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ABSTRACT 

 

In this article Optimal Homotopy Asymptotic Method (OHAM) is used for the solution of homogenous 

advection equations. The accuracy of the method is analyzed by its comparison with exact and Homotopy 

Perturbation transforms Method (HPTM) solution. The absolute errors and order of approximation 

presented. 
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1. INTRODUCTION 

 

The nonlinear phenomena play a vital role in the field of applied mathematics, physics and 

engineering. Like the advection problem of the form  
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arise in physical, engineering and applied sciences. A limited number of analytic techniques were used for 

its solution [1]. Therefore, the researchers paid special attention to search new analytic techniques for the 

solution of nonlinear partial differential equations. Most of the techniques like Adomian decomposition 

method (ADM) [2], Variational iterative method (VIM) [3], Differential transform method (DTM) [4], 

Weighted finite difference method [5], The sinh-cosh method [6], and Homotopy perturbation method 

(HPM) [7], were used for the solution of weakly nonlinear partial differential equations.  For the solution of 

the strongly nonlinear problems the perturbation methods were studied [8,9,10]. These methods include a 

small parameter which cannot be found easily. To handle these problem new analytic methods such as 

artificial parameters method [11], Homotopy analysis method (HAM) [12] and Homotopy perturbation 

method (HPM) [7] were introduced. These methods pooled the homotopy with the perturbation techniques. 

Recently, Vasile Marinca et al introduced OHAM [13-15] for the solution of nonlinear problems which 

made the perturbation methods independent of the assumption of small parameters and huge computational 

work.  

The motivation of this paper is to boost OHAM for the solution of nonlinear homogenous advection 

equations. Ullah et.al. have extended and applied OHAM to different problems [16-31].  In this paper, we 

have proved that OHAM is useful and reliable for the solution of advection equations, showing its validity 

and great potential for the solution of transient physical phenomenon in science and engineering.  

In the succeeding section, the basic idea of OHAM [6-10] is formulated for the solution of partial 

differential equations. In Section 3, the effectiveness of the enhanced formulation of OHAM for time-

dependant problems has been studied.  

 

2. Application of OHAM to homogenous advection Equations 

 

Model.  [32] Here we consider homogenous advection equation with the initial condition                               

0, x
t x

ζ ζ
ζ ζ

∂ ∂
+ = = −
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,                                                                 (2.1) 
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The exact solution is  

                  
1

x

t
ζ =

−
.                                                                     (2.2) 

Zeroth Order Problem 

                                   ( )0

0
0, ,0x x
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Its solution is  

                                       ( )0
x xζ = −                    (2.4) 

 

First Order Problem 
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Its solution is  

                                    
1 1

txCζ = .               (2.6) 

 

Second Order Problem 
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Its solution is  

                         2 2 2

2 1 1 1 2
C xt C xt C xt C xtζ = + − +  .                        (2.8) 

Third Order Problem 
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Whose solution is 
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Adding Eqs.  (3.1.9), (3.1.12), (3.1.15) and (3.1.18), we obtain: 

           

2 2 2 3 3 2 3 3
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2
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For 
1
 1.0717403328569475C = − ,  

2
  0.0002568456183225209C = , 3C  = 0.00003351161458234207 . 

  

        

2

3

1.00037256496904 0.9832709819011352

1.2310302488494396

x xt xt
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= −  

+  
.                (2.12) 

158 



J. Appl. Environ. Biol. Sci., 7(1)157-163, 2017 

 

Solution of the problem by Homotopy Perturbation Transform Method (HPTM) 

                             ( ) ( )2 3 4, 1 .x t x t t t tζ = − + + + +                                                     (2.13) 

                                                  

Table. 1. Comparison of results 
x  OHAM  Exact  HPTM 

0.1  -0.11111  -0.111111  -0.11111 

0.2  -0.22222  -0.222222  -0.22222 

0.3  -0.33333  -0.333333  -0.33333 

0.4  -0.44444  -0.444444  -0.44444 

0.5  -0.55555  -0.555556  -0.55555 

0.6  -0.666661  -0.666667  -0.66666 

0.7  -0.777771  -0.777778  -0.77777 

0.8  -0.888881  -0.888889  -0.88888 

0.9  -0.999991 -1  -0.99999 

1.0  -1.1111 -1.11111 -1.11111 

 

Table 2: Absolute errors 

x tN  0.01t =  0.015t =  0.1t =  0.15t =                  0.2t =           
                                      

 

0.1    2.73368×10-7    2.55278×10-7    1.01145×10-6 1.36379×10-5    7.46406×10-5  

0.2 4.54735×10-7 5.10555×10-7 2.02291×10-6 2.72759×10-5      1.49281×10-4  

0.3 6.82103×10-7 7.65833×10-7 3.03436×10-6 4.09138×10-5    2.23922×10-4  

0.4 9.09471×10-7 1.02111×10-6 4.04582×10-6 5.45517×10-5      2.98562×10-4  

0.5 1.13684×10-6 1.27639×10-6 5.05727×10-6 6.81897×10-5     3.73203×10-4  

0.6 1.36421×10-6 1.53167×10-6 6.06873×10-6 8.18276×10-5  4.47843×10-4  

0.7 1.59157×10-6 1.78694×10-6 7.08018×10-6 9.54655×10-5  5.22484×10-4  

0.8 1.81894×10-6 2.04222×10-6 8.09164×10-6 1.09103×10-4  5.97125×10-4  

0.9 2.04631×10-6 2.29450×10-6 9.10309×10-6 1.22741×10-4  6.71765×10-4  

1.0 2.27368×10-5 2.55278×10-6 1.01145×10-5 1.36379×10-4  7.46406×10-4  

    

 

Table 3: Comparison of zeroth order, first order and second order and third order absolute 

error corresponding to  at time 0.1, and 0 1t x= ≤ ≤  

x  
 Zeroth Order 

Absolute Error 

First Order 

Absolute Error 

Second Order      Third Order  

Absolute Error    Absolute Error 

 0.1 1.111111×10-2 3.93708×10-4 1.65190×10-5          1.01145×10-6  

 0.2 2.222222×10-2 7.87416×10-4 3.30380×10-5          2.02291×10-6 

 0.3   3.333333×10-2 1.18112×10-3 4.95569×10-5          3.03436×10-6 

 0.4   4.444444×10-2 1.57483×10-3 6.60759×10-5          4.04582×10-6 

 0.5   5.555556×10-2 1.96854×10-3 8.25949×10-5          5.05727×10-6 

 0.6 6.666667×10-2 2.36225×10-3 9.91139×10-5          6.06873×10-6 

 0.7 7.777778×10-3 2.75595×10-3 1.15633×10-4          7.08018×10-6 

 0.8   8.888889×10-3 3.14966×10-3 1.32152×10-4          8.09164×10-6 

 0.9   1.000000×10-1 3.54337×10-3 1.48671×10-4          9.10309×10-6 

 1.0   1.111111×10-1 3.93708×10-3 1.65190×10-4          1.01145×10-5 
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Fig 1, 3D Approximate solution of ( ),x tζ                                 Fig 2, 3D Exact solution of ( ),x tζ  

for 0 .5t = .                                                                                                           for 0 .5t = . 

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0

�1.0

�0.8

�0.6

�0.4

�0.2

0.0

x

t

          
0.0 0.2 0.4 0.6 0.8 1.0

�1.0

�0.8

�0.6

�0.4

�0.2

0.0

x

t

                                                               

Fig 3, 2D Approximate solution of ( ),x tζ                         Fig 4, 2D Exact solution 

for 0 .5t = .                                                                       for 0 .5t = . 
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Fig 5, 2D Exact, Zeroth, First, second and 

Third Order solution of ( ),u x t  for 0.5t =  
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Fig. 6, 2D Residual plot for 0.1t =  

 
3. RESULTS, DISCUSSIONS AND CONCLUSION 

 

In Table 1, and Figs. 1-4, we have compared the OHAM results with exact and HPTM results. It is 

concluded that OHAM results are identical to exact and HPTM results. The absolute errors for spatial 

domain [0,1]  and different t are given in Table 2.  The order convergence is given in Table 3 and Fig. 5. 

The residual of the problem is plotted in Fig. 6. From comparison we have concluded that OHAM is simple 

easy, flexible, containing less computational, no need of linearization and initial guess  when applying to 

homogeneous nonlinear advection equations.  
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