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ABSTRACT 

 

In this paper, we developed a general SEIR Sepidemic model that provides knowledge about the occurrence of 

epidemic. The model can integrate the birth, death and examine the outcome mathematically. Along the way, we 

show how this simple SEIR Sepidemic model assists to lay a theoretical foundation for public health interventions. 
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INTRODUCTION 

 

It is proved that mathematical modeling plays an important role in the disease spread and control. A better 

qualitative assessment can be obtained by an appropriate mathematical model for the problem. Normally 

mathematical models for epidemics are comprised of system of differential equations that show the rate of change of 

each interacting component. Numerous advantages of avoiding invasion of infection to population can be obtained 

by developing a good epidemic model; therefore epidemiological models attracted the attention of many researchers 

[1-4].Several epidemic models are there in the literature that focuses on the dynamical properties [5-16].In this 

work, we consider a single host population, the mode of transmission is direct contact, stay in latency period before 

becoming infectious. The infectious host can be recovered if the required immunity is provided during infectious 

stage.  

In research literature a lot of mathematical models have been presented to study the dynamics of infectious 

diseases [20, 21, 23]. Khan et al. [21] presented an SEIR epidemic model with preventive vaccination. They divided 

the host population into four subclasses that is S-susceptible, E-exposed, I-infected and R-recovered. Kaddar et al. 

[20] proposed a generalized SEIRS epidemic model. The proved the global stability for a generalized SEIRS model 

by using the geometric approach. 

In this work, we present a general SEIRS epidemic model. In our model we assume that the infections stay in 

the exposed classes before becoming infectious. The term (1- �) is used which represents the number of individuals 

that gain natural immunity during the incubation period. Further, we two different transmission ��and��, which 

respectively represent the contact rate between susceptible and exposed, and susceptible and infected individuals. 

We denote the total host population by �(�), subdividing into four subclasses, that’s the susceptible S, latent 

(exposed) E, Infectious I and recovered R. Thus the total host population can be written as �(�) =  �(�) +  (�)  + �(�)  +  �(�). 
  

Model Formulation 

This section shows the mathematical formulation of the general infectious SEIR epidemic disease model. The 

population is categorized is four different subclasses, namely, the susceptible individuals� (�), the individuals 

latent (Exposed) which are not yet infectious by(�), infected by �(�) and the individuals whose recover from 

infection or removed by�(�). Thus, we write,� (�) = � (�) + (�) + �(�) + �(�) the total size of host population 

at any time�. The model that describes the assumptions above can be written through the following systems of 

differentials equations: ��(�)�� =  Λ − ���(�)(�) − ���(�)�(�) − μ�(�) + ��(�),                      S (0) = �� ≥ 0 
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�(�)�� =  ���(�)(�) + ���(�)�(�) − (1 − �)(�) − μ(�),                 E(0) = � ≥ 0 ��(�)�� = (1 − �)(�) − (� + ℰ + μ)�(�), I (0) = �� ≥ 0             (1) �!(�)��  = ��(�) − ��(�) − μ�(�),         R (0) = �� ≥ 0. 

The host population is increased by the recruitment rate Λ, α₁and α₂respectively show the contact rate between 

susceptible-exposed and susceptible-infected individuals. The induced death rate is given by ε, natural death rate μ, 

recovery rate is ω (the recovery may be assumed here, natural or due to treatment). The individuals in the latent 

class gain immunity naturally at a rate δ while loss at a rate γ. The model (1) has the DFE, denoted by, % =(��, 0, 0, 0) and is given by% = &Λ' , 0, 0, 0(. 

The total dynamics is obtained by summing the equations in (1), ���� = Λ − )� − *� ≤ Λ − )�. 
The feasible region for the model is the closed setΓ, which is positive invariant and bounded, given by 

Γ = ,(�, , �, �): 0 ≤ �, , �, �, � +  + � + � ≤ Λ'.. 

 

Basic Reproduction Number /0 

This section describes the computation of the basic reproduction number, which is defined as the number of 

secondary infections generated by single infections when an infection is introduced into a purely susceptible 

population. The finding of the reproduction number involves the matrices, F and V, see [17]. It follows from [17] 

that the matrix F and V can be obtained as: 

ℱ = 2 0��� + ����00 3 ,                   Ѵ = 2��� + ���� − Λ + μ� − ��(1 − �) + μ−(1 − �) + (� + ℰ + μ)�−�� + �� + μ� 3. 

It follows from the disease free equilibrium % 

 

5 = 6 ��Λ) ��Λ)0                0 7                      8 = 9 (1 − �) + )                       0−(1 − �)            (� + ℰ + μ): 

8;� = <==
=> 1(1 − �) + )                                                       0(1 − �)((1 − �) + ))(� + ℰ + μ) 1(� + ℰ + μ) ?@@

@A
 

58;� = <==
> ��Λ)B(1 − �) + )C + ��Λ(1 − �))B(1 − �) + )C(� + ℰ + μ) ��Λ)(� + ℰ + μ)

0                                                                                                       0 ?@@
A
 

Thus, the required basic reproduction number for model (1) is given by �% = ��Λ)B(1 − �) + )C + ��Λ(1 − �))B(1 − �) + )C(� + ℰ + μ) 

= ��Λ(� + ℰ + μ) + ��Λ(1 − �))B(1 − �) + )C(� + ℰ + μ) .   
The next section describes the local stability of the system (1) at the DFE,%. 
 

Local stability: 

The present section describes the local stability of the model (1) at the disease free and endemic equilibrium. 

Theorem 1: The model (1) is stable locally asymptotically, at the DFEE₀ whenever R₀< 1. 

Proof: The proof involves the linearization of the model (1) at DFE E₀ by setting equal to zero the left hand side of 

(1), which is given by the following Jacobean matrix: 
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E (%) =
<==
===
>−) − ��Λ) − ��Λ)  �

0 ��Λ) − B(1 − �) + )C ��Λ) 00 1 − � −(F + * + )) 00 0 F −(� + ))?@@
@@@
A
. 

We need to show that all the eigenvalues of E (%) are negative. The first column of E (%) contains only diagonal 

element which forms one negative eigenvalue −) , the other three eigenvalues can be obtained from the matrix E�(%) which is  

E�(%) = <==
> ��Λ) − B(1 − �) + )C ��Λ)                        0(1 − � )                               − (F + * + ))                   00                                                        F           − (� + )) ?@@

A
 

 

Now, again the third column ofE�(%)contains only diagonal element which forms negative eigenvalue−(� + )), the 

remaining two eigenvalues can be obtained from the matrix E�(%) which is 

E�(%) = G ��Λ) − B(1 − �) + )C ��Λ)(1 − �)                         − (F + * + ))H 

The eigenvalues of E�(%) are the roots of the characteristic equation I��Λ) − B(1 − �) + )C − JK (−(F + * + )) − J) − ��(1 − �)Λ) = 0 

⇒ J� + M(F + * + )) − N��Λ) − B(1 − �) + )COP J
+ B(1 − �) + )C(� + ℰ + μ) N1 − ��(1 − �)Λ + ��Q(F + * + )))(F + * + ))B(1 − �) + )C O = 0 

⇒ J� + M(F + * + )) − N��Λ) − B(1 − �) + )COP J + B(1 − �) + )C(� + ℰ + μ)(1 − �%) = 0 

⇒ R�J� + R�J + R% = 0, 

 

WhereR� = 1,           R� = (F + * + )) − NSTΛ' − B(1 − �) + )CO,      R% = B(1 − �) + )C(� + ℰ + μ)(1 − �%). 
The above quadratic equations will give two negative eigenvalues if and only if �% U1 and+* + ) + (1 − �) + ) VSTΛ' . We see that in the above polynomial R� = 1, R� will be positive only when F + * + ) + (1 − �) + ) V STΛ'  

and R% will be positive if �% U 1. Thus for these two conditions all the roots of the polynomial will be negative. 

Hence the model (1) at the DFE  % is stable locally asymptotically whenever�% U 1 and F + * + ) + (1 − �) +) V STΛ'  . 
 

Endemic Equilibrium 

The endemic equilibria of the model (1) at endemic equilibrium� = (�∗, ∗, �∗, �∗)is given by 

�∗ = ( ) ( )

( ) ( )1 2

1

1

δ µ µ ω

µ ω α δ α

− + + +

+ + + −

ò

ò
 , ∗ = ( )

( )

*

1

I µ ω

δ

+ +

−

ò  , �∗ = ω�∗� + ), 
�∗ = ( )( )( )( )( )

( ) ( )( ) ( )( )( ) ( )( )
0

1 2

1 1 1

1 1 1

Rµ δ µ µ ω δ γ µ

µ ω α δ α γ µ δ µ µ µ γ δ µ ω

− + + + − + −

+ + + − + − + + + + − +

ò

ò ò
. 

A unique positive endemic equilibrium exists if and only if �% V 1. 
The following theorem analyzes the local stability of the endemic equilibrium. 
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Theorem 2: The model (1) at the endemic equilibrium � is stable locally asymptotically if �% V 1 and the 

conditions of Routh-Hurwitz criteria is satisfied. 

Proof: At the endemic equilibrium �we obtain the following jacobian matrix, 

E (�)  = 2−(�₁∗ + �₂�∗ + )) −�₁�∗ −�₂�∗ ��₁∗ + �₂�∗ �₁�∗ − (1 − �) − ) �₂�∗ 00 1 − � −(F + * + )) 00 0 F −(� + ))3 

 

The Jacobian matrix E (�)has the following characteristics equation: 
4 3 2

1 2 3 3 0,l l l lλ λ λ λ+ + + + + =  

Where 

 

( ) ( ) ( )

( ) ( )( )

( ) ( )( )
*

2

* *

1

*

2 2

3 3 2 3 1 3

3 1 3

1 3

l

S E

I s I

µ ω µ µ ω δ µ ω γ δ µ ω

γ µ ω γ δ µ ω α

α δ γ δ µ ω α

= + + + + + − + + + − + + +

+ − + + + + + − + + +

+ + − + + − + + +

ò ò ò ò

ò ò

ò

 

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )( )

2

3

*

*

1

* *

2

2 2 3 3 3 4 2 2 3 3 1 2 (1 ) 2 1

( 2 2 3 2

2 2 1 2 2 3 2 )

1 2 2 2 1 2 2 3 2

l

S

E

S I

µ δ µ µ δ µ δ µ ω γ µ δ µ ω δ µ δ ω

γ µ ω µ µ ω

µ ω δ µ ω γ δ µ ω µ µ ω α

δ γ µ µ ω δ µ ω γ δ µ ω µ µ ω α

= − + + − + + − + + + − + + − + − +

+ − + + + + +

+ + + − + + + − + + + + + +

+ − + + + + + − + + + − + + + + + +

ò ò

ò ò

ò ò ò ò

ò ò ò ò

( )( )( ) ( ) ( )( )( )

( ) ( ) ( )( )( ) ( )( ) ( ) ( )( )

* * *

4 1

* * *

2

1 1

1 1 1 1

l E E S

S I I

γ µ δ µ µ µ γ δ µ ω µ γ µ µ ω α

δ µ γ µ γ µ δ µ µ µ γ δ µ ω α δ µ µ γ µ µ ω

= + − + + + + − + − + + + +

− + + + + − + + + + − + − + ++ + +

ò ò

ò ò

 

The characteristics equation above will give four eigenvalues with negative real parts if and only the conditions of 

Routh-Hurtwiz criteria: that is, the coefficients Y�, Y�, YZ and Y[ are positive andY�Y�YZ − YZ� − Y��Y[ V 0. Thus, Routh-

Hurtwiz criteria ensures the system (1) at endemic equilibrium �is stable locally asymptotically whenever �% V1 and the Routh-Hurtwiz criteria is satisfied. 

 

Global Dynamics 

In the given section we reduce the model (1) by using � +  + � + � = � = 1, and making the assumptions� =(1 − � −  − �), and then we obtain the following reduced model: ��(�)�� =  Λ − ���(�)(�) − ���(�)�(�) − μ�(�) + �(1 − �(�) − (�) − �(�)), S (0) = �� ≥ 0 �(�)�� =  ���(�)(�) + ���(�)�(�) − (1 − �)(�) − μ(�),                 E(0) = � ≥ 0 ��(�)�� = (1 − �)(�) − (� + ℰ + μ)�(�), I (0) = �� ≥ 0             (2) 

The DFE and EE of the model (2) is now denoted by � = (Λ\]'\] , 0, 0) and Z = (�∗, ∗, �∗). For the global 

dynamics we will study the model (2).We follow [24] to present the global stability of system (2). We rewrite the 

model (2) in the following form ��̂� = 5(^, 8) �_�� = `(^, 8), `(^, 0) = 0, 
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where ^ = � and a = (8, �) respectively denotes the population of uninfected (susceptible) and infected individuals 

(exposed and infected) with b ∈  ℝ and a ∈  ℝ�. The model (2) will be stable globally asymptotically when the 

conditions given in the following are hold. 

C1           For  
�e�� = 5(^, 0) = 0, %̂ is stable globally asymptotically. 

C2      `(^, 8) = f8 − g̀(^, 8), where g̀(^, 8) ≥ 0, for(^, 8) ∈ Γ, 
where f = hi`( %̂, 0), shows an M-matrix and Γis the biologically feasible region. Following the method in [24], 

we present the following theorem for the global stability of DFE of the model (2). 

Theorem 3: The DFE of the model (2) is stable globally asymptotically whenever R0<1. 

Proof: Choose ^ = � and 8 = (, �) and U= ( %̂, 0), where %̂ = �% = k\]'\]. 

The conditions mentioned above can be applied to model (2) as: �e�� = 5(^, 0) =  Λ − μ�% + �(1 − �%) which is stable globally asymptotically when � ⟶ ∞. `(^, 8) = f8 − g̀(^, 8) = 9(1 − � + )) + ���% ���%(1 − �) −(� + ℰ + μ): o� p − o��(�% − �) + ���(�% − �) 0 p, 
where = 9(1 − � + )) + ���% ���%(1 − �) −(� + ℰ + μ): , 8 = o� p and g̀(^, 8) = o��(�% − �) + ���(�% − �) 0 p. 
In model (2) the total population is bounded by�% = k\]'\], that is  �, , � ≤ �%, where �% represents the DFE of the 

model (2) and hence g̀(^, 8) ≥ 0. Thus the two conditions presented above are satisfied. Thus, we can conclude that 

the DFE of the model (2) is stable globally asymptotically. 

 

Global stability of Endemic Equilibrium 

This section describes the global stability of the endemic equilibrium of the model (2). For the proof we use 

the geometric approach method [19]. Many authors used this method in his papers, see [20-23]. 

Theorem: The endemic equilibrium of the reduced model (2) is globally asymptotically stable if �% V 1. 
Proof: The endemic equilibrium of the model (2) is given by 

E∗q 6−) − �� − ��� −��� −����� + ��� −1 + � − ) + ��� ���0 1 − � −r − ) − F7, 

The second additive compound matrix associated to E∗is 

E[�] = G u� ��� ���(1 − �) u� −���0 �� + ��� uZ H 

u� = −) − �� − ��� + −1 + � − ) + ���, u� = −) − �� − ��� − (r + ) + F), uZ = −1 + � − ) + ��� −(r + ) + F). 
Choose the function v = 21 0 00 w� 00 0 w�

3, and v;� = 21 0 00 �w 00 0 �w
3, vx = <==

>0 0 00 ;�wy\w�y�z 00 0 ;�wy\w�y�z ?@@
A
, 

So that vxv;� = <==
>0 0 00 wyw − �y� 00 0 wyw − �y� ?@@

A
. Then vE[�]v;� =

2−1 + � − 2) − �� + ��� − ��� Sz | }w Sz | }w(�;~)w� −r − 2) − F − �� − ��� −���0 �� + ��� −1 + � − r − 2) − F + ���
3. 

So � = vxv;� + vE[�]v;� = 2 ��� Sz | }w Sz | }w(�;~)w� ��� −���0 �� + ��� ���
3 

where ��� = −1 + � − 2) − �� + ��� − ���, ��� = −r − 2) − F − �� − ��� + wyw − �y� , 
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��� = −1 + � − r − 2) − F + ��� + � − ��� . 
Let � = 9��� ������ ���:, where ��� = −1 + � − 2) − �� + ��� − ���, ��� = max [Sz | }w , Sz | }w ] 
��� = o(�;~)w� , 0p�

, ��� = G−r − 2) − F − �� − ��� + wyw − �y� −����� + ��� −1 + � − r − 2) − F + ��� + wyw − �y�
H. 

Now consider the norm in �Z as |(��, ��, �Z)| = max �|��|,    |��| + |�Z|�, where (��, ��, �Z) represent the 

vector in �Z. The Lozinski associated to the above norm is shown by �. Thus it follows from [18]: �(�) ≤ ������, ��� = ������(���) + |���|, ��(���) + |���|�.  

Therefore �� = ��(���) + |���| = −(1 − � + )) − ) − �� + ��� − ��� + ��� � ≤ � − ) − ��� − �� ≤ � − ). 
Using the fact 

wyw = Sz� �w + ��� − (1 − � + )). 
And �� = ��(���) + |���| = max , −(r + ) + F) − ) + wyw − �y� , −(1 − � + )) − ) − (r + ) + F + wyw − �y� . +(�;~)w� ≤ wyw − �y� − ) + (�;~)w� − (r + ) + F) ≤ wyw − ). 
Using the fact 

�y� = (�;~)w� − (r + ) + F). 
So, �(�) = ������, ��� = wyw − ). 
Every solution (S(t), E(t), I(t)) of proposed system (2) with S(0), E(0), I(0) belong to some compact absorbing set 

(say Θ). It follows �(�) = ������, ��� = � − ) = 1� � �(�)�� ≤�
%

1� Y� (�)(0) − ) ≤ − )2. 
 

Numerical results 

We find the numerical solution of the proposed model (1) by choosing the base line for the susceptible population 

S=50, Exposed population E=10, Infected population I=10, Recovered population R=10. The parameters and their 

values are given asμ = 0.01, � = 0.05, �� = 0.005,   �� = 0.0025,   * = 0.078,   F = 0.2,   � = 0.4 ���  � = 0.4. 
Figure 1 shows the behavior of distinct classes of the model. 

 
Figure 1: Dynamical behavior of the proposed model. 
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Conclusion 
In this work, we studied a general SEIRS epidemic model of infectious disease. The transmission rate 

between susceptible-exposed and susceptible-infected was assumed. We investigated that the model is stable at the 

infection free state when the associated basic reproduction number less than unity. A stable endemic equilibrium 

was obtained for the case when the basic reproduction number exceeds than unity. Further, the stability of the 

reduced model was investigated. The disease free stability is examined by Castillo-Chavez method. Using the 

geometric approach method, the endemic equilibrium of the reduced model is derived, which is found to be stable 

globally asymptotically when the basic reproduction number exceeds than unity.  
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