

 

5. RESULTS AND DISCUSSION 

 

The theoretical model of a third grade fluid for wire coating analysis inside an annular die is considered. 

The fluid is electrically conducted in the presence of uniform magnetic field. The analytical solution for the 

occurring nonlinear differential equation in this model is obtained. The series form of the solution is found using 

OHAM.  

The convergence of the method is also necessary to check the reliability of the methodology. The 

convergence of the method is given in tables by assigning numerical values to the physical parameters of 

interest. The convergence of method can also be observed from figure 3. Additionally, the results are also 

compared with previously published relevant literature [23] of the same flow problem of a third grade fluid as 

depicted in Fig.4.  

The influence of the non-Newtonian parameter of third grade fluid β , the velocity ratio U  , the wire 

velocity 1V and the radii ratio δ on the velocity and thickness of the coated wire are studied. In order to get a 

clear insight into physical problem, the velocity profile and thickness of coated wire has been discussed by 

43 



J. Appl. Environ. Biol. Sci., 7(1)36-48, 2017 

 

assigning the numerical values to the non-dimensional parameters encountered in figures 5-9. Figure 5 shows 

the variation of the magnetic parameter M  on the non-dimensional velocity profile. Here, we vary the magnetic 

parameter M  i.e., 0.5,1.0,1.5, 2.0M = with fixed values for 0.2, 2, 0.2.Uβ δ= = = This figure reveals 

that increasing M reduces the speed of the flow inside the polymer coating. This is due to the fact that the 

introduction of transverse magnetic field has  tendency to develop a drag force that resists the flow.  Figure 6 

and 7 show the behavior of non-dimensional velocity with the variation of non-Newtonian parameters β  and 

the velocity ratio U  respectively. Figure 6 has been obtained by varying the dimensionless parameter β i.e., 

0.2,0.6,1.2,1.6β =  and keeping all other parameters fixed. It is clear from figure 6 that the behavior of 

increasing β  (keeping M  fixed) on the velocity is quite similar to that of M  (shown in Figure 5). Also, the 

boundary layer thickness is decreased by increasingβ . Figure 7 shows that the velocity profile increases by 

increasing the velocity ratio U . Figure 8 and 9 show the variation of the radii ratioδ and the non-Newtonian 

parameter β
1
on the thickness of the coated wire against the velocity of the wire 1V  respectively. Figure 8 

presents the impact of the increase in the radii ratioδ (ratio of the die radius to the radius of the wire) along with 

increasing wire drawing speed, on the thickness of coated wire. Here, we observed that by increasing the radii 

ratio (specially the coating die radius) significantly affects the thickness of the coated1 ire. It is found that the 

change in wire drawing speed is reflected less sensitively on the change in thickness of coated wire, especially 

when the diameter of the coating die is small. In Fig. 9 we varied the non-dimensional parameter β  i.e., 

0.1,0.2,0.3,0.4β = and fixed the values of 0.2, 0.1.U M= = It demonstrates that the thickness of the 

coated wire decrease with the increasing values of β , however, the thickness of the coated wire increases along 

with increasing the radii ratio δ . Here, we can observe that the thickness of the coated wire can be maintained 

at required level by adjusting the non-diemnsional parameter β , the radii ratio δ , and the wire drawing speed 

1V
 . 

Table 1.Convergence of the method for 0.3, 0.2, 0.1, 2.iMα β δ= = = =  

� 1st  Order 2nd  Order 

1 0 0 

1.1 7.51E-14 7.93E-16 

1.2 2.77E-12 2.21E-14 

1.3 1.73E-11 1.11E-13 

1.4 5.02E-11 2.46E-13 

1.5 9.34E-11 3.12E-13 

1.6 1.28E-10 2.43E-13 

1.7 1.39E-10 1.15E-13 

1.8 1.23E-10 1.40E-14 

1.9 -7.50E-11 1.97E-14 

2 1.95E-11 2.26E-13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Velocity comparison of ADM and OHAM 

1 20.3, 2, 0.0367873, 0.7067062, 0.1, 0.2.C C M Uβ δ= = = − = = =
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Figure14: Velocity comparison of the present work and published work [23]for 

1 20.3, 2, 0.0367873, 0.7067062, 0.01, 0.2.C C M Uβ δ= = = − = = =
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure5: Dimensionless1velocity1profile for1different values of1magnetic parameter1 M when 

0.2, 2, 0.2.Uβ δ= = =
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure6:Dimensionless1velocity profile1for different1values of1non-Newtonian parameter� when 

2, 0.1, 0.2.M Uδ = = = . 
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Figure7: Dimensionless1velocity profiles1for different1values of U when 0.2, 2, 0.2Mβ δ= = = . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure18:1Thickness1of1coated1wire1for1different1alues1of1radii1ratio1δ 1when1fixed 

0.3, 0.2, 0.1.U Mβ = = =
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9:Thickness1of coated1wire for different1values of β  verses δ when fixed 0.2, 0.1.U M= =
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6. Conclusion 

The wire coating is necessary in order to provide protection from signal attenuation and mechanical 

damage. In the present analysis, the problem of wire coating by withdrawing from a bath of magneto-

hydrodynamic (MHD) third grade fluid is investigated. The solution of the governing nonlinear problem is 

established using OHAM. Results are also verified by ADM. The effect of emerging parameters on the velocity 

and thickness of coated wire is discussed in detail. Additionally, the present work is also compared with 

published result. 
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