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ABSTRACT 

 

Analysis of the stability boundary of power system following a transient disturbance, which distinguish reliably 

between stable and unstable system that involves the study of large set of non-linear differential equations solved 

using some computer techniques are based on a two-finite machine, interconnected by passive loads, power system 

model in which the classical representation is used for each machine and resistance is neglected. There are two 

different method used in to determine the stability boundary of power system. The first method is the equal-area 

criterion and second is the phase plane technique, both are compared and the final approaches giving identical results 

for the simplified model. 

 

1.1 INTRODNCTION 

 

                 A typical modern power system consists of a large number of generating plants and loads, interconncted 

through a complex network of  transmission and distribution lines.To maintain synchronism between the vaious parts 

of a power system becomes increasingly diffecult on inteconnection between system continue to grow. The 

dependence of the modern society on electrical energy requires that major power failure be avoided . The loss of 

synchronism between generators and concentrated loads, caused by power failures or system faults, presents a 

potential cause of power  failures.  In order to evaluate the hazards and to take steps to prevent loss of synchronism, 

accurate methods of analysis of  on-line system stability must be developed and put into use. Current practice usually 

involves analytical studies which result in system design or operating procedure modifications.  Even with the use of 

modern digital computer modeling, this approach does not fully protect the modern large scale system  during 

emergency fault conditions. 

This paper considers the simulation of a proven system,  which is modeled  by a two-machine equivalent system, 

during possible fault and erratic operating conditions.  A goal is to seek, by analytical investigation, the range of 

operating limitations for continual safe and reliable operation of such a power system. The basic approach used 

involves a computer stability simulation of the composite generator and equivalent loads.  

The first approach to the problem which gives conservative  results is used. This is an extension of the standard 

procedure used in transient stability studies known as the step-by-step method. The problem may be formulated as 

follows: given a system initially in a steady operation and assume a disturbance at time t� .  Then the question: is 

there a stable equilibrium  position for the system after the disturbance is cleared , and if so, what  the critical clearing 

time, that is,  the maximum time that the per- disturbances may remain, before the system loses its capability to return 

to steady-state . 

 

1.2 POWER SYSTEMSTABILITY 

             Stability studies will be divided into three different categories depending on the extent of the disturbance on 

the system. Steady-state- stability, infinitely small disturbances, small angle changes, time invariant   (Δ��� =0), 

manual control of voltage no automatic voltage regulator. Dynamic stability, smaller or normal random impacts , 

system equations are linear (or have been linearized) about an operating point , X� =AX+Bu, eigenvalues of A matrix  

may be time-varying and that u may be used to present several inputs including system load responses, automatic 

control devices and voltage regulator action (Δ��� ≠0), multiple swing (Decay of Oscillations). Transient stability, 

nonlinear, first Swing cycle is most important, caused by large disturbances, X� =f(x,  u ,t ), time solutions, use digital 

computer .  
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1.3 METHODS OF SIMULATION 

            The first step in a stability study is to make a mathematical model of the system during the fault.  The 

elements included in the model are those affecting the dynamics of the machines (acceleration or deceleration of the 

machine rotors). Generally, the elements of the power system that influence the electrical and mechanical torques of 

the machines should be included in the model. These elements are: The network before, during, and after disturbance 

. The parameters of the synchronous machines .The loads and their characteristics. The excitation systems .The 

mechanical turbines and speed governors. System components such as transformers and capacitors.  

The complexity of the model depends upon the type of transient and system being investigated in the study. Using the 

techniques of modern control theory, the system stability of a large nonlinear system can be determined without 

obtaining the solution of the differential equations. That is, the stability limit can be calculated directly from the 

system equations and used during system operation. 

In this papersthe close relationship of two different methods of analyzing stability boundary will be discussed.  These 

are the classical equal-area criterion, the phase plane trajectories technique. These will be demonstrated for the case 

of two connected finite machines. 

 

1.4CLASSICAL MODEL 

Transient stability studies are performed to determine if system will remain in synchronism subsequent to the 

occurrences a major disturbance. That is, will the machine rotors remain in synchronism and will they return to a 

constant speed of operation following the disturbance. Classical stability study assumption are : (1) mechanical power 

input held constant,(2)damping is neglected, (3)loads are represented by passive impedance,(4)each machine has a 

constant-voltage behind transient reactance, (5)the mechanical rotor angle of each machine coincides with the angle 

of the voltage behind transient reactance,(6)machine saturation is neglected.  

 

1.5 POWER SYSTEM REPRESENTATION 

            The equivalent two-machine power system of Figure 1 will be used as an example (problem 2.18 [1]) in the 

comparative analysis of the stability boundaries for the two methods. The computations are based on a two-finite 

machine system model in which the classical representation is used for each machine . The load-flow calculation 

data is converted to a 100 MVA Base, given in Table 1. Systemequation of motion during transients period goes 

through the following stages: predisturbed system (b)  disturbance system (c) postdisturbed system. 

 

 
 

BUS  NO. VOLTAGE 

MAG.        ANGLE 

P.U DEGREE 

Load 

MWMVAR 

GENEARTOR 

MWMVAR 

1 1.03                0 0                        0 0.30                         0.23 

2 1.02             - 0.5 0.80                   0.40 1.0                          0.37 

3 1.018            -1.0 0.50                   0.20 0                           0 

Table 1 Load-Flow Data (on 100 MVA Base) 

 

The form of the swing equation of  the two-finite- machine the system  during the previous three stages will be the 

same as that given by Eq. (1), except for the difference in the input output power from one stage to another . 
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         The power angle characteristic is a sine function of 
 between the two rotors as plotted in Figure 2.  The 

maximum power that can be transmitted under rated operating condition occurs at a torque angle of (
�� + �)=−90°,  

where � = 4.1° and 
��=−94.1°.This sine curve is displaced from the origin vertically by an amount P� , which 

represents the power dissipation in equivalent network , and horizontally by the angle�, which is the real component 

of the transfer admittance Y��. The system is stable only if the torque angle 
  is in the range from (−90° to +90°) ,  

in which the slope dp /d
 is positive , so that an increase in torque angle results in an increase in transmitted power . 

 

 
 

So the maximum power resulting is 
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The disturbance to be considered is permanent three-phase fault which occurs near bus number 3 at the end of line 5. 

The power angle characteristic for disturbed and postdisturbed  system are sin wave having smaller amplitudes than 
that for the predisturbed system. 
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The steady-state values of Pe��, 
 and (d�δ/d�t) for the stable post disturbance system are: 
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The analysis of first-swing classical transient stability constitute the important tools for judging system performance. 
The reason for its relative importance is that if the system is stable on first swing, it will for most cases be stable on 

the subsequent swings. The torque angle 
 is calculated as a function of time over a period long enough determine 

whether 
 will to increase without limit or reach a maximum and start to decrease. 

Numerical methods for solution of differential equations, the methods most commonly used for the solution of the 
differential equations are: Euler method, the modified-Euler method, Runge-Kutta and the trapezoidal method. Each 

of these has advantages and disadvantages which are associated with numerical stability, time-step size, 

computational effort per integration step and accuracy of the obtained solutions. 

Plotting the swing curves of the two-finite machine system. For clearing at 0.1 second the solution is obtained by use 

of Turbo Pascal program with the modified-Euler method procedure. So the numerical solution of the swing equation 

for the two generator , three-bus power system is made by digital computer for 2.0 second of simulated real time , for 
the intervals of 0.05 sec. Figure 3 shows the rotor angles of the two machine Vs. time . A plot of the rotor angle 

differences is shown in Figure 4 and the fault is cleared in six cycles. It follows that the system is stable. The rotor 

angle difference reach value of (–11.67°) and then decrease. This is the value of δ�� at t=0.2sec. Note that the solution 

is carried out for three swings to show that the subsequent swings are not greater than the first so that the system 

appears to be stable. But in the case of the angle differ increase indefinitely, the system is unstable because both 
machine will loss synchronism. 
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1.6STABILITY DOMAIN  

To study the stability domain of a power system during a fault, the first method is power-angle characteristics 

and the equal-area criterion are shown in Figure 5 , for condition before, during, and after a three phase fault . The 

horizontal line denoted by P= Pm�� represents the equivalent mechanical power input to machine.  Before occurrence 

of the fault , the two the machine were operating at synchronous speed with a rotor angle at t=0 is δ� = −2.5 degree 

as indicated by the intersection of  Pm�� with the prefault curve, this operating point (
�,  Pe�) is designated by the 

letter a . Once the 3phase fault has occurred , the electrical power  Pe�� of the system increases to a value 

corresponding to point  b, at which  Pe�� = ( Pe��(!) −  Pm��) , this results in a decrease in both d
/d" and δ . As δ 

continues to decreases the system remains disturbed , the power angle trajectory moves along the faulted power angle 

curve form point b toward point c the fault is cleared , at which time for this case,  Pe��  decreases to 0.85 p.u (δ� =

143° as indicated by point d in the figure) .  
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The area  A� in the figure is proportional to the kinetic energy (K.E) of the system during the period when the fault 

occurs and is cleared. As δ continues to decrease, the power angle trajectory moves along the postfaulted power angle 

sine curve from point d toward point e for which δ%&'.is −176°. When this point is reached,  

12

δc

a
δ0

2dδ
P dδ 0 (9)

dt M
.= =∫

 
 

At this point the K.E. of the equivalent finite machine has re- turned to its prefaulted value , Δ K.E =0  

              At point e , the area  A� bounded by  Pe�� =  Pm�� and 

 Pe�� =  Pc + Pmax. Sin[δ +γ(post)] , δ� ≤ δ ≤ δ%&'. , is equal to the area  A� bounded by  Pe�� =  Pm�� and 

 Pe�� =  Pc + Pmax. Sin[δ +γ(during)] , 

δ� ≤ δ ≤ δ� .  

There exists a (δ = δ�) ,  ( δ
�

≤ δ ≤ δ%&'.), such that in terms of the equal-area criterion of stability, area  A� is equal 

to  A�, and the system is stable , the value of δ� is determined as follows: 

128 



J. Appl. Environ. Biol. Sci., 6(9)123-138, 2016 

 

( )

( )

( )

12 (during)

12(Post)

c

S
1

0

1

0

1

max.

S
2

c

P P +P dδ (10)c max.m

Let dx = dδ

0.1452 0.0026 0.061Sin dx (11)

0.1452 0.0547 Cos( 0.33 ) (12)c

P +P ( ) P dδ (13)c max. m

in

A

A

A in

A

δ

A

δ

( )

( )

 . ( )

 . 

c

x

x

δ

δ γ

δ γ
δ γ

δ γ
δ

δ
δ γ

δ

 
 

 
  

−

=

= − + −

=− − + + °

=

+

+

+

=

⇒

+∫

∫

+ −∫

[ ]
max.

2

c

2 c c

1 2

c c c

0.167 0.1452 1.12Sin dx (14)

0.0218 1.177 1.12Cos( 4.3 ) (15)

0.1452 1.056Cos 0.084Sin 1.232 0 (16)

A δ

A A

δ δ δ

(δ )

(δ )

δ

x

γ

γ
= − + +

= + + + °

=

− − + − =

+

+

⇒

∫

 

 

From the power-angle diagram shown in Figure 5  the critical clearing angle is located between δ and δ%&'.. Since Eq. 

(16) is nonlinear, δ�=−143° degrees (−2.495 radius) was found by using trial and error . 
             If the fault clearing is delayed long enough so that the quality of the two area cannot be satisfied , the two-

finite machine speed will not decrease to a synchronous value as long as the machines remain electrically tied to each 

other . The torque angle δ will decrease monotonically without bound beyond the maximum value possible for a 

marginally stable swing , δ%&'. . By the time δ reaches a value of −180° degree, synchronism is lost and the machines 
must be disconnected [5] . 

 

2.1 PHASE PLANE TRAJECTORIES AND THE STABILITY BOUNDARY 

            This technique provides a useful tool for studying the stability of a system which is described by a second-

order differential equation or a group of such systems. The swing equation of the power system prefault, during fault, 

and post fault is given by Eq. (1). To form the phase plane, a equation(1) is converted into two first-order differential 
equations with the time t suppressed . 
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               From the steady-state values of  Pe��, δ and (d�δ/d�t),the stable post disturbance system is  
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A phase plane plot is a plot of X� Vs. X� ,  as shown in Figure 6 . As the time t increases the two- tuple [ X�(t),  X�(t)] 
describes the trajectory in the phase plane . Since stability of the postfault system is the basic issue of concern, 

finding the stable equilibrium point (the origin of the phase plane) is important, since this point is the steady state 

value for postdisturbed system. 

 

1

1

1 2

2 12 1

1 2 2 2

2 12 1

2 12 1

S

X

S

X S

The state equation for the post-fault system is :

X X (21)

X P P P (X ) M (22)c max.m

Since X X X X (23)

X P P P (X ) Mc max.m

X P P P (X ) M  c max.m

in

S ,

in

Q , in

( )

( )

.

.
 . 

.

.
 . 

 . 

φ

φ

φ

  

  

  

=

= +

= =

= +

= +

− −

⇒

− − ⇒

− −

( )
( )

1

1

2 2

2 12 1

12
1

X

X S

 (24)

Then the state equilibrium singular point is : 

X 0 X 0 (25)

X P P P (X ) M 0 (26)c max.m

P Pcm(X ) arcsin (27)
Pmax.

Where 0, 1, 2,.............

             S ,

Q , in

( )

( )  . 

n

n

φ

φ π

  

= =

= + =

+ =

=

=

⇒

− −

−

 
 

 

 

 

 

 
 

 

 

 

130 



J. Appl. Environ. Biol. Sci., 6(9)123-138, 2016 

 

 
 

The singular point is chosen for n = 0,which defines the state variables,  X� and X�, such that the origin of the phase 

plane is the stable equilibrium point of the post-fault system .  

The equilibrium states of a system are defined as:  
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1 2
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δX δX

 
 
 
 
 
    

It is necessary to evaluate the equilibrium states of the system at singular points. This is done by testing the stability 

of the system by determining the nature of the roots.  If positive real roots exist, the system is unstable for the given 

operation conditions if  no positive real roots exist the system is stable.  
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The result is two real roots with opposite signs. Then point e on the phase plane is an unstable singular point being a 

saddle point singularity of the trajectories. 
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δ will decrease monotonically without bound beyond the maximum value possible for a marginally stable swing , 

δ%&'. 
 

These equations are plotted in the phase plane with torque angle δ at its minimum value (δ%56. = 19° as indicated by 

point f in Figure 7).  Figure (7) illustrates the relationship between power-angle and the phase plane trajectories for a 

marginally stable case .  The prefault operating point (δ�,  Pe�) is designated by the letter a in the figure, the power 

system is in a state of equilibrium with (
 and d
/d"= 0), this point in the phase plane is a stable singular point called 

a stable node or a vortex. When the 3-phase fault occurs at t ="�
7 , the electrical output power of the system  Pe�� 

increases to a value corresponding to point b , this results in a decrease in speed deviation d
/d" the and the torque 

angle 
. This decrease is depicted in the phase plane fault trajectory between δ�,  and δ�  . In the marginally stable 

case , fault clearing is delayed long enough to permit the system torque angle 
 to decrease to the critical value δ�   at 

which time the faulted line is isolated from the system. For fault clearing torque angles greater than δ�  , the post-fault 

system will be unstable . At the time the fault is cleared (at t =0.1 sec. corresponding to 
 = δ�  ) the output pover 

 Pe�� decreases from the value of −0.5 to −0.85 p.u , 
 continues to decrease along the phase plane post-fault 

trajectories from point c and d (at which 
 = δ�  ) toward point e . Point e (
 = δ%&'.  ) is an unstable singular point 

which is saddle point of the trajectories. For a the conservative system under study, as 
 increases a path is then 

formed along the phase plane maximum trajectory in clockwise direction from point e to point f as show in the Figure 

7 . 
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Referring to Figure (7), δmin.  can be determined from the equal-area criterion, using post-fault power-angle curve 
such that: 
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The critical clearing timetcr   can be determined from (9), using numerical integration techniques: 
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2.8 STABILITY BOUNDARY  

The system is considered stable as long as the trajectories follow the separatrix determined by the phase plane 

(as shown in Figure 6). The equation for the separatrix can be determined from the post-fault system differential 

equation of motion: 
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( )( )2
2 12 1

S +
2

X P P P X + C = 0c max.mM
in(  ) . φ− − +

 
The constant of integration c is evaluated at the saddle point of the separatrix , which is (δmax.  – ϕ ,0) . 

12

2
C = (P P P Cos (49)c max. max. max.mM

)()  .δ φ δ 
 − +−

 The stability boundary of the post-fault system , is 

( )2
2 12 1 1 1

12

S +
2

P X P X P Xc max.mM
2

(P P P Cos (50)c max. max. max.mM

in(  

)

X ( ) ( ) )

(

 . 

)  .δ φ δ

φ

 
 +

− − +

− +−
 

( )

2
2 12 1

1

1

+

2
(P P Xc max.mM

P Cos Cos X (51)max. max.

(52)max.min.

and )

(  

) X )

         X (

)

(

)

.

[

]

δ φ

δ

δ φ δ φ

φ

+ −−

+

−

−
− ≤ ≤ −

 

The results obtained by this method agrees with that determined by the equal-area method. 
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The post-fault system trajectories illustrated in Figure (8), were generated by varying the fault clearing time (tfc  ). If 

the fault is cleared in time at which tfc ≤  tcr  , operation will be stable along a curve as indicated in the figure for the 

three stable phase plane trajectories, being confined to the phase plane region enclosed by the stability boundary. For 

a sustained fault or for a longer delay in clearing time at which  tfc >  tcr  , the faulted trajectory will enter the unstable 

region as shown in the figure for the two unstable phase plane trajectories by the dotted  curve. 

Since the power system under investigation is a conservative system (no damping), the stable trajectories are closed 

trajectories. For stable trajectories in a non conservation systemX(t)→ 0 as t→ ∞ 

 

 
 

GLOSSARY OF SYMBOL 

 

Symbol Quantity                                                             

A , B                                    State vectors  

C                                          Constant of integration 

D                                          Damping constant  

EfdGenerator field voltage 

Eex                   Exciter voltage 

Ei                                         Generator ith terminal  

Ej                                         Voltage generator jth, terminal  

Gii                                        The sum of the admittance connected to node i 

H                                           Constant of the machine  

K                                          Maximum value of V(X) on the stability boundary 

M                                         Inertia constant of the machine 

MW                                     Megawatts 

MVA                                   Megavolt ampere 

MVAR                                 Megaras 

max.                                     Maximum 

min.                                      Minimum 

MAG                                     Magnitude   

P                                           Real power  

Pa                                         Accelerating power  

Pc                                         Dissipating power 

Pe                                         Electrical power  

P�
mGovernor  action  
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PmMechanical power 

Pmax.Maximum power transfer  

p.u                                       Per unit  

rad.                                      Radian  

r                                           State vector  

Q, S                                     Liner operator  

Sec.                                    Second  

t                                           Time  

tcr Critical clearing time 

tfcFaultCritical clearing time 

ω                                        Machine speed in rad. /sec. 

X                                         State vector  

X1                                       State variable in deg.  

X2                                       State variable in deg. /sec.  

X;q                                       Direct-axis transient reactance 

XT                                     Transformer reactance 

XL                                      Transmission line reactance  

Yij                                      Admittance between node i and node j  

ZL                                      Load impedance  

α ,β                                     Completing the square constant  

ϕ                                        The sum of the steady-state torque angle and the real       

                                            component of transfer admittance 

γ                                         The real component of the transfer admittance Y12 

$                                         System torque angle  

δ�                                          Angular speed deviation 

$< Acceleration 

$0                                        Predisturbed system  $ 

$$$$.                                   Minimum value of $ for a marginally stable condition 

$$$$.Maximum value of $for a marginally stable swing  

$$$Steady-state torque angle 

π                                   Pi=3.141592654 rad. 

θijAngle between node i and node j  

λ                                        Engenvalue 

Subscripts 

1                                        Denotes to generator one  

2                                        Denotes to generator two 

12                                      Denotes the system equivalent power value 

0                                        Denotes pre-fault system value (degree or initial) 

SS                                     Denotes the steady-state  post-fault system value 

 

2.8 CONCLUSIONS 

 

The power system stability boundary for the two-finite machine system scheme, resulting knowledge gained from 

system which has been studied in this paper, allows a number of general conclusions to be drawn concerning the 

effect on stability of certain concepts used in power system design, apparatus design, and power system operation . 

The effect of system modifications must be analytically observed before a fault, during a fault, and after fault 

clearance. Experience has shown that some design changes improve stability during all three conditions, while other 

modifications are helpful during one condition and detrimental during other changes.  

Both methods studied in this paper, are compared and the final approaches giving identical results for the simplified 

model. These two methods equal- area criteria and phase-plane trajectory, however, are suitable for a two-machine 

system. There is still much further research can be done using stability analytical tool known as the second or the 

direct  method of Liapunov for getting a larger, more accurate, region of stability boundary of power system. 
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