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ABSTRACT 

 

Mathematical models are often formulated in order to study the factors that govern infectious disease progression in 

viral infections. In this paper, we developed an epidemic model that provides knowledge about the transmission of 

Hepatitis B virus. The model can integrate the birth, death and examine the outcome mathematically. Along the way, 

we show that how this simple epidemic model assists to lay a theoretical foundation for public health problems. 
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INTRODUCTION 

 

In literature, it is given that host factors are responsible for determining whether the disease is removed or 

become chronic [1]. The entrance of Hepatitis B virus in lever through the blood stream causes the occurrence of 

hepatitis B infection. A large number of new viruses reproduce in the blood stream after entrance the virus into the 

lever [2]. In case, if the Hepatitis B infection is acute, the immune system of the individual may clear the virus from 

the body within six months. Commonly the infants between 1 to 6 years of age infected with hepatitis B virus are 

chronically infected and the disease lasts more than six months [3]. The chronic carriers of hepatitis B virus is a 

great challenge for health department as they do not develop symptoms even they transmit the virus to other people. 

To understand the dynamics of viral infections, researchers developed various mathematical models [4-10]. In this 

paper, we assume a simple SEIR epidemic model of the transmission of Hepatitis B virus and discuss its dynamical 

behavior. 

 

Model Formulation 

We develop an epidemic model for the transmission of hepatitis B virus in which the total human population is 

divided into four subclasses: the susceptible� (�), latent �(�), infected �(�) and recovered �(�). 	 (�) = � (�) + �(�) + �(�) + �(�) 

is the total human population at time t,the proposed model is given by the following system of differential 

equations. ��(�)�� = ∧ −���(�)�(�) − ���(�)�(�) − µ�(�) ��(�)�� =  ���(�)�(�) + ���(�)�(�) − ���(�) − µ�(�) ��(�)�� =  ���(�) − ���(�) − ��(�) − ��(�) ��(�)��  = ���(�) − µ�(�) 

with the initial conditions �(�) ≥ 0, �(�) ≥ 0, �(�) ≥ 0, �(�) ≥ 0. 

Here Λ is the rate of recruitment, α₁is the effective contact rate between susceptible and exposed classes, α₂ is 

effective contact rate between susceptible and infected classes, μ is the natural death rate, ε is disease induced death 

rate, ω is the recovery rate (due to treatment or natural recovery), δ is the natural immunity, γ is the rate of immunity 

loss. �� = �∧� , 0,0,0� 
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Basic Reproduction Number �� 

This section describes the computation of ��, which is defined as the number of secondary infections generated 

by single infections when an infection is introduced into a purely susceptible population. The finding of the 

reproduction number involves the matrices, F and V, see [11]. It follows from [11] that the matrix F and V can be 

obtained as:  

ℱ = ! 0���� + ����00 "                    Ѵ = ! − ∧ +µ���� + µ�−��� + ��� + �� + ��−��� + µ� " 

 

$ = % �� ∧� �� ∧�0                0 &                      ' = (�� + �                         0−���� + � + µ
) 

 '*� = 1(�� + �)(�� + � + µ) (�� + � + µ                      0���� + � ) 

 

$'*� = ! �� ∧ (�� + � + µ) + �� ∧ ���(�� + �)(�� + � + µ) �� ∧ (�� + � + µ)�
0                                                                                   0 " 

The basic reproduction number�� is the spectral radius ,($'*�), that is �� = �� ∧ (�� + � + µ) + �� ∧ ���(�� + �)(�� + � + µ)  . 
 

Local stability: 

The present section describes the local stability of both the cases, disease free and endemic. 

Theorem 1: If R₀< 1and �� + �� + � + 2µ > 01∧2 , then the DFE, E₀ of the model (1) is stable locally 

asymptotically, otherwise unstable. 

Proof: At �� the following Jacobian matrix is presented: 

3 (��) =
455
555
6−� − �� ∧� − �� ∧�  0

0 �� ∧� − (�� + �) �� ∧� 00 �� −(�� + � + µ) 00 0 �� −�788
888
9
, 

 

we need to show that all the eigen values of 3 (��) are negative. The first and fourth columns of 3 (��) contain only 

diagonal elements which form negative eigen values−� , the other two eigen values can be obtained from the matrix 3�(��) which is  

3�(��) = : �� ∧� − (�� + �) �� ∧���                          − (�� + � + µ); 

 

The eigen values of 3�(��) are the roots of characteristic equation|3�(��) − =�| = 0 which gives ��� ∧� − (�� + �) − =� (−�� + � + µ) − =) − ���� ∧� = 0 

⇒ =� + ?(�� + � + µ) − @�� ∧� − (�� + �)AB = − C�� ∧ (�� + � + µ) + ���� ∧�(�� + � + µ)(�� + �) − 1D = 0 

⇒ =� + ?(�� + � + µ) − @�� ∧� − (�� + �)AB = − (�� − 1) = 0 
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⇒ E�=� + E�= + E� = 0 

Where E� = 1,           E� = �� + �� + � + 2µ − 01∧2 ,     E� = 1 − ��. 
By Routh-Hurwitz criterion we know that if a polynomial is of second degree and all their coefficients are positive 

then obviously the polynomial will give negative roots. We see that in the above polynomial E� = 1, E� will be 

positive only when �� + �� + � + 2µ > 01∧2 and E� will be positive if �� F 1. Thus for these two conditions all the 

roots of the polynomial will be negative. Hence the disease free equilibrium is stable if �� F 1 and �� + �� + � +2µ > 01∧2 . 
 

Endemic Equilibrium 

To find the endemic equilibrium of the proposed model, we set the left side of (1) equals zero and obtain �∗ = (�� + �)(�� + � + µ)α��� + α���(�� + � + µ) , �∗ = (�� + � + µ)�∗α�  , �∗ = ���∗� , 
�∗ = ∧*2(IJK2)(I1KLKµ)MJ0JKMJ01(I1KLKµ)0J(IJK2)(I1KLKµ)MJ0JKMJ01(I1KLKµ) + N 01(IJK2)(I1KLKµ)MJ0JKMJ01(I1KLKµ)O NI1KLKµMJ O . 

In the following Theorem 2, we prove the local stability of endemic case. 

 

Theorem 2:The endemic equilibria�� is locally asymptotically stablefor�� > 1, �PQR∗ + �R > (�R + ,R)SμT +
β�iV∗ + β�iT∗W and μV(μT + ρT − β�) > [. 
Proof: The Jacobian matrix of (1) evaluated at EE,��,is  

3 (��)  = !−(���∗ + ���∗ + �) −���∗ −���∗ 0���∗ + ���∗ ���∗ − (�� + �) ���∗ 00 �� −(�� + � + µ) 00 0 �� −�" 

 

After some row operations, we get 

 

3(��) = !−\�]� + ]�\� 0 0 0−\� −\� 0 00 �� −EP 00 0 �� −�" 

Where  ]� = E�EP, ]� = EP �̂ − ��^�, \� = EP^P  , \� = EPE� − ��^�  , E� =  ���∗ + ���∗ + � ,  E� =  ���∗ − (�� + �),  EP = �� + � + µ,     �̂ = ���∗, ^� = ���∗, ^P = ���∗ + ���∗. 
The characteristic equation of 3(��) gives the eigen values as follows =� = −� , =� = − EP, =P = − \�, =_ = −\�]� + ]�\� . 
We see that the first two eigen values are negative and the last two eigen values are negative if ���∗ > (�� + �) and EP�E�E� > EP� �̂^P . Hence, the model (1) is stable locally asymptotically if ���∗ > (�� + �) and EP�E�E� >EP� �̂^P . 
 

Global Dynamics 

The proposed section is dedicated to analyze the global stability of the proposed model by using the lyapunov 

function theory [12]for both the cases. In Theorem 3, the global stability of DFE case is presented. 

Theorem 3:In the interior of Γ, the model (1) at the infection free equilibrium��is stable globally asymptotically. 

Proof: We consider the following lyapunov function `(�) = 1� (� + � + �). 
Taking time derivate of“`”, we have `a(t) = 1� (∧ −�� − �� − (�� + � + µ)�) 
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= ∧� − � − � − �� + � + µ� � 

= (�� − �) − � − �� + � + µ� � F 0 

Thus the time derivative of Lyapunov function is negative, and `a(t) = 0 if and only if � = ��, E = I = 0. Hence by 

Lassalle’s invariance principal [12], ��is globally asymptotically stable. 

 

Theorem 4: In the interior of Γ, the model (1) at the endemic equilibrium��is stable globally asymptotically. 

Proof: To show the result, we define the following lyapunov function ℷ(�) = �(�) + �(�) + �(�) + �(�) + e ��∗�� 
Taking the time derivate of“ℷ”, we have ℷa(�) =∧ −�� − �� − (� + �)� − �� + ��∗    =∧ −�(� + � + � + �) − �� + ��∗ 

    =∧ −�	 − �(� − �∗) = −�(� − �∗) 

    F 0 

 

Thus the time derivative of Lyapunov function is negative and ℷa(t) = 0 forI(t) = I∗.  Hence by Lassalle’s 

invariance principal [12],�� is globally asymptotically stable on Γ. 

 

Numerical results 

We find the numerical solution of the proposed model (1) by choosing the base line for the susceptible population 

S=40, Exposed population E=10, Infected population I=20, Recovered population R=10. The parameters and their 

values are given as∧= 1, μ = 0.1, �� = 0.001, �� = 0.0012, �� = 0.001, �� = 0.25  gh�  � = 0.4. Figure 1 

shows the behavior of distinct classes of the Hepatitis B model. 

 
Figure 1: Dynamical behavior of the proposed model. 
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Conclusion 
We considered a simple mathematical model that gives the idea of transmission of Hepatitis B virus. Analysis 

of our proposed model showed that two equilibria exist; that is, the disease free and endemic. The local dynamics of 

the proposed model have been discussed and analyzed by the basic reproduction number.  
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