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ABSTRACT 

 

In this paper, the two-dimensional second kind Chebyshev wavelets are applied for numerical solution of the time-fractional 

telegraph equation with Dirichlet boundary conditions. In this way, a new operational matrix of fractional derivative for the 

second wavelets is derived and then this operational matrix has been employed to obtain the numerical solution of the above 

mentioned problem. The main characteristic behind this approach is that it reduces such problems to those of solving a system 

of algebraic equations which greatly simplifying the problem. The power of this manageable method is illustrated.  

KEYWORDS:Second kind Chebyshev wavelet, Telegraph equation, Dirichlet boundary condition, Fractional derivative. 

 

1. INTRODUCTION 
  

In recent years, fractional calculus and differential equations have found enormous applications in mathematics, physics, 

chemistry and engineering because of this fact that, a realistic modeling of a physical phenomenon having dependence not only 

at the time instant, but also the previous time history can be successfully achieved by using fractional calculus. The application 

of the fractional calculus have been demonstrated by many authors. For examples, it is applied to model the nonlinear 

oscillation of earthquakes [1], fluid-dynamic traffic [2], frequency dependent damping behavior of many viscoelastic materials 

[3], continuum and statistical mechanics [4], colored noise [5], solid mechanics [6], economics [7], signal processing [8], and 

control theory [9]. However, during the last decade fractional calculus has attracted much more attention of physicist and 

mathematicians. Due to the increasing applications, some schemes have been proposed to solve fractional differential 

equations. The most frequently used methods are Adomian decomposition method (ADM) [10-12], homotopy perturbation 

method [13], homotopy analysis method [14], Variational iteration method (VIM) [15, 16], Fractional differential transform 

Method (FDTM) [17-22], Fractional difference method (FDM) [23], power series method [24], generalized block pulse 

operational matrix method [25] and Laplace transform method [26]. Also, recently the operational matrices of fractional order 

integration for the Haar wavelet [27], Legendre wavelet [28] and the Chebyshev wavelets of first kind [29, 30] and second kind 

[31] have been developed to solve the fractional differential equations. 

In this paper consider the time-fractional telegraph equation of order 2)<(1 ≤αα  as:  
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 where 
β

β

t∂

∂
 denotes the Caputo fractional derivative of order β , that will be described in the next section. This equation is 

commonly used in the study of wave propagation of electric signals in a cable transmission line and also in wave phenomena. 

This equation has been also used in modeling the reaction-diffusion processes in various branches of engineering sciences and 

biological sciences by many researchers (see [32] and references therein). 

The main purpose of this paper is to apply the second kind Chebyshev wavelets for solving time-fractional telegraph 

equation (1). In this way, we first describe some properties of the second kind Chebyshev polynomials and Chebyshev 

wavelets. Then, a new operational matrix of fractional derivative for the second kind Chebyshev wavelets are derived and are 

applied to obtain approximate solution for the under study problem. This paper is organized as follows: In Section 2, some 

necessary definitions of the fractional calculus are reviewed. In Section 3, the second kind Chebyshev polynomials and the 

second kind Chebyshev wavelets with some useful theorems are investigated. In Section 4, the proposed method is described. 

In Section 5, some numerical examples are presented. Finally a conclusion is drawn in Section 6.  
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2. Basic definitions 
 In the development of theories of fractional derivatives and integrals, many definitions for fractional derivatives and integrals 

are appeared, such as Riemann-Liouville and Caputo [33], which are described below:  

 

Definition 2-1 

A real function 0> ),( xxu , is said to be in the space R∈µ
µ

 ,C  if there exists a real number )(> µp  such that 
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1
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p
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Definition 2-2 

The Riemann-Liouville fractional integration operator of order 0≥α  of a function 1 , −≥∈ µ
µ

Cu , is defined as [33]:  
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 It has the following properties:  
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 where 0, ≥βα  and 1> −ϑ .  

 

Definition 2-3 

The fractional derivative operator of order 0>α  in the Caputo sense is defined as [33]:  
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 where n  is an integer, 0>x , and 
n

Cu
1

∈ .  

The useful relation between the Riemann-Liouvill operator and Caputo operator is given by the following expression:  
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 where n  is an integer, 0>x , and 
n

Cu
1

∈ . 

For more details about fractional calculus see [33].  

 

3. The second kind Chebyshev polynomials and wavelets 

 The well-known second kind Chebyshev polynomial )(zU
m

 form a complete set of orthogonal functions with respect to the 

weight function 
21=)( zzw −  on the interval 1,1][− . They can be determined with the aid of the following recurrence 

formula [34]:  

 ,2,3,=),()(2=)(
21

KnzUzzUzU
mmm −−

−  

 with 1=)(
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1
. For practical use of these polynomials on the interval of interest [0,1] , it is necessary to 

shift the defining domain by means of the following substitution:  
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 So, the shifted second kind Chebyshev polynomials )(xU
m

∗

 are obtained on the interval [0,1]  as 1)(2=)( −
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. The orthogonality condition for these shifted polynomials is:  
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 where 
mn

δ  is the Kroneker delta. 

The analytic form of the shifted second kind Chebyshev polynomial is:  
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 The second kind Chebyshev wavelets ),,,(=)( xmnkx
nm

ψψ , which is constructed from it's corresponding polynomials 

involve four arguments, 
k

n ,21,= K , k  is assumed any positive integer, m  is the degree of the second kind Chebyshev 

polynomials and the variable x  is defined over [0,1] . They are defined on the interval [0,1]  as [31]:  
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 We should note that in dealing with the second kind Chebyshev wavelets the weight function 1)(2=)( −
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A function )(xu  defined on [0,1]  may be expanded by the second kind Chebyshev wavelets as:  
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If the infinite series in (10) is truncated, then it can be written as:  
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 in which 
nmi
cc = , )(=)( xx

nmi
ψΨ . The index i , is determined by the relation 11)(= ++− mMni . 

Similarly, an arbitrary function of two variables ),( txu  defined over [0,1][0,1]× , may be expanded into second kind 

Chebyshev wavelets basis as:  
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4. The operational matrix of fractional derivative  

 Here, we present a procedure to derive the operational matrix of fractional derivative in the Caputo sense for the second kind 

Chebyshev wavelets.  

Remark 1  By using the shifted second kind Chebyshev polynomials, any component )(x
nm

ψ  of (12) can be written as:  
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 Next we present a useful theorem about fractional derivative of the second kind Chebyshev wavelets:  
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Proof. For α<m , from definitions of the shifted second kind Chebyshev polynomials and Caputo's derivative the 

statement is clear. For ≥ αm , from remark (1) and analytic form of the shifted second kind Chebyshev polynomials we 

have:  
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Theorem 4-2 Let )(xΨ  be the second kind Chebyshev wavelets vector defined in (12) and )<<1(0> − αααα , 

be a positive constant. Then we have:  
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Proof. It is an immediate consequence of the lemma 4.1.  

 

Remark 3 From remark 2, it must be noted that for αα = , we have 0=
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5. Description of the proposed method 
 In this section, we apply the operational matrix of fractional derivative for second kind Chebyshev wavelet for solving 

fractional telegraph equation (1) with the boundary conditions:  
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equations, i.e.  

 
1.ˆ,2,3,=3,4,=0,=

,ˆ,1,2,=1,2,=0,=

−Λ

Λ

mij

mij

ji

ji

K

K

 (38) 

 Equetion (34) together (38) give 
2

m̂  equations, which can be solved for 
ij
u , mji ˆ,1,2=, K . So the unknown function 

),( txu  can be found.  

 

6 . Numerical examples 
 In this section, we demonstrate the efficiency of the proposed method for numerical solution of the telegraph equation in 

the form of (1) with the boundary conditions (26).  

 Example 1  Consider the time-fractional telegraph equation (1) with 1=),( 2
−+ txtxf  and the boundary conditions 

as:  

 
.1=)(1,,1=,1)(

,=)(0,,=,0)(
2

2

ttuxxu

ttuxxu

++

 

 The exact solution of this problem for 2=α  is txtxu +
2=),( . Numerical solutions for some different values of α  and 

[0,1]∈t  for 3)=1,=(6=ˆ Mkm  are shown in Fig. 1. The values of exact solution ( 2=α ) and approximate solutions 

for some different values of α  and some nodes ),( yx  in [0,1][0,1]× , for 6=m̂  are shown in Table 1. 

 

Table1.Comparison between the exact ( 2=α ) and numerical solutions for Example ??. 

),( ii yx  1.4=α  1.6=α  1.8=α  
Exact solution 

(0.2,0.2)  0.26551095384623 0.25900735191924 0.25037754779349 0.24000000000000 

(0.4,0.4)  0.61739964615400 0.60276654181831 0.58334948253535 0.56000000000000 

(0.6,0.6)  1.01739964615401 1.00276654181831 0.98334948253536 0.96000000000000 

(0.8,0.8)  1.46551095384624 1.45900735191925 1.45037754779350 1.44000000000000 

(1.0,1.0  1.99999999999999 1.99999999999999 1.99999999999999 2.00000000000000 
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Fig.1.Numerical solutions of Example 1 for some different values of α . 

 

 Example 2  Consider time-fractional telegraph equation (1) with 0=),( txf  and the boundary conditions as:  

 
.=)(1,,=,1)(

,=)(0,,=,0)(
11 tx

tx

etuexu

etuexu

−−

−

 

 The exact solution of this problem for 2=α  is 
tx

etxu
−=),( . Numerical solutions for some different values of α  and 

[0,1]∈t  for 4)=1,=(8=ˆ Mkm  are shown in Fig. 2. The values of the exact solution ( 2=α ) and approximate 

solutions for some different values of α  and some nodes ),( yx  in [0,1][0,1]× , for 8=m̂  are shown in Table 2.  

 

Table 2.Comparison between the exact ( 2=α ) and numerical solutions for Example 2. 

),(
ii
yx

 
1.4=α

 
1.6=α

 
1.8=α

 
 Exact solution  

(0.2,0.2)
 

 1.00325555517139   1.00391875185692   1.00627606867049   1.00000000000000 

(0.4,0.4)
 

 1.00541907760911   1.00685195815738   1.01150179716283   1.00000000000000  

(0.6,0.6)
 

 1.00546382142790   1.00673580015166   1.01056465711498   1.00000000000000  

(0.8,0.8)
 

 1.00334917683010   1.00379783774964   1.00506051184037   1.00000000000000  

(1.0,1.0
 

 0.99944928830814   0.99944928830812   0.99944928830815   1.00000000000000  
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Fig.2.Numerical solutions of Example 2 for some different values of α . 

 

Conclusion 
 In this paper, a numerical method for approximating the solution of the time-fractional telegraph equation with Dirichlet 

boundary condition by combining second kind Chebyshev wavelet function with their operational matrix of fractional 

derivatives was presented. The method was shown that is very convenient for solving boundary value problems. Also, the 

implementation of the proposed method is very simple and is very efficient for solution of the telegraph problem. Moreover, the 

proposed method can be used for numerical solution of other kinds of fractional partial differential equations such as Poisson 

and diffusion equations. 
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